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Lecture 7

Limitation on Performance in MIMO Systems

Topics to be covered include:

A Brief Review of Linear Control Systems
Scaling and Performance
Shaping Closed-loop Transfer Functions

Fundamental Limitation on Performance (Frequency domain)
Fundamental Limitation on Sensitivity

Limitations Imposed by RHP Zeros
Limitations Imposed by Unstable (RHP) Poles

Limitations Imposed by Time Delays

Fundamental Limitation on Performance (Time domain)
2

Dr. Ali Karimpour Mar 2022



Lecture 7

A Brief Review of Linear Control Systems

< Time Domain Performance

« Frequency Domain Performance

« Bandwidth and Crossover Frequency
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Lecture 7

Time Domalin Performance

« Nominal stability NS: The system is stable with no model
uncertainty.

« Nominal Performance NP: The system satisfies the performance
specifications with no model uncertainty.

« Robust stability RS: The system is stable for all perturbed plants
about the nominal model up to the worst case model uncertainty.

« Robust performance RP: The system satisfies the performance
specifications for all perturbed plants about the nominal model up
to the worst case model uncertainty.
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Lecture 7

Time Domain Performance

Although closed loop stability Is an important issue,

the real objective of control Is to Improve performance, that is,
to make the output y(t) behave in a more desirable manner.

Actually, the possibility of inducing instability is one of the
disadvantages of feedback control which has to be traded off
against performance improvement.

The objective of this section Is to discuss the ways of
evaluating closed loop performance.
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Lecture 7

Time Domain Performance

" Step response of a system

Overshoot = A |
Decay ratio = H/A

Rise time, t,

e Decay ratio

o Settling time, t,

s

e Overshoot, P.O

Time

o Steady state offset, e,

ISE : Integral squared error

|AE : Integral absolute error

ISE = j:’ e(r)2dr
IAE = | fe(z)d=

ITSE : Integral time weighted squared error [TSE = J'OOO we(r)’dz
ITAE : Integral time weighted absolutesquared error
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Frequency Domain
Performance

Let L(5)denote the loop transfer
function of a system which is
closed-loop stable under negative

feedback.

£ZL(Jyg,) =—180

1
“—( J@og, )‘

GM =

L(jo,)| =1
PM = ZL(jw,)+180

6. ... =PM/o,

Bode plot of L(jw)

10" —~
o ]
£ . T ]
a S H"HL el T
= ]

1o L . -

10 10" o 10"
Wwhe Wi
-0 — T T _ R
L -1t —
T EM T
& —150 : :
; H_"-\-.__
10 ot 10"
Frequency [rad/s]
Nyquist plot of L(jw)
foolm
-
#
0.5
1 a1 Lljwse) .
, oM — | . He
: j:'{-..--l -:\' - i ! ———
-1, ML 0.5 "
i e i
:-—.‘i LI:_J.'-I-'r'l] I
s
/ % -0.5
/N
4 -
; L(jw) -

22



Lecture 7

Frequency Domain Performance

Stability margins are measures of how close a stable closed-loop system
IS to instability.

From the above arguments we see that the GA/and PM provide stability
margins for gain and delay uncertainty.

More generally, to maintain closed-loop stability, the Nyquist stability
condition tells us that the number of encirclements of the critical point
-1 by L(jw) mustnot change.

Thus the actual closest distance to -1 iIs a measure of stability
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Lecture 7

Frequency Domain Performance

Im

Re

M, = max|S(jo)|

Thus one may also view M. as a robustness measure.
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Lecture 7

Frequency Domain Performance

One degree-of-freedom @ ——o- S TSN é .
configuration .

y(s) @ erc —GK (1 +GK)™n

Complementary sensitivity Sensitivity
function T(s) function S(s)

The maximum peaks of the sensitivity and complementary sensitivity
functions are defined as

M, = max|S(jo)| M, = maxT (jo) 10
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Lecture 7

Frequency Domain Performance

There Is a close relationship between M.and M,and the GM and PM.

GM > L . PM >2sin™ o zi[rad]
M. -1 2M M

S S

S

For example, with M.= 2 we are guaranteed GM > 2 and PM >29°.

