
Multivariable Control 

Systems

Ali Karimpour

Associate Professor

Ferdowsi University of Mashhad

Lecture 8

References are appeared in the last slide.



Dr. Ali Karimpour  May 2021

Lecture 8

2

Multivariable Control System Design

Topics to be covered include:

• Sequential loop closing

• Control structure design
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The process of control system design

1- Study the plant under control and obtain control objectives. 

2- Model the system and simplify it.

3- Analyse the model and derive its properties.

4- Select of controlled output to achieve the specific objectives.

5- Select of manipulation and measurements.

6- Select the control configuration

7- Select the controller type.

8- Design performance specification.

9- Design a controller.

10- Analyse the controller.

11- Simulate the resulting system either on a computer or a pilot plant.
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Selection of control output (step 4)

As another example that it is not clear, consider backing a cake.

A controlled output is an output variable (usually measured) with an 
associated control objective (usually a reference value).

In many cases, it is clear from physical understanding of the process 
for example, heating a furnace.
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Selection of manipulation and measurements(Step 5) 

In some cases there are a large number of candidate measurements and/or 
manipulations. The need for control has three origin

1- To stabilize an unstable plant, 2- To reject disturbance,

3- To track reference changes,

Strong relationship with the 
control output, or which 
may quickly detect a 
major disturbance 

Large effect on the controlled 
outputs, and should be 
close (in terms of dynamic 
response) to the output 
and measurements
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For more general analysis let:

𝑦𝑎𝑙𝑙 = 𝐺𝑎𝑙𝑙𝑢𝑎𝑙𝑙 + 𝐺𝑑𝑎𝑙𝑙𝑑

yall is all candidate output and, uall is all candidate input.

Selection of

IO set

v Attention to RHP zeros.

v High Hankel singular values.

v High input-output controllability.

Maximize 𝜎(𝐺 𝑗𝑤 )

Minimize RGA number
𝑅𝐺𝐴𝑛𝑢𝑚𝑏𝑒𝑟 = Λ − 𝐼 𝑠𝑢𝑚

Selection of manipulation and measurements(Step 5) 
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Example 1: A jet turbine

1- Selection of control output

2- Selection of candidate input 
(manipulation)

3- Selection of candidate output 
(measurements)

Trust, 

Surge, and

Compressor speed

Selection of manipulation and measurements(Step 5) 
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Example 1 : A jet turbine

1- Selection of control output

2- Selection of candidate input 
(manipulation)

3- Selection of candidate output 
(measurements)

𝑢𝑎𝑙𝑙 = 𝑊𝐹𝐸 𝐴𝐽 𝐼𝐺𝑉 𝑇

I-Fuel flow valve

II- Nozzle with variable area III- Inlet guide vanes

Selection of manipulation and measurements(Step 5) 
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Example 1 : A jet turbine

1- Selection of control output

2- Selection of candidate input 
(manipulation)

3- Selection of candidate output 
(measurements)

𝑦𝑎𝑙𝑙 = 𝑁𝐿 𝑂𝑃𝑅1 𝑂𝑃𝑅2 𝐿𝑃𝑃𝑅 𝐿𝑃𝐸𝑀𝑁 𝑁𝐻 T

Trust Surge  
Compressor  

speed
𝑁𝐿 = compressor spool speed

𝑂𝑃𝑅1 = the ratio of HP compressor’s outlet pressure to engine

𝑂𝑃𝑅2= engine overall pressure ratio

𝐿𝑃𝑃𝑅 = LP compressor’s pressure ratio

𝐿𝑃𝐸𝑀𝑁 = LP compressor’s exit Mach number

Selection of manipulation and measurements(Step 5) 
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P

