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Lecture 6

Stability of Multivariable Feedback Control Systems

Topics to be covered include:

Well - Posedness of Feedback Loop
Internal Stability

The Nyquist Stability Criterion
The Generalized Nyquist Stability Criterion
Nyquist arrays and Gershgorin bands

Coprime Factorizations over Stable Transfer Functions

Stabilizing Controllers

Strong and Simultaneous Stabilization
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Lecture 6

Well - Posedness of Feedback Loop

Assume that the plant P and the controller K are fixed real rational
proper transfer matrices.

The first question one would ask is whether the feedback interconnection
makes sense or iIs physically realizable.

s—1 _
Let P:——, K=1 u:iz(r_n_d)+s_]'di
S+ 2 3 3

Hence, the feedback system is not physically realizable! 3
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Lecture 6

Well - Posedness of Feedback Loop

Definition 6-1 A feedback system is said to be well-posed if all closed-loop
transfer matrices are well-defined and proper. l d.

r u ‘
-o— K -O—— P

Now suppose that all transfer matrices from the signals r, n, d and d; to
u are respectively well-defined and proper.

Thus y and all other signals are also well-defined and the related transfer
matrices are proper.

So the system is well-posed if and only if the transfer matrix from d;

and d to u exists and is proper.
4
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Lecture 6

Well - Posedness of Feedback Loop

d; d
So the system is well-posed if and ro R l y
only iIf the transfer matrix from d, _I

and d to u exists and Is proper.

mn

Theorem 6-1 The feedback system in Figure is well-posed if and only if
| + K(c0)P(e0) isinwertible

Proof u=—(1+KP)*[K KP j

Thus well - posedness is equivalent to the condifion that (I + KP)™ exist
and IS proper.
And this is equivalent to the condition that the constant term of the
transfer matrix 1 + K(o0)P(o0) Is invertible. O 5
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Lecture 6

Well - Posedness of Feedback Loop

Transfer matrix 1 + K(o0)P(0) is invertible.

IS equivalent to either one of the following two conditions:

L Fl)(oo) K(OOI)} Is Invertible | + K(o0)P(0) is inwvertible

The well- posedness condition is simple to state in terms of state-space
realizations. Introduce realizations of P and K:

A B A B
P= K =
<o s

SO well- posedness is equivalent to the condition that

| D|. . .
{ IS Invertible .
I Dr. Ali Karimpour Apr 2022
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Lecture 6

Stability of Multivariable Feedback Control Systems

Well - Posedness of Feedback Loop
Internal Stability
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Lecture 6

Internal Stability

T d U X Up p . Y

P
. ) »
L

Assume that the realizations for P(s) and K(s) are stabilizable and detectable.
Let x and X denote the state vectors for P and K, respectively.

X = AX + Bu % = AX— By
y =Cx+ Du u=Cx— Dy
Definition 6-2

The system of Figure is said to be internally stable if the origin (x, X) =(0,0)
Is asymptotically stable i.e. the states(x, X) go to zero fromall initial states when
r=0,d=0,d, =0 and n=0 8
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Lecture 6

Internal Stability

ldi d
AN I 4 A p v,

R (S R |

—

~

Theorem 6-2 A

The system of above Figure with given stabilizable and detectable
realizations for P and K is internally stable if and only if A isa

Hurwitz matrix (All eigenvalues are in open left half plane).

9
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Lecture 6

Internal Stability

|
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What about stability in the sense of Lyapunov?
The system of above Figure with given stabilizable and detectable
realizations for P and K is stable in the sense of Lyapunov if and only if

all eigenvalues of A bein............... 10
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Lecture 6

Internal Stability

ldi Af
R N M

Theorem 6-3
The system in Figure is internally stable if and only if the transfer matrix

[ | K}l_ | —K(I +PK)*P —K(I +PK)™
-P 1| | (1+PK)'P (I + PK)™

from (d;, -r) to (u,, - €) be a proper and stable transfer matrix.

11
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Lecture 6

Internal Stability

d; d
roo d u . ’”-p= P . -

1 .

[ | K}l_ | —K(I +PK)*P  —K(I +PK)™
-P 1] | (+PK)?P (I +PK)™

Note that to check internal stability, it is necessary (and sufficient) to test
whether each of the four transfer matrices Is stable.