T

GM 21+—1—; PM > 2sin | — zi[rad]
2M. | M.
For example, with M-=2 we are guaranteed GM > 1.5 and PM >29°.
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Lecture 7

Trade-offs in Frequency Domain

ln’

One degree-of-freedom = o+ x o ¢ —
configuration ‘

V() =GK (I +GK)™)r Gdd —n
Complementary sensitivity Sensitivity T(s)

function T(s) function S(S)

T(s)+S(s)=1
e=y-r=-Sr+3G,d -Tn U = KSr — KSG,d — KSn

12
Dr. Ali Karimpour Mar 2022



Lecture 7

Trade-offs in Frequency Domain
e=y-r=-Sr+SG,d-Tn U = KSr — KSG,d — KSn

T(s)+S(s) =1 S(s)=(1+L(s))"

Performance, good disturbance rejection S —>0or T —>1 or L >

Performance, good command following S—>0or T —>1 or L >

Mitigation of measurement noise on output T -0 or S—1 or L—0
Small magnitude of input signals K—0orT—>0o0or L>0
Physical controller must be strictly proper K —->0o0or L—>0o0or T—0
Nominal stability (stable plant) L be small

Stabilization of unstable plant L be large or T — Iz
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Lecture 7

Bandwidth and Crossover Frequency

Definition 5-1
The bandwidth, @, ,Is the frequency where

S(jw)| first crosses-3db from below.

Definition 5-2
The bandwidth, @, ,is the highest frequency
at which [T(jw)| crosses-3db from above.

Definition 5-3

The gain crossover frequency, w,,Is the frequency

where |L(jw)| crosses0db from above.
14
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Lecture 7

Bandwidth and Crossover Frequency

Specifically, for systems with PM < 90° (most practical systems) we have

Wy SO, < Wyt

In conclusion ®g (which is defined in terms of S) and also ®,
( in terms of L ) are good indicators of closed-loop performance,
1

while wg (In terms of 7)) may be misleading in some cases
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Lecture 7

Bandwidth and Crossover Frequency

Example 5-1 : Comparison of @, and w,, as indicators of performance.

VL b i e e e
S(zS+ 72+ 2) S+2Z 15+1

w, =0.054 @, =0.036 wgr =1  Thereisan RHP zero z=0.1

I
Wp "  WaoWET——
1 I....__,..,-r.. .,_,_,_.a_.--._.._.:.-.:-.......----- B = = T
7|
=10
-
10 -
1 10 _ 10 10
Fl'li'[llll."[H'_'l.' |_I"rI.IZII-'I.‘-_
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Lecture 7

Bandwidth and Crossover Frequency

Example 5-1 : Comparison of @, and w,, as indicators of performance.

VL b i e e e
S(zS+ 72+ 2) S+2Z 15+1

w, =0.054 (@, =0.036 Thereisan RHP zero z=0.1

20 25 30
Tiuu'ﬂ'|:~+'-:'] .

0 45

50
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Lecture 7

Introduction

configuration

One degree-of-freedom T [P TN i b

y(s) =GK (1 +GK) ™ r+ (I +GK)™ G,d —GK (I +GK)™n
y(s)=T(s)r+S(s) G,d-T(s)n
 Performance, good disturbancerejection S —>0or T —>1 or L >

 Performance, good command following T —>1 or S—0or L >

 Mitigation of measurement noise on output T -0 or S — 1 or L —0
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Lecture 7

Limitation on Performance in MIMO Systems

A Brief Review of Linear Control Systems

Scaling and Performance
Shaping Closed-loop Transfer Functions

Fundamental Limitation on Performance (Frequency domain)
Fundamental Limitation on Sensitivity

Limitations Imposed by RHP Zeros

Limitations Imposed by Unstable (RHP) Poles

Limitations Imposed by Time Delays

Fundamental Limitation on Performance (Time domain)
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Lecture 7

Scaling

-

g=Gli+G,d; é=

<

d=D,'d,u=D,"0, y=D,'y,e=D_ "6, r=D,'f

e

Dy=GDu+GDd; De=Dy-Dr

G=D,'GD,,G, =D, 'G,D, y=Gu+G,d; e=y-r

20
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Lecture 7

Shaping Closed-loop Transfer Functions

Many design procedure act on the shaping of the open-loop transfer

function L.

An alternative design strategy is to directly shape the magnitudes of

closed-loop transfer functions, such as S¢(s) and 7(s).

Such a design strategy can be formulated as an ~_, optimal control
problem, thus automating the actual controller design and leaving
the engineer with the task of selecting reasonable bounds “weights”

on the desired closed-loop transfer functions.