K

𝑧 =

𝑇𝑟𝑢𝑠𝑡
𝑆𝑢𝑟𝑔𝑒

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 𝑠𝑝𝑒𝑒𝑑
Control output

𝑢𝑎𝑙𝑙 =
𝑊𝐹𝐸
𝐴𝐽
𝐼𝐺𝑉

Candidate input 

𝑦𝑎𝑙𝑙 =

𝑁𝐿
𝑂𝑃𝑅1
𝑂𝑃𝑅2
𝐿𝑃𝑃𝑅
𝐿𝑃𝐸𝑀𝑁
𝑁𝐻

Candidate output 

Candidate input selection 𝑢𝑎𝑙𝑙 =
𝑊𝐹𝐸
𝐴𝐽
𝐼𝐺𝑉

Selection of manipulation and measurements(Step 5) 
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P

K

𝑧 =

𝑇𝑟𝑢𝑠𝑡
𝑆𝑢𝑟𝑔𝑒

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 𝑠𝑝𝑒𝑒𝑑
Control output

𝑢𝑎𝑙𝑙 =
𝑊𝐹𝐸
𝐴𝐽
𝐼𝐺𝑉

Candidate input 

𝑦𝑎𝑙𝑙 =

𝑁𝐿
𝑂𝑃𝑅1
𝑂𝑃𝑅2
𝐿𝑃𝑃𝑅
𝐿𝑃𝐸𝑀𝑁
𝑁𝐻

Candidate output 

Candidate output selection 

𝑦1 =
𝑁𝐿

𝐿𝑃𝑃𝑅
𝑁𝐻

𝑦2 =
𝑂𝑃𝑅1
𝐿𝑃𝑃𝑅
𝑁𝐻

𝑦3 =
𝑂𝑃𝑅2
𝐿𝑃𝑃𝑅
𝑁𝐻

𝑦4 =
𝑁𝐿

𝐿𝑃𝐸𝑀𝑁
𝑁𝐻

𝑦5 =
𝑂𝑃𝑅1
𝐿𝑃𝐸𝑀𝑁
𝑁𝐻

𝑦6 =
𝑂𝑃𝑅2
𝐿𝑃𝐸𝑀𝑁
𝑁𝐻

Selection of manipulation and measurements(Step 5) 
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Set no. Candidate controlled output RHP zeros <100 rad/sec 𝝈(𝑮 𝟎 )

1 NL, LPPR, NH none 0.060

2 OPR1, LPPR, NH none 0.049

3 OPR2, LPPR, NH 30.9 0.056

4 NL, LPEMN, NH none 0.366

5 OPR1, LPEMN, NH none 0.409

6 OPR2, LPEMN, NH 27.7 0.392

Selection of

IO set

v Attention to RHP zeros.

v High Hankel singular values.

v High input-output controllability.
Maximize 𝜎(𝐺 𝑗𝑤 )

Minimize RGA number

Selection of manipulation and measurements(Step 5) 
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Selection of

IO set

v Attention to RHP zeros.

v High Hankel singular values.

v High input-output controllability.
Maximize 𝜎(𝐺 𝑗𝑤 )

Minimize RGA number

Selection of manipulation and measurements(Step 5) 
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Selection of

IO set

v Attention to RHP zeros.

v High Hankel singular values.

v High input-output controllability.
Maximize 𝜎(𝐺 𝑗𝑤 )

Minimize RGA number

𝑦5 =
𝑂𝑃𝑅1
𝐿𝑃𝐸𝑀𝑁
𝑁𝐻

Selection of manipulation and measurements(Step 5) 



Dr. Ali Karimpour  May 2021

Lecture 8

15

P

K𝑢 =
𝑊𝐹𝐸
𝐴𝐽
𝐼𝐺𝑉

Candidate input 

Candidate output 

𝑦 =
𝑂𝑃𝑅1
𝐿𝑃𝐸𝑀𝑁
𝑁𝐻

Select the control configuration (Step 6) 

Structure of K

Centralized control. 𝐾 =

. . . . . .

. . . . . .

. . . . . .

