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Stability of Multivariable Feedback Control Systems

Topics to be covered include:

• Well - Posedness of Feedback Loop

• Internal Stability

• The Nyquist Stability Criterion

The Generalized Nyquist Stability Criterion

Nyquist arrays and Gershgorin bands

• Coprime Factorizations over Stable Transfer Functions

• Stabilizing Controllers

• Strong and Simultaneous Stabilization

• Well - Posedness of Feedback Loop
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Well - Posedness of Feedback Loop

Assume that the plant P and the controller K are fixed real rational 

proper transfer matrices. 

The first question one would ask is whether the feedback interconnection

makes sense or is physically realizable. 
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Hence, the feedback system is not physically realizable!
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Well - Posedness of Feedback Loop

Definition 6-1 A feedback system is said to be well-posed if all closed-loop 

transfer matrices are well-defined and proper.

Now suppose that all transfer matrices from the signals r, n, d and di to

u are respectively well-defined and proper.

Thus  y and all other signals are also well-defined and the related transfer

matrices are proper. 

So the system is well-posed if and only if the transfer matrix from di

and d to u exists and is proper.
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Well - Posedness of Feedback Loop

So the system is well-posed if and

only if the transfer matrix from di

and d to u exists and is proper.
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1Proof

Theorem 6-1 The feedback system in Figure is well-posed if and only if

invertible is    )()( + PKI

Thus well - posedness is equivalent to the condition that                exist

and is proper.

( ) 1−
+ KPI

And this is equivalent to the condition that the constant term of the 

transfer matrix                         is invertible. □)()( + PKI
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Well - Posedness of Feedback Loop

Transfer matrix                         is invertible.)()( + PKI

is equivalent to either one of the following two conditions:

invertible  is  
)(
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invertible  is  )()( + PKI

The well- posedness condition is simple to state in terms of state-space 

realizations. Introduce realizations of P and K: 
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• Well - Posedness of Feedback Loop

• Internal Stability

• The Nyquist Stability Criterion

The Generalized Nyquist Stability Criterion

Nyquist arrays and Gershgorin bands

• Coprime Factorizations over Stable Transfer Functions

• Stabilizing Controllers

• Strong and Simultaneous Stabilization

Stability of Multivariable Feedback Control Systems

• Internal Stability
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Internal Stability

Assume that the realizations for P(s) and K(s) are stabilizable and detectable. 

Let x and denote the state vectors for P and K, respectively.x̂

yDxCuDuCxy

yBxAxBuAxx
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Internal Stability


























−
=








−

x

x

C

C

ID

DI

y

u

ˆ0

ˆ0ˆ
1









=








































−









−
+








=








−

x

x
A

x

x

C

C

ID

DI

B

B

A

A

x

x

ˆ

~

ˆ0

ˆ0ˆ

ˆ0

0

ˆ0

0

ˆ

1





Theorem 6-2

The system of above Figure with given stabilizable and detectable 

realizations for P and K is internally stable if and only if is a 

Hurwitz matrix (All eigenvalues are in open left half plane).

A
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Internal Stability
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What about stability in the sense of Lyapunov?

The system of above Figure with given stabilizable and detectable 

realizations for P and K is stable in the sense of Lyapunov if and only if

all eigenvalues of       be in ……………A
~
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Internal Stability
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Theorem 6-3

The system in Figure is internally stable if and only if the transfer matrix
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from (di , -r) to (up , - e) be a proper and stable transfer matrix.

e
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Internal Stability
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Note that to check internal stability, it is necessary (and sufficient) to test 

whether each of the four transfer matrices is stable.
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Stability cannot be concluded even if three of the four transfer matrices are stable.
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Internal Stability

Theorem 6-4
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Internal Stability

Theorem 6-5
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Internal Stability

Theorem 6-6
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Internal Stability

Theorem 6-7

Proof:

See: “Essentials of Robust control” written by Kemin Zhou
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  of polse RHP ofnumber   theis  of polse RHP ofnumber   theis PnKn PK