21
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Lecture 7

The terms A, and H,

The H_ norm of a stable transfer function matrix £~¢s)is simply define
as,
[F@©)], = maxa(F(je))
We are simply talking about a design method which aims to press down
the peak(s) of one or more selected transfer functions.

Now, the term A which is purely mathematical, has now established
itself in the control community.

In literature the symbol ~_ stands for the transfer function matrices
with bounded A _-norm which is the set of stable and proper transfer
function matrices. 5
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Lecture 7

The terms A, and H,

The H, norm of a stable transfer function matrix ~(s) is simply define
as,

IF(s)], = \/%r:tr[F(ja))F(ja))H e

Similarly, the symbol H, stands for the transfer function matrices with
bounded A -norm, which Is the set of stable and strictly proper transfer
function matrices.

Note that the A, norm of a semi-proper transfer function is infinite,
whereas its A, norm is finite.

Why?
23
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Lecture 7

Weighted Sensitivity

As already discussed, the sensitivity function Sis a very good indicator

of closed-loop performance (both for SISO and MIMO systems).

Why S'is a very good indicator of closed-loop performance in many

literatures?

The main advantage of considering Sis that because we ideally want
Sto be small, it is sufficient to consider just its magnitude, ||S|| that is,

we need not worry about its phase.

24
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Lecture 7

Weighted Sensitivity

Typical specifications in terms of Sinclude:

« Minimum bandwidth frequency wg*.
« Maximum tracking error at selected frequencies.

« System type, or alternatively the maximum steady-state tracking
error, A.

 Shape of Sover selected frequency ranges.

« Maximum peak magnitude of S, [[S(jw)|[. =M

The peak specification prevents amplification of noise at high frequencies,
and also introduces a margin of robustness; typically we select AM=2 i
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Lecture 7

Weighted Sensitivity

Mathematically, these specifications may be captured simply by an
upper bound 1

W, (5)

1

< — Y
’WP (Ja))‘

5(S(jm))

o ow(jo)S(jw)<l, Yo <  |w.(jo)S(jo)| <1

The subscript P stands for performance

26
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Lecture 7

Weight Selection

Performance at Low Freguencies

To"

Mozt ke

Frigpuency [rad /4]
¥
pIOt of ‘Wp(ja))‘

SIM +w,

Wp (S) =

S+my A
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Lecture 7

Weight Selection

Performance at High Frequencies

Magntude

100 4 T
[] 10 [ 10 10
Frequency [rad /s8]
pIOt of ‘WP (Ja))\
% S
Wp (s) = A e
M w,
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Lecture 7

Weight Selection

A weight which asks for a slope -2 for L at lower frequencies is

BN 0]

f 2
(S+a)B A”z)

Wp (S) 7=

The insight gained from the previous section on loop-shaping design
Is very useful for selecting weights.

For example, for disturbance rejection
E(SGd (Ja))) <1

It then follows that a good initial choice for the performance weight is
to let w,(s) look like |G,(Jw)| at frequencies where |G,(Jw)| >1 2
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Lecture 7

Weighted Sensitivity

Magnitude

Maznitude

E I I E
0
1
=

£
0 11

1
-] . Al
“requency Irrul_.'.a|

(a] Sensitivity Slamd perfocfance welght we.

3 T T T T T T T T T T T T T TTTT

[P Tl [N -
|t g 8|2

It

167" 15" u 10’
Frequency [rad /5]
(b Weighted sensitivily arp S,
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Lecture 7

Stacked Requirements: Mixed Sensitivity

The specification ||wyS||,,.<1 puts a lower bound on the bandwidth,
but not an upper one, and nor does it allow us to specify the roll-off

of L(s) above the bandwidth.

To do this one can make demands on another closed-loop transfer

function

IN|. =max&(N(jw))<1, N=

For SISO systems, AVis a vector and

£ WS =
w, T

W, KS |

F(N) = (W, S| +w, T[ + |w,KS|’

al
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Lecture 7

Solving H_, Optimal Control Problem

After selecting the form of NV and the weights, the ~_ optimal controller
IS obtained by solving the problem

min[N(K),

Let 7o =min|N(K)[, denote the optimal A, norm.

The practical implication is that, except for at most a factor /n the

transfer functions will be close to 7, times the bounds selected by

the designer.
This gives the designer a mechanism for directly shaping the magnitudes of

5(S) , &) and &(KS) ;
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Lecture 7

Solving H_, Optimal Control Problem

Example 5-2 G(s) = 200 1 G,(s) = 100

105 +1 (0.05s +1)2 10s +1
The control objectives are:

1. Command tracking: The rise time (to reach 90% of the final value)
should be less than 0.3 second and the overshoot should be less than 5%.