Decentralized control. 𝐾 =
. . 0 0
0 . . 0
0 0 . .
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The design of decentralized control systems involves some steps:

loop-assignment problem or input-output pairing

1- The choice of pairings (control configuration selection)

Select the control configuration (Step 6) 

G(s)

𝑦1

𝑦2

𝑦3

𝑦4

𝑢1

𝑢4

𝑢3

𝑢2

+
_

𝑘1(𝑠)_

𝑘2(𝑠)
+

𝐾 𝑠 =

𝑘1(𝑠) 0
0 𝑘2(𝑠)

0 0
0 0

0 0
0 0

𝑘3(𝑠) 0
0 𝑘4(𝑠)

.

.

.

(RGA and NI index)

2- How many control loops is necessary?
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Definition of RGA (Relative Gain Array)

Physical Meaning of RGA: Let
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Select the control configuration (Step 6) 
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Let









−

−
== −


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λ=1 → Open loop and closed loop gains are the same, 

so interactions has no effect.

λ=0 → g11=0 so u1 has no effect on y1.

0<λ→ Closing second loop, no sign change the gain between y1 and u1.

λ<0 → Closing second loop leads to changing the sign of the gain between 

y1 and u1.(Very Bad)

Select the control configuration (Step 6) 
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RGA property:

1- It is independent of input and output scaling.

2- Its rows and columns sum to 1.

3- The RGA is identity matrix if G is upper or lower triangular.

4- Plant with large RGA elements are ill conditioned.

5- Suppose G(s) has no zeros or poles at s=0. If λij() and λ(0) exist 

and have different signs then one of the following must be true.

*  G(s) has an RHP zeros. *  Gij(s) has an RHP zeros.

*  gij(s) has an RHP zeros.

6- If gij→gij(1-1/λij) then the perturbed system is singular.

7- Changing two columns/rows of G leads to same changes to its RGA

Select the control configuration (Step 6) 
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Definition of Niederlinski index.

Select the control configuration (Step 6) 

𝑁𝐼 𝐺 0 =
det(𝐺 0 )

ς𝑖 𝑔𝑖𝑖
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loop-assignment problem or input-output pairing
1- The choice of pairings (control configuration selection)

Select the control configuration (Step 6) 

a) Integrity
A decentralized control system has integrity if the closed loop system should remain 

stable as subsystem controllers are brought in and out of service or when input saturates.

G(s)

𝑦1

𝑦2

𝑦3

𝑦4

𝑢1

𝑢4

𝑢3

𝑢2

+
_

𝑘1(𝑠)_

𝑘2(𝑠)
+

.

.

.
𝐾 𝑠 =

𝑘1(𝑠) 0
0 𝑘2(𝑠)

0 0
0 0

0 0
0 0

𝑘3(𝑠) 0
0 𝑘4(𝑠)

𝜖1 0
0 𝜖2

0 0
0 0

0 0
0 0

𝜖3 0
0 𝜖4 𝜖1 ∈ {0,1}

A necessary condition for integrity is that the Niederlinski index of G(0) and the 

Niederlinski indices of all the principal submatrices 𝐺𝑖𝑖(0) of G(0) are positive.
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loop-assignment problem or input-output pairing

1- The choice of pairings (control configuration selection)

Select the control configuration (Step 6) 

b) Integral stabilizable

G(s)
_+

C(s)
𝑘

𝑠
𝐼

P(s)

System P(s)=G(s)C(s) is integral stabilizable if there exist a k>0 such that closed loop 

system is stable and its steady-state error to all constant inputs are zero.

Theorem:  The necessary condition that a proper real rational stable matrix P(s) is 

integral stabilizable is: det[P(0)]>0

Exercise:  For both following system det[P(0)]=3, show that just one of them is 

integral stabilizable.

𝑎) 𝑃 𝑠 =
1

𝑠 + 1
2 1
1 2

𝑏) 𝑃 𝑠 =
1

𝑠 + 1
−2 1
1 −2
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loop-assignment problem or input-output pairing

1- The choice of pairings (control configuration selection)

Select the control configuration (Step 6) 

c) Decentralized integral controllability(DIC)
The plant G(s) (corresponding to a given pairing with the paired elements along its 

diagonal) is DIC if there exist a stabilizing controller with integral action in each loop 

such that each individual loop may be detuned by a factor 𝜖1 ∈ [0,1] without 

introducing instability.