[ s+1
Let P:E:E, K:?QL_ Up | |s+2 d,
s+1 s—1 -

—e s—1 S+ —r

| S+2 S+ 2
Stability cannot be concluded even if three of the four transfer matrices are stable.
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Lecture 6

Internal Stability

Theorem 6-4 ) K

; : Stabl
Suppose K isstable. Then the system in e i
the figure isinternally stable if and only if . |1 -K(I+PK)P —K(I+PK)™
(1 +PK)'P (1 +PK)™*

(I + PK)™'P isstable.

Proof: The necessity is obvious. To prove the sufficiency let
Q=(1+PK)™'P
| -K(I+PK)'P=1-KQ U/ Stable
—K(1+PK)"=—K(1-QK) /" stable
(1+PK)*P=Q / Stable
(I +PK) =1+ +PK) =1 =1-(1+PK)*PK =1 -QK v Stable
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Lecture 6

Internal Stability

———rs > ldi Stable |4
Theorem 6-5 — U VL

Suppose P isstable. Then the system in
the figure is internally stable if and only if Remembe{l —KlepR) TR K +PK1)}
(I +PK) P (I +PK)

K(l +PK)™ isstable.

Proof: The necessity is obvious. To prove the sufficiency let
Q=K(I +PK)™
| —K(I1+PK)'P=1-QP / Stable
-K(I+PK)*=—Q / Stable
(1+PK)*P=(1-PQP / Stable
(I1+PK) =1+ +PK) =1 =1-PK({+PK)*=1-PQ Vv Stable
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Lecture 6

Internal Stability

== _»Stable ldi Stable |,
Theorem 6-6 — L e
Suppose Pand K are both stable. Then L
the system in the figure is internally stable Remembe{l —K(I+PK)*P  —K(I + PK)l}
(1 +PK)'P (1 +PK)™*

if and only if (1 + PK)™ isstable.

Proof: The necessity is obvious. To prove the sufficiency let
Q=(1+PK)™
| -K(+PK)*P=1-KQP / Stable
~K(I+PK)"=-KQ /" stable
(1+PK)*P=QP U/ Stable
(1+PK)*=Q o/ Stable 15
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Lecture 6

Internal Stability

No pole zero %ancellationd

Theorem 6-7 vad WS (Y

S
1?3

The system in the figure is internally stable I -K(l+PK)™P  —K(l +PK)1}
If and only if (I +PK)"P (1 +PK)™

1)  The number of open RHP poles of P(s)K(s)= n, +n;

i) (1+PK)1is stable.

Remember|:

n, 1sthe number of RHP polseof K n, isthe number of RHP polseof P

Proof:

See: “Essentials of Robust control” written by Kemin Zhou
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Lecture 6

The Nyquist Stability Criterion

Controller
kT

—

Process
G(g)

-~

Now we are going to check the stability of the above systemfor various
real values of k.

Letdet[l +kG(s)]have P, polesand P. zerosin the RHP plane.
Then just as SISO systems, the Nyquist plot of ¢(s) = det(l +kG(s))

encirclesthe origin, P, — P, times.

However, we would have to draw the Nyquist locus of |I+kG(s)| for each value of
K in which we were interested, whereas in the classical Nyquist criterion
we draw a locus only once, and then infer stability properties for all values of k.

18
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The Nyquist Stability Criterion

_|_

—

Process
G(g)

-~

::> ﬁ:> Controller
k:[

det[1 +kG(s)]= [ T[L+K4 (5)]

Where 4 (s) I1s an eigenvalue of G(s)

Hdet[l +kG(s)]} = 29(1+ kA (s))

0

%

-1

Lecture 6

19
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Lecture 6

The Nyquist Stability Criterion

_|_

Controller Process
:}(ﬁ:ﬁ e Bl e——

Theorem 6-8 (Generalized Nyquist theorem)
If G(s) with no hidden unstable modes, has P, unstable (Smith-McMillan)

poles, then the closed-loop system with return ratio —kG(s) is stable if

and only if the characteristic loci of kG(s), taken together, encircle the

point -1, P_times anticlockwise.

— ZI+kG(s) — PG(S) =N_,

Dr. Ali Karimpour Apr 2022
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The Nyquist Stability Criterion

Example 6-1: Let

(05(s+1)%+1 —05(s—1)

Gis)=| © +11)3

 -D(s+1)

(s+1)

+

Controller
kI

Lecture 6

m—

Process

G(=) : E

Suppose that G(s) has no hidden modes, check the stability of system for different values of k.