No pole zero cancellation 

The system in the figure is internally stable 

if and only if

i) The number of open RHP poles of P(s)K(s)= nk +nP

ii) (I+PK)-1 is stable.
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• Well - Posedness of Feedback Loop

• Internal Stability

• The Nyquist Stability Criterion

The Generalized Nyquist Stability Criterion

Nyquist arrays and Gershgorin bands

• Coprime Factorizations over Stable Transfer Functions

• Stabilizing Controllers

• Strong and Simultaneous Stabilization

Stability of Multivariable Feedback Control Systems
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The Nyquist Stability Criterion

plane. RHP in the zeros  and poles  have )](det[Let co PPskGI +

 times. origin,  theencircles

))(det()( ofplot Nyquist   thesystems, SISO asjust Then 
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 . of  valuesreal                                        

 sfor variou system above  theofstability  check the  togoing are  weNow

k

However, we would have to draw the Nyquist locus of  |I+kG(s)| for each value of 

k in which we were interested, whereas in the classical Nyquist criterion

we draw a locus only once, and then infer stability properties for all values of k. 
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The Nyquist Stability Criterion
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The Nyquist Stability Criterion

Theorem 6-8 (Generalized Nyquist theorem)

If G(s) with no hidden unstable modes, has Po unstable (Smith-McMillan) 

poles, then the closed-loop system with return ratio –kG(s) is stable if

and only if the characteristic loci of kG(s), taken together, encircle the 

point -1, Po times anticlockwise.

1)()( −++ =− NPZ skGIskGI 1)()( −+ =− NPZ sGskGI
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The Nyquist Stability Criterion

Example 6-1: Let
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Suppose that G(s) has no hidden modes, check the stability of system for different values of k.
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)1(
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Since G(s) has one unstable 

poles, we will have closed 

loop stability if these loci 

give one net encirclements

of -1/k (ccw) when a negative 

feedback kI is applied. 

pole. loop closed RHP one is  theresont encircleme  no      125.0-/1--  k

125.0−

pole. loop closed RHP  threeis  theresont encircleme      two0.5k/1125.0- −

pole. loop closed RHP  twois  theresont encircleme  one           1k/10.5 −

pole. loop closed RHP one is  theresont encircleme  no                 11/k- 

The Nyquist 

Stability Criterion
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The Nyquist Stability Criterion

Example 6-2: Let
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Suppose that G(s) has no hidden modes, check the stability of system for different values of k.

)2)(1(5.2

24132
1

++

−−−
=

ss

ss


)2)(1(5.2

24132
2

++

−+−
=

ss

ss


0)( =− sGI



Dr. Ali Karimpour  Apr 2022

Lecture 6

24

The Nyquist Stability Criterion
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Since G(s) has no unstable 

poles, we will have closed 

loop stability if these loci 

give zero net encirclements

of -1/k when a negative 

feedback kI is applied. 

nt.encircleme  no  /153.0  and  0/14.0   ,  8.0/1 −−−−−− kkk

system.  loop  closedin   pole RHP one sont encircleme one  4.0/18.0 −−− k

system.  loop  closedin   pole RHP   twoso  ntsencircleme   two53.0/10 − k
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The Nyquist Stability Criterion

Example 6-3: a)Check the stability of

system. 

b) derive the closed loop system for k=2

and check the part a.

𝐺(𝑠) =
0 1

𝑠 − 1

𝑠 + 1
0

𝐴𝑛𝑠: 𝐼𝑡 𝑖𝑠 𝑠𝑡𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑘 < 1
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Nyquist arrays and Gershgorin bands

The Nyquist array of G(s) is an array of graphs (not necessarily closed

curve), the ijth graph being the Nyquist locus of gij(s) . 

