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Limitation on Performance in MIMO Systems

Topics to be covered include:

v Scaling and Performance

v Shaping Closed-loop Transfer Functions

v Fundamental Limitation on Sensitivity

v Limitations Imposed by RHP Zeros

v Limitations Imposed by Unstable (RHP) Poles

v Limitations Imposed by Time Delays

v Fundamental Limitation on Performance (Frequency domain)

v Fundamental Limitation on Performance (Time domain)

v A Brief Review of Linear Control Systems
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A Brief Review of Linear Control Systems

v Time Domain Performance

v Frequency Domain Performance

v Bandwidth and Crossover Frequency
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Time Domain Performance

• Nominal stability NS: The system is stable with no model 

uncertainty.

• Nominal Performance NP: The system satisfies the performance 

specifications with no model uncertainty.

• Robust stability RS: The system is stable for all perturbed plants 

about the nominal model up to the worst case model uncertainty.

• Robust performance RP: The system satisfies the performance 

specifications for all perturbed plants about the nominal model up 

to the worst case model uncertainty.
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Time Domain Performance

The objective of this section is to discuss the ways of 

evaluating closed loop performance.

Although closed loop stability is an important issue, 

the real objective of control is to improve performance, that is, 

to make the output y(t) behave in a more desirable manner. 

Actually, the possibility of inducing instability is one of the 

disadvantages of feedback control which has to be traded off 

against performance improvement. 
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Time Domain Performance

Step response of a system

 Rise time, tr  Settling time, ts  Overshoot, P.O

 Decay ratio  Steady state offset, ess

• ISE : Integral squared error  deISE 2

0
)(





• IAE : Integral absolute error  deIAE 



0

)(

• ITSE : Integral time weighted squared error  deITSE 2

0
)(





• ITAE : Integral time weighted absolutesquared error 
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Frequency Domain 

Performance

Let L(s) denote the loop transfer

function of a system which is 

closed-loop stable under negative

feedback. 

Bode plot of               )( jL

)(

1

180jL
GM 

180)( 180  jL

1)( cjL 

180)(  cjLPM 

cPM  /max 

Nyquist plot of               )( jL
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Frequency Domain Performance

Stability margins are measures of how close a stable closed-loop system 

is to instability. 

From the above arguments we see that the GM and PM provide stability

margins for gain and delay uncertainty. 

More generally, to maintain closed-loop stability, the Nyquist stability 

condition tells us that the number of encirclements of the critical point

-1 by              must not change. )( jL

Thus the actual closest distance to -1 is a measure of stability
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Frequency Domain Performance

)(max 


jSM s 

Thus one may also view  Ms as a robustness measure.

sM

1



Dr. Ali Karimpour  Mar 2022

Lecture 7

10

Frequency Domain Performance

One degree-of-freedom

configuration

nGKIGKdGGKIrGKIGKsy d

111 )()()()(  

Complementary sensitivity 

function )(sT
Sensitivity 

function )(sS

The maximum peaks of the sensitivity and complementary sensitivity 

functions are defined as

)(max)(max 


jTMjSM Ts 
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Frequency Domain Performance

There is a close relationship between MS and MT and the GM and PM.

][
1

2

1
sin2;

1

1 rad
MM

PM
M

M
GM

sss

s 




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






 

][
1

2

1
sin2;

1
1 1 rad

MM
PM

M
GM

TTT









 

For example, with  MS = 2  we are guaranteed GM > 2 and PM >29˚.

For example, with  MT = 2  we are guaranteed GM > 1.5 and PM >29˚.
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One degree-of-freedom

configuration

nGKIGKdGGKIrGKIGKsy d

111 )()()()(  

Complementary sensitivity 

function )(sT
Sensitivity 

function )(sS

Trade-offs in Frequency Domain

)(sT

IsSsT  )()(

TndSGSrrye d  KSndKSGKSru d 
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Trade-offs in Frequency Domain