Al —G(s)|=0

A 0.5

" (s+1)

B 1
> (s+1)°

21
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Myquist Diagram

The Nyquist T T
Stability Criterion ™|
- 06F
0.5 04}
21 — .
(s+1) . 0o}
3 ~0.125
A, = L e 0
(s+1)° S
E 02F
Since G(s) has one unstable 04f
poles, we will have closed o6k
loop stability if these loci
give one net encirclements 08r
of -1/k (ccw) when a negative 1 C TR

-1 08 06 04 02 0 02 04 06 08 1
Real Axis

feedback Kl is applied.

-o0<-1/k<-0.125 no encirclement sothereisone RHP closedlooppole.

-0.125<-1/k<0.5 two encirclement sothereis three RHP closedlooppole.

05<-1/k<1 one encirclement so thereis two RHP closedlooppole.
-1/k>1 no encirclemant so there is one RHP closedleop poles A2z



The Nyquist Stability Criterion

Example 6-2: Let

G(s) 1

T 1.25(s+1)(s+2)

|

s—1
-6

S

S—2

|

+

Controller
kI

Lecture 6

m—

Process
G(s)

=

Suppose that G(s) has no hidden modes, check the stability of system for different values of k.

Al -G(s)| =0

_ 25—-3—+/1-24s

A

~ 25(s+1)(s+2)

P 25 —3++/1-24s
> 25(s+1)(s+2)

23

Dr. Ali Karimpour Apr 2022



Lecture 6

The Nyquist Stability Criterion

A Im

A, = 25 —3—+/1—-24s
~ 25(s+1)(s+2) X

P 25 —3++1-24s

> 25(s+1)(s +2)

Since G(s) has no unstable 1 00 1 0.8
poles, we will have closed |
loop stability if these loci ‘
give zero net encirclements \
of -1/k when a negative N
feedback kI is applied.

—wo<-1/k<-08, —-04<-1/k<0 and 0.53<-1/k <oo no encirclemant.
—0.8<-1/k <—0.4 oneencirclement soone RHP pole inclosed loop system.
0<-1/k <0.53 two encirclements so two RHP pole inclosed loop system.
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The Nyquist Stability Criterion

Example 6-3: a)Check the stability of

system.
b) derive the closed loop system for k=2
and check the part a.

G(s) =

+

s—1
s+1

Controller
kI

Lecture 6

—

Process
G(s)

-

Ans: It is stable for |k| < 1

25

Dr. Ali Karimpour Apr 2022



Lecture 6

Nyquist arrays and Gershgorin bands

The Nyquist array of G(S) is an array of graphs (not necessarily closed
curve), the ij" graph being the Nyquist locus of 9;(S) -
Theorem 7-10 (Gershgorin’s theorem)

Let Z be a complex matrix of dimensions mxm. The eigenvalues A, of Z are
contained in two unions of circlesaround the diagonal elementsas follows:
|ﬂf|_z|||<2‘z”‘1 |:1121’m |ﬂ"l_zll|<2‘zjl" i:1,2,,m
j=1

J=1
j#i j#i

The ‘bands’ obtained in this way are called Gershgorin bands, each is

composed of Gershgorin circles.

26
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Lecture 6

Nyquist arrays and Gershgorin bands

Nyquist array, with Gershgorin bands for a sample system

(1,11 element (1.2} element

” O/ If all the Gershgorin bands
' exclude the point -1, then
we can assess closed-loop

0 2 4 -2 0 2 s sta_blllty by counting the
encirclements of -1 by the

i ] H Gershgorin bands, since this
N a tells us the number of
i | ) encirclements made by the
2 | 2 characteristic loci.
- 0 e 2 4 35 0 N 2 4

If the Gershgorin bands of G(s) exclude the origin, then we say that G(s) is
diagonally dominant (row dominant or column dominant).

The greater the degree of dominant ( of G(s) or I1+G(s) ) — that Is, the narrower
the Gershgorin bands- the more closely does G(s) resembles m non-interacting
SISO transfer function. 57
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Lecture 6

Nyquist arrays and Gershgorin bands

And In general.

Suppose that G(s) is square, that K =diag {k,,. . .,k,} and that (Rosenbrock, 1970):

> Z 1g:5(5)|

j#i

1
guls)+ k_,

for each i and for all s on the Nyquist contour; and let the ith Gershgorin band

of G(s) encircle the point — 1/k;, N, times anticlock wise. Then the negative feedback

system with return ratio —G(s)K is stable if and only if

ZN,:PO

where P, is the number of unstable poles of G(s), and there are no hidden unstable

modes.