2. Disturbance rejection: The output in response to a unit step disturbance
should remain within the range [-1,1] at all times, and it should return to (
as quickly as possible (Jy(t)| should at least be less than 0.1 after 3 seconds).

3. Input constraints: ¢(t) should remain within the range [-1,1] at all time:

to avoid Input saturation (this is easily satisfied for most designs).
a3
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Lecture 7

Solving H_, Optimal Control Problem

Consider an H_ mixed sensitivity S/KS design in which

et Wy S
|w,KS
It was stated earlier that appropriate scaling has been performed so that
the inputs should be about 1 or less in magnitude, and we therefore

SIM +aw,

w,=1 and Ww,(S)= -
S+wg A

u

34
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Lecture 7

Solving H_ Optimal Control Problem

See the Bode diagramof G, (s) = 2k
10s+1
Bode Diagram
30—
g 20/~
é 10—

-3 2! -1 0 “ 2
10 10 10 10 10 10
Frequency (rad/sec)

We need control till 10 rad/sec to reduce disturbance and a suitable rise time.

So let Wy = @, =~10rad/sec

Overshoot should be less than 5% so let AM<1.5 £

Dr. Ali Karimpour Mar 2622



Lecture 7

Solving H_. Optimal Control Problem

sIM +w,"

W, (s) = . M=15, @, =10, A=10"

S+wg, A
For this problem, we achieved an optimal ~_norm of 1.37, so the

weighted sensitivity requirements are not quite satisfied. Nevertheless,

the design seems good with
M. =130, M; =1.0, GM =8.04, PM =71.2° and w, =5.22 rad/sec

|

Magnitude
\

10 o = o 36
10° 10 - 10° e 10 10
Frequency [rad/s| Dr. Ali Karimpour Mar 2022



Lecture 7

Solving H_ Optimal Control Problem

-
N
o
N

1...... '
/ i (t)

J

o
L

-
[ —
=

0 1 > 1 >

l'ime [sec| Time [sec]

o
o

LS

(a) Tracking response. (b) Disturbance response.

The tracking response is very good as shown by curve in Figure.
However, we see that the disturbance response Is very sluggish.
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Lecture 7

Solving H.. Optimal Control Problem

If disturbance rejection is the main concern, then from our earlier
discussion we need for a performance weight that specifies higher
gains at low frequencies. \We therefore try

2

(S/I\/Ill2 +a)B*)

(S + @ *Allz)
B

Wp (S) T

For this problem, we achieved an optimal ~_norm of 2.21, so the
weighted sensitivity requirements are not quite satisfied. Nevertheless,
the design seems good with

M. =1.63, M; =1.43, GM =4.76, PM =43.3" and w, =11.2 rad/sec
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Lecture 7

Solving H_ Optimal Control Problem

(=1
T

10" e ——
- ,f"’f Py
) 1 e 2" 1/ wpa
10 : )
1 10" iy ' 10°
F]'L"-I.J e NeY [l'EH]I.'r!'-]
1.5
||Inllll I!_.rl'l:if:l |Ilrr __:T____ T ——
SN I.-l—_,l“ |j}| ——

0 1 .

Time [sec|

[a} Tracking response.

o
—
=)

“
Time |sec|

(b Disturbance response.
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Lecture 7

Limitation on Performance in MIMO Systems

A Brief Review of Linear Control Systems

Scaling and Performance
Shaping Closed-loop Transfer Functions

Fundamental Limitation on Performance (Frequency domain)
Fundamental Limitation on Sensitivity

Limitations Imposed by RHP Zeros

Limitations Imposed by Unstable (RHP) Poles

Limitations Imposed by Time Delays

Fundamental Limitation on Performance (Time domain)
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Lecture 7

Fundamental Limitation on Sensitivity
(Frequency domain)

Splus 7 is the identity matrix

S Hilv=l

5(S)-1<a(T)<5(S)+1

o(T)-1<a(S)<a(T)+1

41
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Lecture 7

Fundamental Limitation on Sensitivity
(Frequency domain)

Interpolation Constraints
RHP-zero:

If G(s) has a RHP-zero at zwith output direction y, then for internal stability
of the feedback system the following interpolation constraints must apply:

In SISO Case: T(z)=0; S(z)=1

In MIMO Case: yZHT(z)zO; yZ”S(Z)=yZH

Proof:

yzHG(Z) =0 yZH L(z)=0 T =5 S has no RHP-pole

y, T(z)=0 y. M (1 =S(2)) =0 o
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Lecture 7

Limitations Imposed by RHP Zeros

Moving the Effect of a RHP-zero to a Specific Output

Example 5-3

G(s) = 1 { 1 1}
(0.2s+1)(s+1)|1+2s 2

which has a RHP-zeroat s=2z=0.5

The output zero directionis  y, = %[ ; } { 06825}

Interpolation constraint is

2t,(2) —14(2) =05 2t,,(z) —1,(2) =0 2
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Limitations Imposed by RHP Zeros

Lecture 7

Moving the Effect of a RHP-zero to a Specific Output
2t,,(2)-1,(2) =0; 2t,(2)-1,(2)=0

Tl(s) =

Tz (S) =

S A2 0
T —S+12
: Syl
1 e
5SS | —8EZ
s+z S+Z |
-S4zl Bs
stz s+z| o Pr=l
0 1

5

?? > [, =4

0.89
—0.45
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Limitations Imposed by RHP Zeros

Lecture 7

Moving the Effect of a RHP-zero to a Specific Output
2t,(z)-1,(2)=0; 2t,(z)-1,(z)=0

Tl(S) =

T,(s)

(—547 g
e —S+12
0
S A
1 0
ps —s+z| 7?7 > [ =4
[ S+7 /547 ]
[ —s4+7  BsSs
S LA B E—, '82:1
L O 1 —
| 089
e
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Lecture 7

Limitations Imposed by RHP Zero

Theorem 5-1 Assume that G(s) is square, functionally controllable and stable
and has a single RHP-zero at s= zand no RHP-pole at s= 2z Then if the k'th
Element of the output zero direction is non-zero, i.e. y,, #0 it is possible t0
obtain “perfect” control on all outputs j#k with the remaining output
exhibiting no steady-state offset. Specifically, T can be chosen of the form

TO)=| fs B3 T Bus —ser fus T Bs| p_ Y gor juk

Si e 7 S e e v e g T Sy Yo

RN A e ek 0 Bt i) 5
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Lecture 7

Fundamental Limitation on Sensitivity
(Frequency domain)

Interpolation Constraints
RHP-pole:

It G(s) has a RHP pole at p with output direction y, then for internal
stability the following interpolation constraints apply

In SISO Case: S(p)=0; T(p)=1
In MIMO Case: S(P)Y, =0; T(P)Y, =Y,
Proof:
L*(p)y, =0 T5=/SL T has no RHP-pole S has a RHP-zero

s=TLt  [T(MLMP)Y, =S(P)Y, =0[ [T(P)Y, =(1=S(P)ys=Y,!
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Lecture 7

Fundamental Limitation on Sensitivity
(Frequency domain)

Sensitivity Integrals

If L(s) has two more poles than zeros (the loop transfer function L(s) of a
feedback system goes to zero faster than 1/s as s — «),(Bode integral)

N
P
L] w -
In SISO Case: j |n|S(Jw)|dw:ﬂ_ZRe(pi)
2 i=1
10 Seriomsi Design S.g
1 . . il
— ol E
5 -1 i ﬁ' 1.0
Bl 0
S -2 . 3
_3 1 1
0 1 2 3
Frequency o [rad/s] (linear scale) 0.1 &
0.0 0.5 1.0 1.5 2.0
Frequency

Figures are derived from:
“Feedback Systems” Karl Johan Astrom, Richard M. Murray, Princeton university press 2009
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Lecture 7

Fundamental Limitation on Sensitivity
(Frequency domain)

Sensitivity Integrals

If L(s) has two more poles than zeros (the loop transfer function L(s) of a
feedback system goes to zero faster than 1/s as s — «),(Bode integral)

In SISO Case:
o0 Np
jo In\S(ja))\da):ﬂ.;Re(pi)
In MIMO Case: (Generalization of SISO case)

jooo In‘det S(J'a))‘da) £ Zj: Ino. (S(ja)))da) = 7[% Re(p,)

49
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Lecture 7

Fundamental Limitation: Bounds on Peaks

In the following, M., and My, denote the lowest achievable values

for ||§]|,, and || 7]|.,, respectively, using any stabilizing controller K.