23

G(s)

𝑦1

𝑦2

𝑦3

𝑦4

𝑢1

𝑢4

𝑢3

𝑢2

+
_

𝑘1(𝑠)_

𝑘2(𝑠)
+

.

.

.
𝐾 𝑠 =

𝑘1(𝑠) 0
0 𝑘2(𝑠)

0 0
0 0

0 0
0 0

𝑘3(𝑠) 0
0 𝑘4(𝑠)

𝜖1 0
0 𝜖2

0 0
0 0

0 0
0 0

𝜖3 0
0 𝜖4

𝜖1 ∈ 0,1 integrity

0 ≤ 𝜖1 ≤ 1 𝐷𝐼𝐶
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loop-assignment problem or input-output pairing

1- The choice of pairings (control configuration selection)

Select the control configuration (Step 6) 

c) Decentralized integral controllability(DIC)
The plant G(s) (corresponding to a given pairing with the paired elements along its 

diagonal) is DIC if there exist a stabilizing controller with integral action in each loop 

such that each individual loop may be detuned by a factor 𝜖1 ∈ [0,1] without 

introducing instability.

Theorem:  Steady-state RGA and DIC

Consider a stable square plant G and a diagonal controller K with integral action in all 

elements, and assume that the loop transfer function GK is strictly proper. If a pairings

of outputs and manipulated inputs corresponds to a negative steady-state relative gain, 

then the closed-loop system has at least one of the following properties.

a) The overall closed-loop system is unstable.

b) The loop with the negative relative gain is unstable by itself.

c) The closed-loop system is unstable if the loop with the negative relative gain is 

open.
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loop-assignment problem or input-output pairing

1- The choice of pairings (control configuration selection)

Select the control configuration (Step 6) 

Summary of pairing rules

Pairing rule 1: Prefer pairing such that the rearranged system, with the selected 

pairings along the diagonal, has an RGA matrix close to identity at frequency around 

the closed-loop bandwidth.

Pairing rule 2: For a stable plant avoid pairings that correspond to negative steady-

state RGA elements, 𝜆𝑖𝑗 < 0.

Pairing rule 3: Prefer pairing ij where  𝑔𝑖𝑗 puts minimal restrictions on the 

achievable bandwidth. Specifically, the effective delay 𝜃𝑖𝑗 in 𝑔𝑖𝑗(𝑠) should be small.
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Example 2: Select suitable pairing for the

following blending system. (ω is output 

flow and x is the composition and defined as 

percent of of ωA to total flow)

Solution:

BA

A

BA

ww

w
x

www

+
=

+=























−−=









B

A

w

w

w

x

w

x
x

w

0

0

0

01
11

RGA of the system is 








−

−
=

00

00

1

1

xx

xx

If  x0=0.1 







=

1.09.0

9.01.0
AB wxww  &

If  x0=0.9 







=

9.01.0

1.09.0
BA wxww  &

Select the control configuration (Step 6) 
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Example 3: Select suitable pairing for the following plant

















−−=

8.14.01.18

7.04.85.15

4.16.52.10

)0(G

Solution: RGA of the system is

















−−

−

−

=

98.107.09.0

43.037.094.0

41.145.196.0

)0(

Select the control configuration (Step 6) 
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Select the control configuration (Step 6) 

Example 1(Continue) : A jet turbine

𝑢 =
𝑊𝐹𝐸
𝐴𝐽
𝐼𝐺𝑉

Candidate input 

𝑦 =
𝑂𝑃𝑅1
𝐿𝑃𝐸𝑀𝑁
𝑁𝐻

𝑦 =
1.076 −0.027 0.004
−0.064 −0.412 0
1.474 −0.093 0.983

𝑢

Candidate output 

𝑅𝐺𝐴(𝐺 0 ) =
1.002 0.004 −0.006
0.004 0.996 0
−0.006 0 1.006

𝑢

So, {WFE, OPR1}, {AJ, LPEMN}, and {IGV, NH} is a suitable pairing. 
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Combination of SVD, C.N. and RGA can help in this matter.