28
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Lecture 6

Nyquist arrays and Gershgorin bands

Diagonal dominance of a mxm matrix G(S):

Row Diagonal dominance: If for all s on the Nyquist contour,
m -
‘gii(s)‘>2‘gij(s)‘ 1=1,2,...,m
1=1
J#I

Column Diagonal dominance: If for all s on the Nyquist contour,

0.9>Y)g,(9)  i=L2.m

J#I 29

Dr. Ali Karimpour Apr 2022



Lecture 6

Stability of Multivariable Feedback Control Systems

Well - Posedness of Feedback Loop
Internal Stability

The Nyquist Stability Criterion
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Lecture 6

Coprime Factorizations over Stable Transfer Functions

Two polynomials m(s) and n(s), with real coefficients, are said to be
coprime if

* their greatest common divisor is a constant number or
* they have no common zeros or

* there exist polynomials x(s) and y(s) such that  x(s)m(s) + y(s)n(s) =1

Exercise6-1 : Let n(s)=s%+5s+6 and m(s)=s find x(s) and y(s) if n and m are coprime.

Exercise 6-2 : Let n(s)=s2+5s+6 and m(s)=s+2 show that one cannot find x(s) and y(s) in
x(s)m(s)+y(s)n(s)=1

Similarly, two transfer functions m(s) and n(s) in the set of stable transfer

functions are said to be coprime over stable transfer functions if there

exists x(s) and y(s) in the set of stable transfer functions such that

X(s)m(s) + y(s)n(s) =1 Bezout identities
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Lecture 6

Coprime Factorizations over Stable Transfer Functions

Definition 6-3 Two matrices M and N in the set of stable transfer
matrices are right coprime over the set of stable transfer matrices

If they have the same number of columns and if there exist matrices
X, and Y, in the set of stable transfer matrices s.t.

M
X, Y{N }: X M+YN =1l

Similarly, two matrices M and N in the set of stable transfer matrices
are left coprime over the set of stable transfer matrices if they have the

same number of rows and if there exist two matrices X, and Y, in the set
of stable transfer matrices such that

~ ~1X ~ ~
¥ N{Y'}:MX,JrNY,:I .
|
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Lecture 6

Coprime Factorizations over Stable Transfer Functions

Now let P be a proper real-rational matrix. A right-coprime factorization
(rcf) of P iIs a factorization of the form

P=NM"™

where N and M are right-coprime in the set of stable transfer matrices.

Similarly, a left-coprime factorization (Icf) of P has the form

P=M"N

In Icf (rcf) the pair M,N(M , N )are coprime in the set of stable
transfer function matrices 33

Dr. Ali Karimpour Apr 2022




Lecture 6

Coprime Factorizations over Stable Transfer Functions

Remember:  Matrix Fraction Description (MFD)

 Right matrix fraction description (RMFD)

« Left matrix fraction description (LMFD)

Let G(s) isa mxm matrix and its the Smith McMillan is G(s)

Let define: N(s)=diag(s,(s), ..,5,(5),0,..,0)  D(s)=diag(5,(s), ..5.(s),1,...,1)

G(s)=N(s)D(s)™* or  G(s)=D(s)™N(s)

In Matrix Fraction Description D(s) and N(s) are polynomial matrices

34
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Lecture 6

Coprime Factorizations over Stable Transfer Functions

Theorem 6-11 Suppose P(s) is a proper real-rational matrix and

P(s) = {é\ E}

IS a stabilizable and detectable realization. Let F and L be such that A+BF and A+LC
are both stable, and define

- ; L 'A+LC | —(B+LD) L]
M _YI A+BFBL Xr Yr 4 _____ () _____
v x IZ| F 0 ik F | 0
" |[C+DF ' D I - - C -D |

Then rcf and Icf of P are:

P=NM ™ P=M"N

Exercise : Let P(s)=(s+1)/(s+2) find two different rcf for P. 35
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Lecture 6

Coprime Factorizations over Stable Transfer Functions

The right coprime factorization of a transfer matrix can be given a feedback control interpretation.

N P

. 1. |

B [ 9 € b—0—> X = AX + Bu
£+ + ¥
A y =Cx+ Du

F ol ﬂ/‘

fut
_I_
o

u=v+Fx
X=(A+BF)x+Bv the transfer matrix fromvtouis  and that fromvtoy is
= A+BF B A+BF B
u=Fx+v M (s) = N(s);{ }
y =(C + DF)x+Dv F | C+DF D

y(s)=N(s)v(s) =N(S)M(s)u(s) =P(s)u(s) = P(s)=N(sM(s)

Exercise6-4 : Derive a similar interpretation for left coprime factorization. %
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Lecture 6

Stabilizing Controllers

Theorem 6-12 Suppose P is stable.