Mg n = min|S|| , =min|T|

S, mi Tm|

50
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Lecture 7

Fundamental Limitation: Bounds on Peaks

Theorem 5-2 Sensitivity and Complementary Sensitivity Peaks
Consider a rational plant G(s) (with no time delay). Suppose G(s) has N,

RHP-zeros with output zero direction vectors y, ;and A/, RHP-poles with
output pole direction vectors y, . Suppose all z; and p; are distinct.

Then we have the following tight lower bound on |[T||., and ||S||.,

|\/IS,min =, I\/IT,min 7= \/1+ EZ(Qz_lleszp_llz)

[Qz]ij P [Qp]ij = Zeite : [sz] _

Dipe 7 al =0
ol
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Lecture 7

Fundamental Limitation: Bounds on Peaks

Example 5-4
_ (s-D(s—-3)

e (s—2)(s+1)°

Derive lower bounds on [[T||., and [|S]|..

BT 32

Q_1/2 1/4 &t [-1
a0 Y e e s L

_,([-7.9531
I\/ISminZI\/ITmin: 1+O— :15
| ’ 12.6786 2
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Lecture 7

Fundamental Limitation: Bounds on Peaks

I\/IS,min 7 I\/IT,min e \/1+52(Qz_1/2szQp_1/2)

W R e
=, Zi +Zj ’[ p]ij qr: ’[QZD]"

Qz T i A%
[ ]J pi+pj > Zi_pj

One RHP-pole and one RHP-zero

2

27 p\z cos® ¢ ¢ =CoS ™

z-p|

yiy,|

|VIS,min 7 I\/IT,min =\/Siﬂ2¢+

Exercise5-1 : Proof above equation.

o3
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Lecture 7

Fundamental Limitation: Bounds on Peaks

Example 5-5

G,(s)=

—SinNa

(0.1s+1)(s—p)

| (0.1s+1)(s+3)

0.1s+1

S+2
0.1s+1_

S+2

(0.15+1)(s+3)

S+2

el e A P

(0.1s+1)(s— p)

o4
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Fundamental Limitation: Bounds on Peaks

Lecture 7

& 0° 30° §0° 90"

1 0.33 0.11 0

7'z 0 —094| | |-099 1
¢=cos [yFy ) 0" 709 | 834 | g0°
M sni, = Mg, 5.00 1.89 1.15 1.00
15| 7.00 2 60 1.59 1.98
17 7.40 276 1.60) 1.31

sIM + w; :
W, =1, W, B]I,M:Z, w, =05

95
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Fundamental Limitation: Bounds on Peaks

Lecture 7

& 0° 30° §0° 90"

1 0.33 0.11 0

7'z 0 —094| | |-099 1
¢=cos [yFy ) 0" 709 | 834 | g0°
M sni, = Mg, 5.00 1.89 1.15 1.00
15| 7.00 2 60 1.59 1.98
17 7.40 276 1.60) 1.31

sIM + w; :
W, =1, W, B]I,M:Z, w, =05

o6
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Lecture 7

Fundamental Limitation: Bounds on Peaks

The corresponding responses to a step change in the reference r=[1 -1], are shown

phl =0 phl= 703 R T
I R— ————— Solid line: y;
Tt ———————— 1 II'}’:{:_ ........ :n___._._.._ )

A | | ——"=__ | Dashed line: y2

» ll_"fﬂr_’ Y S .

I IEEE Z N i 2 1 4 5

phi =234 phl = 53
1 e | .I.'.'..T.:.m..
| - =
al 38 e af "

-q --_--:--.'_- S | ST U —

~a SR B R k1 2 F 4 &

1- For a = 0 there is one RHP-pole and zero so the responses for )4 is very poor.

2- For o =90 the RHP-pole and zero do not interact but y, has an undershoot since of ...

57
3- For a =0 and 30 the H_, controller is unstable since of ... s PR AN



Lecture 7

Limitations Imposed by RHP Zeros

”Wp(S)S(S)”OO = maz)ix|wp(ja))|.5(5(ja)))
Let a RHP-zero located at zso by maximum module theorem

”Wp(S)S(S)”oo = m£x|wp(ja))|.5(5(ja))) > |Wp(s)|.5(5(s)) Vs € RHP

”Wp (S)S(S)”Oo > |Wp(Z)|. a(S(2))

W (5)S(s)]. <1 > W (2)] <1
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Lecture 7

Limitations Imposed by RHP Zeros

Performance at Low Freguencies

w, (z)] <1

SIM + @,
W, (S) = : ::>

S+wg A

: 1
Real zero: o, (1-A) < Z(l—ﬁ)

Imaginary zero *<\z\ 1_i
B Mz

Exercise5-2 : Derive (1) and (11).