IsSsT  )()(

TndSGSrrye d  KSndKSGKSru d 

  1
)()(


 sLIsS

• Performance, good disturbance rejection  LITS or    or    0

• Performance, good command following  LITS or    or    0

• Mitigation of measurement noise on output 0or    or    0  LIST

• Small magnitude of input signals 0Lor    0or    0  TK

• Physical controller must be strictly proper 0Tor    0or    0  LK

• Nominal stability (stable plant) small  be  L

• Stabilization of unstable plant ITL or    large  be  
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Bandwidth and Crossover Frequency

Definition 5-1

below.  from  db 3- crossesfirst    )S(j 

  wherefrequency     theis ,   ,bandwidth   The B





Definition 5-2

above.  from  db 3- crosses  )T(jat  which 

frequency highest      theis ,   ,bandwidth   The BT





Definition 5-3

above.  from  db 0 crosses  )L(j  where

 frequency     theis ,   ,frequency  crossover gain    The c




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Bandwidth and Crossover Frequency

Specifically, for systems with PM < 90˚  (most practical systems) we have

BTcB  

In conclusion  ωB ( which is defined in terms of  S ) and also ωc

( in terms of L ) are good indicators of closed-loop performance, 

while ωBT ( in terms of  T ) may be misleading in some cases. 
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Bandwidth and Crossover Frequency

Example 5-1 : Comparison of       and        as indicators of performance.BTB

1,1.0;
1

1
;

)2(
Let    









 


z

szs

zs
T

zss

zs
L

036.0B054.0c 1BT 1.0  zero RHPan  is There z
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Bandwidth and Crossover Frequency

Example 5-1 : Comparison of       and        as indicators of performance.BTB
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036.0B054.0c 1BT 1.0  zero RHPan  is There z
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Introduction

One degree-of-freedom

configuration

nGKIGKdGGKIrGKIGKsy d

111 )()()()(  

nsTdGsSrsTsy d )()()()( 

• Performance, good disturbance rejection  LITS or    or    0

• Performance, good command following  LSIT or    0or    

• Mitigation of measurement noise on output 0or    or    0  LIST



Dr. Ali Karimpour  Mar 2022

Lecture 7

19

Limitation on Performance in MIMO Systems

v Scaling and Performance

v Shaping Closed-loop Transfer Functions

v Fundamental Limitation on Sensitivity

v Limitations Imposed by Time Delays

v Limitations Imposed by RHP Zeros

v Limitations Imposed by Unstable (RHP) Poles 

v Fundamental Limitation on Performance (Frequency domain)

v Fundamental Limitation on Performance (Time domain)

v A Brief Review of Linear Control Systems
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Scaling

ryedGuGy d
ˆˆˆ;ˆˆˆˆˆ 

rDreDeyDyuDudDd eeeud
ˆ,ˆ,ˆ,ˆ,ˆ 11111 



rDyDeDdDGuDGyD
eeeddue

 ;


ddedue DGDGDGDG ˆ,ˆ 11 
 ryedGGuy d  ;
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Shaping Closed-loop Transfer Functions

Many design procedure act on the shaping of the open-loop transfer

function L. 

An alternative design strategy is to directly shape the magnitudes of 

closed-loop transfer functions, such as S(s) and T(s). 

Such a design strategy can be formulated as an H∞ optimal control 

problem, thus automating the actual controller design and leaving 

the engineer with the task of selecting reasonable bounds “weights”

on the desired closed-loop transfer functions.
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The terms H∞  and H2 

The H∞ norm of a stable transfer function matrix F(s) is simply define

as,

 )(max)( 


jFsF 


We are simply talking about a design method which aims to press down 

the peak(s) of one or more selected transfer functions.

Now, the term H∞ which is purely mathematical, has now established

itself in the control community.

In literature the symbol H∞ stands for the transfer function matrices 

with bounded H∞-norm which is the set of stable and proper transfer 

function matrices.
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The terms H∞  and H2 

The H2 norm of a stable transfer function matrix F(s) is simply define

as,

 



 


djFjFtrsF H)()(

2

1
)(

2

Similarly, the symbol H2 stands for the transfer function matrices with 

bounded H2-norm, which is the set of stable and strictly proper transfer 

function matrices.

Note that the H2 norm of a semi-proper transfer function is infinite, 

whereas its H∞ norm is finite.