O—
oy
B
=,

) K
Then the set of all stabilizing controllers _I
In Figure can be described as

K=Q(I-PQ)™”
for any Q In the set of stable transfer matrices and | — P(c0)Q(c0) non singular.

Proof:

K=Q(I-PQ)" = K(l-PQ)=Q = Q=K({+PK)* \/Systemisstable.

Now suppose the system is stable, so K(I + PK)™ is stable, then define

Q=K +PK)*'=(I+KP)’K = Q+KPQ=K

| —P(0)Q(0) is nonsingular so K=Q(l -PQ)™ 38
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Lecture 6

Stabilizing Controllers

d; d
Example 6-4 For the plant . 1w l Uy y

{3 K
o |
P(s) = (s+1)(s+2)

Suppose that it is desired to find an internally stabilizing controller so that y
asymptotically tracks a ramp input.

Solution: Since the plant is stable the set of all stabilizing controller is derived from

K=Q(I —PQ)™ for any stable Q such that | —P(c0)Q() is nonsingular, so let

_as+b
 s+3
S =1-T =1-PK(l + PK)® =1- PO =1— as+b _(s+D)(s+2)(s+3)—(as+b)
(s+1)(s+2)(s+3) (s+1(s+2)(s+3)
~11s+6
 s+3 >
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Lecture 6

Stabilizing Controllers

Theorem 6-13

d; d
! K 4 &4 p Y

Let P be a proper real-rational -
matrix and P = NM * = M *N.

Then there existsa stabilizing controller
K=YX"=X"Y,

X, Y. M =Y,
Where -~ o~ = |
-N M| N X

Proof. See “Multivariable Feedback Design By Maciejowski”

—0)

40
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Lecture 6

Stabilizing Controllers

Theorem 6-11(remember) Suppose P(S) Is a proper real-rational matrix and

A B
P(s);{C D}

IS a stabilizable and detectable realization. Let F and L be such that A+BF

and A+LC are both stable, and define

"A+LC | —(B+LD) L]

1
zZ <
I
X <
L 1
12
n
o
1
X
21"
<) <
1
12
T
o:

41
Dr. Ali Karimpour Apr 2022



Lecture 6

Stabilizing Controllers

d; d
T K g X Up dp iy

T

Theorem 6-14 -

Let P be a proper real-rational matrix and P= N3 = MW be corresponding ref and lef over

the set of stable transfer matrices Then the set of all stabilizing controllers in Figure 4-1 can be

described as

K= ("I{r _Qrﬁh_liﬂ +Qrﬂ?] 4-28
or
K= [}:‘. +MQ;](£§ - NQ;:'_I 4-27

where (2, is any stable transfer matrices and X, (e0)— 2, (e0) (o) is nonsingular or @, is any

stable transfer matrices and X, (o) — M{oo)@, (00} 1s nonsingular too.

Proof. See “Multivariable Feedback Design By Maciejowski” 4
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Lecture 6

Stabilizing Controllers

Example 6-5 For the plant

§

r . U 1 Up Y

P(S) — 1 K O - P
(s—1(s-2) -

The problem is to find a controller that "

1. The feedback system is internally stable.
2. The final value of y equals 1 when r is a unit step and d=0.
3. The final value of y equals zero when d is a sinusoid of 10 rad/s and r=0.

0 1 0
Clearly A:{ } B:{ } C=[1 0] D=0
-2 3 1

To derive coprime factorization let F=[1 -5] andL=[-7 -23]T
clearly A+BF and A+LC are stable.

o [A+BF 1B -]y 44 [ArlCi-(B+LD) L
I 1 r r 1
= F | 0 ~ ~ | = F ! | 0]
N X, | N ™ |

C | —-D 4]
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Lecture 6

Stabilizing Controllers

d;
Solution: The set of all stabilizing controller is_—., e U l “ | p Y
~ 4 ~ ‘
K:(XF_QFN) (YI‘_I_QI‘M) 1 v'n,
M _y |A¥BE B -L x v [ArLCi-(B+LD) L
N ox |E F | 0 IRy ~ F | 0
! C+DF | D | C - D |

. . . 2
1 I\/I:(S 2)(s—1) v - 108s 72 ¥ S +9s + 38

(s+1)%° (s +1)2 " s+D)? T (s+D)?