2- How many control loops is necessary?

Select the control configuration (Step 6) 
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















=

































−

−

=

















3

2

1

3

2

1

3

2

1

)0(

020.095.090.0

008.095.052.0

006.09.048.0

u

u

u

G

u

u

u

y

y

y

Example 4 Determine the preferred multiloop control strategy for a process with

the following steady-state gain matrix, which has been scaled by dividing the process 

variables by their maximum values.

Solution:

















−

−

−=

01.037.065.0

56.079.036.0

45.016.071.0

















−−

−−

































−

−

−−

=

99.002.001.0

01.005.099.0

02.099.005.0

01.000

014.10

0062.1

01.083.056.0

68.041.060.0

73.038.057.0

)0(G

233211 && uyuyuy 

132231 && uyuyuy 

162.. ==

−



NC

Select the control configuration (Step 6) 
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















−−

−−

































−

−

−−

=

99.002.001.0

01.005.099.0

02.099.005.0

01.000

014.10

0062.1

01.083.056.0

68.041.060.0

73.038.057.0

)0(G 162.. ==

−



NC

Determine three control loop is not suitable so:









==

==

−==

55.0133..,

55.072..,

38184..,

,

1132

1131

1121

21







NCuu

NCuu

NCuu

andyy









==

==

==

46.1139..,

64.069..,

36.051.1..,

,

1132

1131

1121

31







NCuu

NCuu

NCuu

andyy









==

==

==

71.068..,

25.3338..,

37.045.1..,

,

1132

1131

1121

32







NCuu

NCuu

NCuu

andyy

233211 && uyuyuy  132231 && uyuyuy 

1321 & uyuy 

1322 & uyuy 

Select the control configuration (Step 6) 
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Multivariable Control System Design

Topics to be covered include:

• Sequential loop closing

• Control structure design
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Sequential loop closing

The simplest approach to multivariable design is to ignore its multivariable nature.

• Choose suitable pairing. 

• When this design has been successfully completed another SISO controller is 

designed for a second pair of variables and so on.

G(s)

𝑦1

𝑦2

𝑦3

𝑦4

𝑢1

𝑢4

𝑢3

𝑢2

+
_

𝑘1(𝑠)_

𝑘2(𝑠)
+

𝐾 𝑠 =

𝑘1(𝑠) 0
0 𝑘2(𝑠)

0 0
0 0

0 0
0 0

𝑘3(𝑠) 0
0 𝑘4(𝑠)

.

.

.

• A SISO controller is designed for one pair of input and output variables.

33

• In each part we consider the previous loop in system and we check the previous one.
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Sequential loop closing

Example 5: Consider following system and derive a sequential loop closing control.

34

𝐺 𝑠 =
1

𝑠 + 1
1 1
2 1

Solution: First we must choose suitable pairing.

𝑅𝐺𝐴(𝐺 0 ) =
−1 2
2 −1

So, we must rearrange system as 𝑢1 ↔ 𝑦2 and 𝑢2 ↔ 𝑦1

𝐺𝑛𝑒𝑤 𝑠 =
1

𝑠 + 1
2 1
1 1
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𝐺𝑛𝑒𝑤 𝑠 =
1

𝑠 + 1
2 1
1 1 𝑦1

𝑦2

+
+

+
+

2

𝑠 + 1

1

𝑠 + 1

1

𝑠 + 1

1

𝑠 + 1

So, we try the first loop with an integrator

𝑘1
𝑠

+
-𝑟1

𝑦1
𝑟1

=
2𝑘1

𝑠2 + 𝑠 + 2𝑘1

𝑘2 = 2

𝑘1 = 0.5

Now, we try the second loop 

with first loop in system: 𝑘2
𝑠+-

𝑟2

𝑦2
𝑟2

=
𝑘2(𝑠

2 + 𝑠 + 1)