Iw, (s)S(9)[, <1

ZIM + ;"

W, (2)] = <1

Z+wg A

D ey < ()

> <0877 (1)
99
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Lecture 7

Limitations Imposed by RHP Zeros

Performance at High Frequencies [, (s)S(s)|. <1

w, (z) <1

1 S
W, (S) = — + W, (2)| =
»(S) M o :> W, (2)
. 1 ;
Real zero: A
fr ) Tl
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Lecture 7

Limitations Imposed by Unstable (RHP) Poles

Wy ($)T (5)],, = maxjw; (j)\& (T (jo)) = |w; (p)

w: ()T (s)], <1 > w; (p)] <1

Real RHP-pole

* M *
a)BT>pMTT_1 j1> Wgr > 2 ::> @, > 2P

Imaginary RHP-pole wgr >1.15/p|
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Lecture 7

Limitation on Performance in MIMO Systems

Scaling and Performance

Shaping Closed-loop Transfer Functions

Fundamental Limitation on Performance (Frequency domain)
Fundamental Limitation on Sensitivity
Limitations Imposed by RHP Zeros
Limitations Imposed by Unstable (RHP) Poles
Limitations Imposed by Time Delays

Fundamental Limitation on Performance (Time domain)
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Lecture 7

Fundamental Limitation on Performance
(Time domain)

Consider the system: Y (s) =G(s)U (s)

U(s) =C(s)R(s)-Y(s))

Let a step response signal (fU (t)) at
/™ input but other inputs are zero so

Overshoot in 0
output 7 is: Y S‘tljf{y'() r.(t),0f

Undershootis  y“ = sup{-y. (t),0}
defined as: t>0

Rise time is defined as: >
Yi = SUp{Jyk (t)‘}

t>0

Settling time is defined as:
t. = max mf{ :\yk(t)—rk(t)\Sg,t>5}

' keft,...m! 550

1 /\me

.
x
/ II|II E.l i

o

Reference: “Interaction Bounds in Multivariable Control Systems” K H Johanson

Automatica, vol 38,pp 1045-1051, 2002

N\
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Lecture 7

Fundamental Limitation on Performance
(Time domain)

Theorem5-3: Consider the stable closed loop system with zero initial conditions at
t=0and let r(t)=(f,0,...,0)' for t>0. Assume that the open loop transfer function
G has a real RHP zero z > 0 with zero direction ), and );, >0. then we have:

undershoot e—
1
yzlyl +Z‘yzk‘ykl — zt |:yzl(r g) EZ‘yzk‘:|
k=2
elements of Z /./‘ \.

zero direction Interaction settling time settling level
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Lecture 7

Fundamental Limitation on Performance
(Time domain)

Theorem5-3: Consider the stable closed loop system with zero initial conditions at
t=0and let r(t)=(f,0,...,0)' for t>0. Assume that the open loop transfer function
G has a real RHP zero z > 0 with zero direction ), and );, >0. then we have:

undershoot e—
1
yzlyl +Z‘yzk‘ykl — zt |:yzl(r g) EZ‘yzk‘:|
k=2
elements of Z /./‘ \.

zero direction Interaction settling time settling level

Theorem5-4: Consider the stable closed loop system with zero initial conditions at
t=0. Assume that the open loop transfer function G has a real RHP pole p > 0 with
pole direction y; and ), >0. Consider m independent responses with ;(t) =f for
t>0. Then we have;

overshoot e—
= lc.\ptrl

yplylo +Z‘ypk‘ylk 2 T ypl _(eptrl _1)i‘ypk y

1k
k=2 k=2
elements of Z /.j \ 65

pole direction interaction NSE HME . i kanrmpour i Yo




Lecture 7

Fundamental Limitation on Performance
(Time domain)

Example5-6: Experimental set-up for the quadruple-tank process.

|

Tank 3 Tank 4

—

Tank 1 Tank 2
(75 Y2

i U

et e e sesaprrans s sre <022



Lecture 7

Fundamental Limitation on Performance
Iy (Time domain)

Example5-6(Continue): Experimental set-up for the quadruple-tank process.