Theorem 7-10 (Gershgorin’s theorem)

:follows as elements diagonal  thearound circles of unions in two contained

are  of  seigenvalue The . dimensions ofmatrix complex  a be Let ZmmZ i

mizz
m

ij
j

ijiii ,....,2,1,
1

=− 

=

 mizz
m

ij
j

jiiii ,....,2,1,
1

=− 

=



The ‘bands’ obtained in this way are called Gershgorin bands, each is 

composed of Gershgorin circles.
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Nyquist arrays and Gershgorin bands
Nyquist array, with Gershgorin bands for a sample system

If all the Gershgorin bands 

exclude the point -1, then 

we can assess closed-loop 

stability by counting the 

encirclements of -1 by the 

Gershgorin bands, since this 

tells us the number of 

encirclements made by the 

characteristic loci.

If the Gershgorin bands of G(s) exclude the origin, then we say that G(s) is 

diagonally dominant (row dominant or column dominant). 

The greater the degree of dominant ( of G(s) or I+G(s) ) – that is, the narrower 

the Gershgorin bands- the more closely does G(s) resembles m non-interacting 

SISO transfer function.
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Nyquist arrays and Gershgorin bands

And in general:
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Nyquist arrays and Gershgorin bands

Diagonal dominance of a              matrix G(s): mm

Row Diagonal dominance: If for all s on the Nyquist contour,

Column Diagonal dominance: If for all s on the Nyquist contour,

misgsg
m

ij
j

ijii ...,,2,1)()(
1

=

=

misgsg
m

ij
j

jiii ...,,2,1)()(
1

=

=
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• Well - Posedness of Feedback Loop

• Internal Stability

• The Nyquist Stability Criterion

The Generalized Nyquist Stability Criterion

Nyquist arrays and Gershgorin bands

• Coprime Factorizations over Stable Transfer Functions

• Stabilizing Controllers

• Strong and Simultaneous Stabilization

Stability of Multivariable Feedback Control Systems
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Coprime Factorizations over Stable Transfer Functions

Two polynomials m(s) and n(s), with real coefficients, are said to be 

coprime if

• their greatest common divisor is a constant number or

• they have no common zeros or

• there exist polynomials x(s) and y(s) such that 1)()()()( =+ snsysmsx

Similarly, two transfer functions m(s) and n(s) in the set of stable transfer 

functions are said to be coprime over stable transfer functions if there 

exists x(s) and y(s) in the set of stable transfer functions such that

1)()()()( =+ snsysmsx

Exercise6-1 : Let n(s)=s2+5s+6 and m(s)=s find x(s) and y(s) if n and m are coprime. 

Bezout identities

Exercise 6-2 : Let n(s)=s2+5s+6 and m(s)=s+2 show that one cannot find x(s) and y(s) in 

x(s)m(s)+y(s)n(s)=1
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Coprime Factorizations over Stable Transfer Functions

Definition 6-3 Two matrices M and N in the set of stable transfer 

matrices are right coprime over the set of stable transfer matrices 

if they have the same number of columns and if there exist matrices 

Xr and Yr in the set of stable transfer matrices s.t.