𝑠4 + 2𝑠3 + 2 + 𝑘2 𝑠2 + 1 + 𝑘2 𝑠 + 0.5𝑘2
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See reference no. 4 

for 𝑘1 = 𝑘2 = 1
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Sequential loop closing specification

v Pairing is an important issues.

v It is working well for low interaction systems.

v It is a decentralized controller.

v Each time one loop is designed.

v It is working well for loop with different bandwidths, start with fast loops.

v Not suitable for control difficulty issue.
RHP element zero in minimum phase systems.

High interaction system.
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A more sophisticated version of sequential loop closing is called

sequential return-difference method

A cross-coupling stage of compensations should be introduced

This stage should consist of either a constant-gain matrix

or a sequence of elementary operations. )(
)(

1
)( sU

sd
sCp =

Sequential loop closing
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Example 6:















−−

−−

+
=

ss

ss

s
sG

12
3

1
1

)1(

1
)(

2

If we try to design a SISO controller for either the first or second loop here, we have 

difficulties, if the required bandwidth is close to unity, or greater, because the transfer

function ‘seen’ for the design, namely the (1,1) or (2,2) element of G(s), has a zero at 1.

However, G(s) itself has a transmission zero at - 1 only, so there should be no inherent 

difficulty of this kind. 

If we choose 








−
=

12

01
pC















−

−+

+
==

ss

ss

s
CsGsQ p

1
3

1

3

1

)1(

1
)()(

2

We see that no right half-plane zero  ‘appears’ when a SISO compensator is being 

designed for the first loop.

Sequential loop closing
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













−

−+

+
==

ss

ss

s
KsGsQ a

1
3

1

3

1

)1(

1
)()(

2

Once the first loop has been 

closed by

The transfer function ‘seen’ in 

the second loop is

)(1 sk

222

1

22
)1(

3

1

)(
)1()1(

1
)(

+

−

+
+

+

−
=

s

s

sh
s

s

s

s
sq ( ) )(1/

3

1
1

)(
)(    where

1

2

1

skss

sk
sh









+








++

−
=

Sequential loop closing

Example 6:
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222

1

22
)1(

3

1

)(
)1()1(

1
)(

+

−

+
+

+

−
=

s

s

sh
s

s

s

s
sq ( ) )(1/

3

1
1

)(
)(    where

1

2

1

skss

sk
sh









+








++

−
=

Now, if we assume high gain in the first loop

s

s
sk

+

+


3

1

)1(
)(

2

1
s

s
sh

+

+
−

3

1

)1(
)(

2

and hence

)13)(1(

1
)(1

22
++


ss

sq

so that no right half-plane zero is seen when the compensator for the second loop

is designed.

Sequential loop closing

Example 6:
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• The main idea that of using a first stage of compensation to make subsequent 

loop compensation easier

• The main weakness of the method is that little help is available for choosing that 

first stage of compensation.

The available analysis relies on the assumption that there are high gains in the loops

which have already been closed, and such an assumption can rarely be justified, 

except at low frequencies.

One rather special case, in which the assumption of high gains is justified, arises when

different bandwidth is required for each loop, and all the bandwidths are well separated

from each other.

Sequential loop closing



Dr. Ali Karimpour  May 2021

Lecture 8

43

Mayne (1979) suggests that, if the plant has a state-space realization (A, B, C), the 

product CB being non-singular (and the matrix D being zero), then the first stage of 

compensation can be chosen to be   

( ) 1−
= CBCp

→→ sas
s

CB
sG )(      Since →→ sas

s

I
CsG p)(       so

so that each loop looks like a first-order SISO system at high frequencies.

However, an alternative choice, such as

)(1

bp jGC − )(C      or        1

bbp jGj  −

Sequential loop closing

DNA is another approach
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