1 M_(S—Z)(S—l) y _108-72 s +9s+38
2 - 2 1 r T 2 Thr 2
(s+2) (s+2) (s+2) (s+2) "
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Lecture 6

Stabilizing Controllers

Solution: The set of all stabilizing controller is:

K=(X,~QN)'(Y,+QM) -

Iﬂ.

—{)

Clearly for any stable Q, the condition 1 satisfied

To met condition 2 the transfer function from r to y must satisfy

— () = N(Y, +QM)r(s) — NO)(Y.(0)+Q.(O)M(0)=1 = Q. (0)=365
P To met condition 3 the transfer function from d; to y must satisfy

y(s)=N(X, -QN)d;(s) — N(0j)(X,(10])-Q.(10j)N(L0j))=0 = Q (10j)=-62+90]

Now define 1
Q,(s) =X, + X, —+X
r F s+l P (s+1)?
e EXxercise 6-5: Derive transfer function from r to y. Exercise 6-7: Derive Q, 4
-e Exercise 6-6: Derive transfer function from d; to y. Exercise 6-8: Simulate example_ 6-5
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Lecture 6

Stability of Multivariable Feedback Control Systems

Well - Posedness of Feedback Loop
Internal Stability

The Nyquist Stability Criterion
The Generalized Nyquist Stability Criterion
Nyquist arrays and Gershgorin bands

Coprime Factorizations over Stable Transfer Functions

Stabilizing Controllers

Strong and Simultaneous Stabilization
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Lecture 6

Strong and Simultaneous

Practical control engineers are reluctant to use unstable controllers, especially when

the plant itself is stable.

If the plant itself is unstable, the argument against using an unstable controller is

less compelling.

However, knowledge of when a plant is or is not stabilizable with a stable controller

Is useful for another problem namely, simultaneous stabilization, meaning stabilization

of several plants by the same controller.

Simultaneous stabilization of two plants can also be viewed as an example of a

problem involving highly structured uncertainty.

A plant is strongly stabilizable if internal stabilization can be achieved with a controller

itself is a stable transfer matrix. 4
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Lecture 6

Strong and Simultaneous

Theorem 6-15: P is strongly stabilizable if and only if it has an even number
of real poles between every pairs of real RHP zeros( including zeros at infinity).

Proof. See “Linear feedback control By Doyle”.

Example 6-6: Which of the following plant is strongly stabilizable?

P(s) = s—1 PZ(S):(S—].)Z(SZ—S—I—].)
s(s—2) (s—2)°(s+1)

Solution: P, is not strongly stabilizable since it has one pole between z=1 and z=c
But P, is strongly stabilizable since it has two poles between z=1 and z=c
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6-1 Mentioned in the lecture.

6-3 Mentioned in the lecture.

6-5 Mentioned in the lecture.

6-7 Mentioned in the lecture.

Lecture 6

Exercises

6-2 Mentioned in the lecture.
6-4 Mentioned in the lecture.

6-6 Mentioned in the lecture.
6-8 Mentioned in the lecture.

6-9 Check the stability of following system versus different values of k(Final).

_|_

Process
:Vr\ Gis)

" Controller
ﬁ & Bt

0.5 S

> _|s+1 s+3
G(s) = 1

(s+1)°

6-10 Check the stability of following system versus different values of a and b(Final).

d;
Up p

TI{

s+1 s+1 ]
|la 0 1 (s+2)(s+3) (s+2)?
K= P=
Y 0 b s+4 s+4
L (s+3)° (s+2)(s+3) |
- o a+b>-5
n ans: Stability condition 49
a+4b> -6
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Exercises

6-11 Check the stability of following system.

d;
Up

u

Lecture 6

Y

o K P
1 1 261 _, -
-1 -1
Pe)=|"7" 5| kK@= 1T }
1
s+1 s+1 s+1

l??ﬂ

ans: It is not stable

6-12 Find two different Icf’s for the following transfer function matrix.

6-13 Find a Icf’s and a rcf’s for the following transfer matrix.

1
G(s)=——
(5) S+ 2

6-14 Find a Icf’s and a rcf’s for the following transfer matrix.
1

G(s):[

)= 1263

s—2]
S+2 |

s-1
s+1

(s—1 4
45 2(s-1)

(s—-1 4

|45 2(s —1)}022



Lecture 6

Exercises

6-15 By use of MIMO rule derive the transfer matrix of following system.

e

+
+

;Y;{:s]'i-—n—r

. . ¥
Y(s)—

il s)

L G

+

Ans: U =(Y,+MO)X,-NO)" e
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Lecture 6
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