Why?
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Weighted Sensitivity

As already discussed, the sensitivity function S is a very good indicator

of closed-loop performance (both for SISO and MIMO systems). 

The main advantage of considering S is that because we ideally want

S to be small, it is sufficient to consider just its magnitude, ||S|| that is, 

we need not worry about its phase.

Why S is a very good indicator of closed-loop performance in many 

literatures?
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Weighted Sensitivity

Typical specifications in terms of S include:

• Minimum bandwidth frequency  ωB*.

• Maximum tracking error at selected frequencies.

• System type, or alternatively the maximum steady-state tracking 

error, A.

• Shape of S over selected frequency ranges.

• Maximum peak magnitude of S, ||S(jω)||∞≤M

The peak specification prevents amplification of noise at high frequencies, 

and also introduces a margin of robustness; typically we select M=2
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Weighted Sensitivity

)(

1

swp

  


  ,
)(

1
)(

jw
jS

P

Mathematically, these specifications may be captured simply by an 

upper bound

  1)()(,1)()( 


 jSjwjSjw PP

The subscript P stands for performance 
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Weight Selection

As

Ms
sw

B

B
P 










/
)(

plot of )(

1

jwP

Performance at Low Frequencies
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Weight Selection

Performance at High Frequencies

plot of )(

1

jwP




B

P

s

M
sw



1
)(
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Weight Selection

A weight which asks for a slope -2 for L at lower frequencies is

 
 22/1

2
2/1/

)(
As

Ms
sw

B

B
P














The insight gained from the previous section on loop-shaping design 

is very useful for selecting weights.

For example, for disturbance rejection

  1)(  jSGd

It then follows that a good initial choice for the performance weight is 

to let wP(s) look like |Gd(jω)|  at frequencies where |Gd(jω)| >1
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Weighted Sensitivity
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Stacked Requirements: Mixed Sensitivity

The specification ||wPS||∞<1  puts a lower bound on the bandwidth, 

but not an upper one, and nor does it allow us to specify the roll-off 

of L(s) above the bandwidth.

To do this one can make demands on another closed-loop transfer 

function

 



















KSw

Tw

Sw

NjNN

u

T

P

,1)(max 


For SISO systems, N is a vector and

222
)( KSwTwSwN uTP 
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Solving H∞ Optimal Control Problem

After selecting the form of N and the weights, the H∞ optimal controller 

is obtained by solving the problem 


)(min KN

K

Let  denote the optimal H∞ norm.
 )(min0 KN

K


The practical implication is that, except for at most a factor        the 

transfer functions will be close to        times the bounds selected by 

the designer.

n

0

This gives the designer a mechanism for directly shaping the magnitudes of

       )(     and     )(       ,     )( KSTS 
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Solving H∞ Optimal Control Problem

Example 5-2
110

100
)(,

)105.0(

1

110

200
)(

2 





s
sG

ss
sG d

The control objectives are:

1. Command tracking: The rise time (to reach 90% of the final value) 

should be less than 0.3 second and the overshoot should be less than 5%.

2. Disturbance rejection: The output in response to a unit step disturbance 

should remain within the range [-1,1] at all times, and it should return to 0

as quickly as possible (|y(t)| should at least be less than 0.1 after 3 seconds).

3. Input constraints: u(t) should remain within the range [-1,1]  at all times

to avoid input saturation (this is easily satisfied for most designs).
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Solving H∞ Optimal Control Problem

Consider an H∞ mixed sensitivity S/KS design in which











KSw

Sw
N

u

P

It was stated earlier that appropriate scaling has been performed so that

the inputs should be about 1 or less in magnitude, and we therefore 

As

Ms
sww

B

B
Pu 










/
)(      and    1
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Solving H∞ Optimal Control Problem

110

100
)(of diagram Bode  theSee




s
sGd
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Bode Diagram

Frequency  (rad/sec)

We need control till 10 rad/sec to reduce disturbance and a suitable rise time.

sec/10   let         So radcB 

Overshoot should be less than 5% so let   MS<1.5
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Solving H∞ Optimal Control Problem

410,10,5.1,
/

)( 









 AM

As

Ms
sw B

B

B
P 





For this problem, we achieved an optimal H∞ norm of 1.37, so the 

weighted sensitivity requirements are not quite satisfied. Nevertheless,

the design seems good with

rad/sec  22.5  and  2.71,04.8,0.1,30.1  cTS PMGMMM 
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Solving H∞ Optimal Control Problem

The tracking response is very good as shown by curve  in Figure. 