Valve set points are used to make the |
process more or less difficult to control.

1-7

Tank 3 Tank 4
If 7, +7, €[1,2]no RHP zero, here , =0.7,, =0.6

3.11 2.04

G.(s) = 1+95.57s (1+32.055)(1+95.57s)

-8)= 1.71 3.24 e .
(1+ 38.90s)(1+ 98.67s) 1+ 98.675 7 - valve set point 7 - Valve set point

2,=-0012 z,=-0.045 ‘ T,1

If 7, +y, €[0,1]one RHP zero, here y, =0.43,y, = 0.34, v

Output#1l
(15
1.69 3.33
Input#2
G (s) = 1+76.75s (1+52.30s)(1+76.75s) Input#1 2 = i
(8)= 3.11 1.97 Pumpl Pymp2
| (1+56.3s)(1+111.55s) 1+111.55s | ‘ i

z,=+0.014 z,=-0.051



Lecture 7

Fundamental Limitation on Performance
(Time domain)

For a unit step in r; we have:

- yzl
..l"'.’,;'l_'l"'il LB yzz ,1’3] ?" E,‘:I'l 1-.
v+ 1.20y,, = !
-1 U2 T L0014t

For a settling time of t,;=100 we have:

i+ 1205, =0.32.

High undershoot for small interaction.
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Lecture 7

Fundamental Limitation on Performance
(Time domain)

Output y1 Output y2
727 E 727
MWM\W-
Trf § Tr
|
. 6ar | _ BB}
5 5
= 66|/ = 66}
B4l || . B4l 1
¥ - +F 4
62|, 5.2 oy ™ Mmoot A
Bt . . . . Bt . . . 1
100 200 300 100 200 300
Time [8] Time [s]
Input u1 Input u2
G . G
L
=1l 5
g 3
= 41\ 1 = 4
WWW'WM
3 1 B“ﬁl PTA——p—- ' "'"I"ﬂf"'
2 2 1
100 200 300 100 200 300
Time [2] Time [=]

Fig. 4. Responses for decentralized PI control of the quadruple-tank
process in minimum-phase setting. The input is a unit reference step in rj. 69
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Lecture 7

Fundamental Limitation on Performance
(Time domain)

Output yv1 Output y2

T.Ar

-
[Voll]

[Volt]

6.5#
i

1 1 1 E 1 1 1
1000 2000 3000 1000 2000 000
Time [2] Time [s]
Input u1 Input u2
SF T LF T
45 \ ] 45t
_ 4} _ 4
= =
= 3.5 7 = 3.5 '_/\—/_§——
m
3f : 3 -
25} ) ) ) E 251 ) ) )
1000 2000 3000 1000 2000 3000
Time [2] Time [s]

Fig. 5. Responses for decentralized Pl control of the quadruple-tank
process in nonminimum-phase setting. The input is a unit reference
stepin r). Note that the settling time is about 10 times longer than for 70

the minimum-phase setting shown in Fig. 4. J
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Lecture 7

EXxercises

5-1 Mentioned in the lecture.

5-2 Mentioned In the lecture.

5-3 Consider the following weight with f>1.
s+Mao; s+ Ma,
s s+ M o]

wpls) =

Plot the weight for # =10 and M = 2. Derive an upper bound on @ for the case with # =10 and M =2

5-4 Consider the weight :
1 @y
wp(s) = E+(_J

&

which requires |S| to have a slope of » at low frequencies and requires its low-frequency asymptote
to cross lat a frequency @3. Derive an upper bound on @} when the plant has a RHP- zero at z.

71
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Lecture 7

Exercises (Continue)

5-5 Consider the plant

G(s) =

& 1
1 4
s+1

. . S -
a) Find the zero and its output direction. (Answer z = i:—l and y, = [ . }}
&

b) Which values of @& vyield a RHP-zero. and which of these values is best/worst in terms of

achievable performance? (Answer: We have a RHP-zero for |a| <1. Best for &= 0with zero at

infinity: if control at steady-state required then worst for & =1 with zero at s=0.)

c¢) Suppose @ = 0.1. Which output is the most difficult to control? Illustrate your conclusion using

suitable Theorem (Answer: Output ¥ is the most difficult since the zero is mainly in that direction;

we get interaction g=20 if we want to control y, perfectly.

5-6 Repeat 5-5 for following plant.

Gis) 1 5— 1
5l =—"
s+1[{a+2* s—a 12
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