  INYMX
N

M
YX rrrr =+=









  IYNXM
Y

X
NM ll

l

l
=+=







 ~~~~

Similarly, two matrices         and         in the set of stable transfer matrices 

are left coprime over the set of stable transfer matrices if they have the 

same number of rows and if there exist two matrices Xl and Yl in the set

of stable transfer matrices such that

N
~

M
~
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Coprime Factorizations over Stable Transfer Functions

Now let P be a proper real-rational matrix. A right-coprime factorization

(rcf) of P is a factorization of the form

Similarly, a left-coprime factorization (lcf) of P has the form

NMP
~~ 1−=

where N and M are right-coprime in the set of stable transfer matrices. 

1−= NMP

matricesfunction  ansfer          tr                    

  stable  ofset    in  the  coprime  are )  ,(
~

,
~

pair    the) rcf ( lcfIn  NMNM
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Coprime Factorizations over Stable Transfer Functions

Remember: Matrix Fraction Description (MFD)

• Right matrix fraction description (RMFD)

• Left  matrix  fraction  description (LMFD)

Let          is a          matrix and its the Smith McMillan is  )(sG mm )(
~

sG

( )0,...,0,)(,...,)()( 1 ssdiagsN r


= ( )1,...,1,)(,...,)()( 1 ssdiagsD r


=Let  define:

or)()()(
~ 1−= sDsNsG )()()(

~ 1 sNsDsG −=

In Matrix Fraction Description D(s) and N(s) are polynomial matrices
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Coprime Factorizations over Stable Transfer Functions

Theorem 6-11 Suppose P(s) is a proper real-rational matrix and 











DC

BA
sP )(

is a stabilizable and detectable realization. Let F and L be such that A+BF and A+LC

are both stable, and define

Then rcf and lcf of P are:

NMP
~~ 1−=1−= NMP

Exercise : Let P(s)=(s+1)/(s+2) find two different rcf for P. 




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

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

 −

IDDFC

IF

LBBFA

XN

YM

l

l
0












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
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−
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Coprime Factorizations over Stable Transfer Functions

The right coprime factorization of a transfer matrix can be given a feedback control interpretation.

DuCxy

BuAxx

+=

+=

Fxvu +=

DvxDFCy

vFxu

BvxBFAx

++=

+=

++=

)(

)(

P

the transfer matrix from v to u is 








 +


IF

BBFA
sM )(

and that from v to y is










+

+


DDFC

BBFA
sN )(

)()()( svsNsy = )()()( 1 sMsNsP −=)()()( 1 susMsN −= )()( susP=

Exercise6-4 : Derive a similar interpretation for left coprime factorization.
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• Well - Posedness of Feedback Loop

• Internal Stability

• The Nyquist Stability Criterion

The Generalized Nyquist Stability Criterion

Nyquist arrays and Gershgorin bands

• Coprime Factorizations over Stable Transfer Functions

• Stabilizing Controllers

• Strong and Simultaneous Stabilization

Stability of Multivariable Feedback Control Systems



Dr. Ali Karimpour  Apr 2022

Lecture 6

38

Stabilizing Controllers

Theorem 6-12 Suppose P is stable.

Then the set of all stabilizing controllers

in Figure can be described as

1)( −−= PQIQK

for any Q in the set of stable transfer matrices and                           non singular. )()( − QPI

Proof:

11 )()()( −− +==−−= PKIKQQPQIKPQIQK System is stable.

Now suppose the system is stable, so define then stable,  is  )( 1−+PKIK

KKPIPKIKQ 11 )()( −− +=+= KKPQQ =+

1)( −−= PQIQKsor  nonsingula  is )()( − QPI
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Example 6-4 For the plant

)2)(1(

1
)(

++
=

ss
sP

Suppose that it is desired to find an internally stabilizing controller so that y

asymptotically tracks a ramp input. 

Solution: Since the plant is stable the set of all stabilizing controller is derived from 

let  so  r,nonsingula  is  )()(  such  that  Q  stableany  for    )( 1 −−= − QPIPQIQK

3+

+
=

s

bas
Q

)3)(2)(1(

)()3)(2)(1(

)3)(2)(1(
11)(11 1

+++

+−+++
=

+++

+
−=−=+−=−= −

sss

bassss

sss

bas
PQPKIPKTS

3

611

+

+
=

s

s
Q

Stabilizing Controllers
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Stabilizing Controllers

rrll YXXYK

NMNMP

P

11

11

 controller gstabilizin a exists Then there

  .
~~

 andmatrix 

rational-realproper    a  be  Let  

−−

−−

==

==

I
XN

YM

MN

YX

l

lrr
=







 −









−
~~                       Where

Proof. See “Multivariable Feedback Design By Maciejowski”

Theorem 6-13
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Theorem 6-11(remember) Suppose P(s) is a proper real-rational matrix and 











DC

BA
sP )(

is a stabilizable and detectable realization. Let F and L be such that A+BF

and A+LC are both stable, and define




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

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
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