However, we see that the disturbance response is very sluggish.
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Solving H∞ Optimal Control Problem

If disturbance rejection is the main concern, then from our earlier 

discussion we need for a performance weight that specifies higher 

gains at low frequencies. We therefore try

 
 

6

2
2/1

2
2/1

10,10,5.1,
/

)( 









 AM

As

Ms
sw B

B

B
P 





For this problem, we achieved an optimal H∞ norm of 2.21, so the 

weighted sensitivity requirements are not quite satisfied. Nevertheless,

the design seems good with

rad/sec  2.11  and  3.43,76.4,43.1,63.1 c  PMGMMM TS
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Solving H∞ Optimal Control Problem
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Limitation on Performance in MIMO Systems

v Scaling and Performance

v Shaping Closed-loop Transfer Functions

v Fundamental Limitation on Sensitivity

v Limitations Imposed by Time Delays

v Limitations Imposed by RHP Zeros

v Limitations Imposed by Unstable (RHP) Poles 

v Fundamental Limitation on Performance (Frequency domain)

v Fundamental Limitation on Performance (Time domain)

v A Brief Review of Linear Control Systems
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Fundamental Limitation on Sensitivity

(Frequency domain)

S plus T is the identity matrix

ITS 

1)()(1)(  STS 

1)()(1)(  TST 
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Interpolation Constraints
RHP-zero:

If G(s) has a RHP-zero at z with output direction yz then for internal stability 

of the feedback system the following interpolation constraints must apply: 

In MIMO Case:
H

z

H

z

H

z yzSyzTy  )(;0)(

In SISO Case: 1)(;0)(  zSzT

0)( zGy
H

z

Proof:

0)( zLy
H

z LST 

0)( zTy
H

z
0))((  zSIy

H

z

S has no RHP-pole 

Fundamental Limitation on Sensitivity

(Frequency domain)
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Limitations Imposed by RHP Zeros

Moving the Effect of a RHP-zero to a Specific Output

Example 5-3













221

11

)1)(12.0(

1
)(

sss
sG

which has a RHP-zero at s = z = 0.5

The output zero direction is 






















45.0

89.0

1

2

5

1
zy

Interpolation constraint is

0)()(2;0)()(2 22122111  ztztztzt
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Limitations Imposed by RHP Zeros

Moving the Effect of a RHP-zero to a Specific Output

0)()(2;0)()(2 22122111  ztztztzt
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Limitations Imposed by RHP Zeros

Moving the Effect of a RHP-zero to a Specific Output
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Limitations Imposed by RHP Zero

Theorem 5-1 Assume that G(s) is square, functionally controllable and stable 

and has a single RHP-zero at s = z and no RHP-pole at s = z.  Then  if  the  k’th 

Element of the  output zero  direction is non-zero, i.e.  yzk ≠ 0  it  is  possible to

obtain “perfect” control  on  all  outputs   j ≠ k    with  the  remaining   output 

exhibiting no steady-state offset. Specifically, T can be chosen of the form 











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
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

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Interpolation Constraints
RHP-pole:

If G(s) has a RHP pole at p with output direction yp then for internal 

stability the following interpolation constraints apply 

In MIMO Case: ppp yypTypS  )(;0)(

In SISO Case: 1)(;0)(  pTpS

Proof:

0)(1 

pypL SLT  T has no RHP-pole S has a RHP-zero 

1 TLS 0)()()( 1 

pp ypSypLpT   ppp yypSIypT  )()(

Fundamental Limitation on Sensitivity

(Frequency domain)
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Sensitivity Integrals







pN

i

ipdjS
1

0
)Re(.)(ln 

If L(s) has two more poles than zeros (the loop transfer  function L(s) of a 

feedback system goes to zero faster than 1/s as s → ∞),(Bode integral)

Fundamental Limitation on Sensitivity

(Frequency domain)

In SISO Case: 

Figures are derived from:

“Feedback Systems” Karl Johan Astrom, Richard M. Murray, Princeton university press 2009 



Dr. Ali Karimpour  Mar 2022

Lecture 7

49

Sensitivity Integrals

  





pN

i

i

i

i pdjSdjS
1

00
)Re(.)(ln)(detln 







pN

i

ipdjS
1

0
)Re(.)(ln 

If L(s) has two more poles than zeros (the loop transfer  function L(s) of a 

feedback system goes to zero faster than 1/s as s → ∞),(Bode integral)

In MIMO Case: (Generalization of SISO case)

Fundamental Limitation on Sensitivity

(Frequency domain)

In SISO Case: 
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Fundamental Limitation: Bounds on Peaks


 TMSM TS min,min min,min,

In the following, MS,min and MT,min denote the lowest achievable values

for ||S||∞ and ||T||∞ , respectively, using any stabilizing controller K. 
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Fundamental Limitation: Bounds on Peaks

Theorem 5-2 Sensitivity and Complementary Sensitivity Peaks

Consider a rational plant G(s) (with no time delay). Suppose G(s) has Nz

RHP-zeros with output zero direction vectors yz,i and Np RHP-poles with 

output pole direction vectors yp,i. Suppose all zi and pi are distinct.

Then we have the following tight lower bound on  ||T||∞ and ||S||∞

 2/12/12

min,min, 1


 pzpzTS QQQMM 

     
ji

jp

H

iz

ijzp

ji

jp

H

ip

ijp

ji

jz

H

iz

ijz
pz

yy
Q

pp

yy
Q

zz

yy
Q










,,,,,,
,,
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Fundamental Limitation: Bounds on Peaks

Example 5-4

2)1)(2(

)3)(1(
)(






ss

ss
sG

Derive lower bounds on  ||T||∞ and ||S||∞

2,3,1 121  pzz




















1

1
,4/1,

6/14/1

4/12/1
, pzpz QQQ

15
6786.12

9531.7
1 2

min,min, 




















 TS MM
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Fundamental Limitation: Bounds on Peaks

 2/12/12

min,min, 1


 pzpzTS QQQMM 

     
ji

jp

H

iz

ijzp

ji

jp

H

ip

ijp

ji

jz

H

iz

ijz
pz

yy
Q

pp

yy
Q

zz

yy
Q










,,,,,,
,,

One RHP-pole and one RHP-zero

 2

2

2

2

min,min, cossin
pz

pz
MM TS




 p

H

z yy1cos 

Exercise5-1 : Proof above equation. 
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Fundamental Limitation: Bounds on Peaks

Example 5-5
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Fundamental Limitation: Bounds on Peaks

5.0,2,
/
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Fundamental Limitation: Bounds on Peaks

5.0,2,
/

, 
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
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Fundamental Limitation: Bounds on Peaks

The corresponding responses to a step change in the reference r = [ 1  -1 ] , are shown

Solid line: y1       

Dashed line: y2

1- For α = 0 there is one RHP-pole and zero so the responses for y1 is very poor.

2- For α = 90 the RHP-pole and zero do not interact but y2 has an undershoot since of …

3- For α = 0 and 30  the H∞ controller is unstable since of …
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Limitations Imposed by RHP Zeros

Let a RHP-zero located at z so by maximum module theorem 

1)()( 


sSswP
1)( zwP

𝑤𝑝 𝑠 𝑆(𝑠)
∞

= max
𝜔

𝑤𝑝 𝑗𝜔 .  𝜎( 𝑆 𝑗𝜔 )

𝑤𝑝 𝑠 𝑆(𝑠)
∞

= max
𝜔

𝑤𝑝 𝑗𝜔 .  𝜎(𝑆 𝑗𝜔 ) ≥ 𝑤𝑝 𝑠 .  𝜎(𝑆 𝑠 ) ∀𝑠 ∈ 𝑅𝐻𝑃

𝑤𝑝 𝑠 𝑆(𝑠)
∞

≥ 𝑤𝑝 𝑧 .  𝜎(𝑆 𝑧 )
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Limitations Imposed by RHP Zeros