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)(
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Stabilizing Controllers
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Stabilizing Controllers

Theorem 6-14
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Example 6-5 For the plant

)2)(1(

1
)(

−−
=

ss
sP

The problem is to find a controller that 

1. The feedback system is internally stable.

2. The final value of  y equals 1 when r is a unit step and d=0.

3. The final value of  y equals zero when d is a sinusoid of 10 rad/s and r=0.

To derive coprime factorization let F = [1  -5]  and L = [-7   -23]T

clearly A+BF and A+LC are stable.
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10
 Clearly   ==








=









−
= DCBA

Stabilizing Controllers
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Solution: The set of all stabilizing controller is: 
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
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Stabilizing Controllers
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Solution: The set of all stabilizing controller is: 

Clearly for any stable Qr the condition 1 satisfied 

To met condition 2 the transfer function from r to y must satisfy

To met condition 3 the transfer function from di to y must satisfy

5.36)0(1))0(
~

)0()0()(0( ==+ rrr QMQYN

jjQjNjQjXjN rrr 9062)10(0))10(
~

)10()10()(10( +−==−

Now define

2321
)1(

1

1

1
)(

+
+

+
+=

s
x

s
xxsQr

Exercise 6-7: Derive Qr

Exercise 6-6: Derive transfer function from di to y.

Exercise 6-5: Derive transfer function from r to y.

→+= )()
~

()( srMQYNsy rr

→−= )()
~

()( sdNQXNsy irr

Stabilizing Controllers

Exercise 6-8: Simulate example 6-5 

)
~

()
~

( 1 MQYNQXK rrrr +−= −
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Stability of Multivariable Feedback Control Systems

• Well - Posedness of Feedback Loop

• Internal Stability

• The Nyquist Stability Criterion

The Generalized Nyquist Stability Criterion

Nyquist arrays and Gershgorin bands

• Coprime Factorizations over Stable Transfer Functions

• Stabilizing Controllers

• Strong and Simultaneous Stabilization
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Strong and Simultaneous

Practical control engineers are reluctant to use unstable controllers, especially when

the plant itself is stable.

If the plant itself is unstable, the argument against using an unstable controller is 

less compelling.

However, knowledge of when a plant is or is not stabilizable with a stable controller

is useful for another problem namely, simultaneous stabilization, meaning stabilization

of several plants by the same controller.

Simultaneous stabilization of two plants can also be viewed as an example of a 

problem involving highly structured uncertainty.

A plant is strongly stabilizable if internal stabilization can be achieved with a controller

itself is a stable transfer matrix.
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Strong and Simultaneous

Theorem 6-15: P is strongly stabilizable if and only if it has an even number 

of real poles between every pairs of real RHP zeros( including zeros at infinity).

Proof. See “Linear feedback control By Doyle”.

Example 6-6: Which of the following plant is strongly stabilizable?

32

22

21

)1()2(

)1()1(
)(

)2(

1
)(

+−

+−−
=

−

−
=

ss

sss
sP

ss

s
sP

Solution: P1 is not strongly stabilizable since it has one pole between z=1 and z=

But P2 is strongly stabilizable since it has two poles between z=1 and z=
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6-1 Mentioned in the lecture.

6-10 Check the stability of following system versus different values of a and b(Final).

6-2 Mentioned in the lecture.

6-3 Mentioned in the lecture. 6-4 Mentioned in the lecture.

6-5 Mentioned in the lecture. 6-6 Mentioned in the lecture.

6-7 Mentioned in the lecture.
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5
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ba
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conditionStabilityans

6-9 Check the stability of following system versus different values of k(Final).



















+

++=

3)1(

1
0

31

5.0
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ssG

6-8 Mentioned in the lecture.
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6-11 Check the stability of following system.

𝑎𝑛𝑠: 𝐼𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑡𝑎𝑏𝑙𝑒
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6-12 Find two different lcf’s for the following transfer function matrix.

6-13 Find a lcf’s and a rcf’s for the following transfer matrix. 

6-14 Find a lcf’s and a rcf’s for the following transfer matrix. 

𝑃 𝑠 =

1

𝑠 − 1

1

𝑠 − 1
1

𝑠 + 1

2

𝑠 + 1

𝐾 𝑠 =

2(𝑠 − 1)

𝑠 + 1
−1

1 − 𝑠

𝑠 + 1
1
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6-15 By use of MIMO rule derive the transfer matrix of following system.
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