Performance at Low Frequencies 1)()( 


sSswP

1)( zwP
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P 
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)(87.0 IIzB 
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M
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
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Exercise5-2 : Derive (I) and (II). 
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Limitations Imposed by RHP Zeros

Performance at High Frequencies 1)()( 

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Limitations Imposed by Unstable (RHP) Poles

)())((.)(max)()( pwjTjwsTsw TTT 





1)()( 


sTswT
1)( pwT

TBT

T
M

s
sw

1
)( 



Real RHP-pole

1
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T

T
BT
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M
p pBT 2

Imaginary RHP-pole pBT 15.1

pc 2
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Limitation on Performance in MIMO Systems

v Scaling and Performance

v Shaping Closed-loop Transfer Functions

v Fundamental Limitation on Sensitivity

v Limitations Imposed by Time Delays

v Limitations Imposed by RHP Zeros

v Limitations Imposed by Unstable (RHP) Poles 

v Fundamental Limitation on Performance (Frequency domain)

v Fundamental Limitation on Performance (Time domain)
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Fundamental Limitation on Performance

(Time domain)

Reference: “Interaction Bounds in Multivariable Control Systems” K H Johanson, 

Automatica, vol 38,pp 1045-1051, 2002

Consider the system:
 )()()()(

)()()(

sYsRsCsU

sUsGsY





Let a step response signal               at 

i th input but other inputs are zero so

 )(ˆ tur

 0),()(sup
0

trtyy ii
t

o

i 


Undershoot is

defined as:
 0),(sup

0

tyy i
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u

i 


 )(supˆ
0

tyy k
t

ki




Overshoot in 

output i is:

Settling time is defined as:

 
 





ttrtyt kk

mk
si ,)()(:infmax

0,...,1

Rise time is defined as:
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Fundamental Limitation on Performance

(Time domain)
Theorem5-3: Consider the stable closed loop system with zero initial conditions at 

t=0 and let                                 for t>0. Assume that the open loop transfer function 

G has a real RHP zero z  > 0 with zero direction yz and yz1 >0. then we have:

 Trtr 0,...,0,ˆ)( 
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z yry
e

yyyy
s

2

1

2

111 )ˆ(
1

1
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1


undershoot 

interaction settling time settling level
elements of 

zero direction
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Fundamental Limitation on Performance

(Time domain)
Theorem5-3: Consider the stable closed loop system with zero initial conditions at 

t=0 and let                                 for t>0. Assume that the open loop transfer function 

G has a real RHP zero z  > 0 with zero direction yz and yz1 >0. then we have:

 Trtr 0,...,0,ˆ)( 





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undershoot 

interaction settling time settling level
elements of 

zero direction

Theorem5-4: Consider the stable closed loop system with zero initial conditions at 

t=0. Assume that the open loop transfer function G has a real RHP pole p > 0 with 

pole direction yp and yp1 >0. Consider m independent responses with                for 

t>0. Then we have:
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Fundamental Limitation on Performance

(Time domain)

Example5-6: Experimental set-up for the quadruple-tank process.
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Fundamental Limitation on Performance

(Time domain)

Example5-6(Continue): Experimental set-up for the quadruple-tank process.

pointset   valve:1

Input#1

Pump1

Input#2

Pump2

Output#1 Output#2

pointset   valve:2

Valve set points are used to make the

process more or less difficult to control. 
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Fundamental Limitation on Performance

(Time domain)

High undershoot for small interaction.

For a unit step in r1 we have:

For a settling time of  ts1=100 we have:
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Fundamental Limitation on Performance

(Time domain)
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Fundamental Limitation on Performance

(Time domain)
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5-3 Consider the following  weight with f>1.

5-4 Consider the weight

5-1 Mentioned in the lecture.

5-2 Mentioned in the lecture.
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5-5 Consider the plant

5-6 Repeat 5-5 for following plant.
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