
Dr. Ali Karimpour  Mar 2022

Lecture 5

Multivariable Control 

Systems

Ali Karimpour

Professor

Ferdowsi University of Mashhad

Lecture 7

References are appeared in the last slide.



Dr. Ali Karimpour  Mar 2022

Lecture 5

2

Controllability, Observability and Realization

Topics to be covered include:

• Controllability and Observability of Linear Dynamical Equations

• Output Controllability and Functional Controllability

• Realization of Proper Rational Transfer Function Matrices

• Model Order Reduction of Non-Minimal Representations

• Model Order Reduction of Minimal Representations

Truncation Method

Residualization Method

Hankel Norm Approximation

• Controllability and Observability of Linear Dynamical Equations
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Controllability and Observability of Linear Dynamical Equations

Definition 7-1

Definition 7-2

The state equation                          or the pair (A, B) is said to be controllable

if for any initial state x0 and any final state x1, there exists an input that transfers

x0 to x1 in a finite time. Otherwise (A,B) is said to be uncontrollable.

BuAxx +=

The state equation

or the pair (A,C) is said to be observable if for any unknown initial state x0 , there

exists a finite time t1 > 0 such that the knowledge of the input u and the output y

over [0,t1] suffices to determine uniquely the initial state x0. 

Other wise, the equation is unobservable.

DuCxy

BuAxx

+=

+=
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Controllability and Observability of Linear Dynamical Equations

Theorem 7-1: Controllability
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Controllability and Observability of Linear Dynamical Equations

Corollary 7-1: Controllability from controllability index.

Is it necessary to calculate till 𝐴𝑛−1𝐵 ? No! 𝐴𝜇−1𝐵 𝐴𝑛−𝑝𝐵or

𝑝 is rank of B and 𝜇 is controllability index and it is the maximum value

in the set of controllability indices. 𝜇 = max{𝜇1, 𝜇2, … }

How to derive controllability indices?

Controllability test

Partial controllability matrix.
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Controllability and Observability of Linear Dynamical Equations

Controllability indices?

1- Derive

𝑆 = [𝑏1 𝑏2…. 𝐴𝑏1 𝐴𝑏2…. 𝐴2𝑏1 𝐴2𝑏2….. 𝐴3𝑏1 𝐴3𝑏2…..]

2- Choose the initial column of  S which make it full rank

𝑆 = [𝑏1 𝑏2…. 𝐴𝑏1 𝐴𝑏2…. 𝐴2𝑏1 𝐴2𝑏2….. 𝐴3𝑏1 𝐴3𝑏2…..]

𝜇1is number independent columns of S corresponding to 𝑏1

𝜇2is number independent vectors of S corresponding to 𝑏2 and also independent from 

𝑏1, A𝑏1, … 𝐴𝜇1−1𝑏1.  

𝜇3is number independent vectors of S corresponding to 𝑏3 and also independent from 

𝑏1, A𝑏1, … 𝐴𝜇1−1𝑏1 and 𝑏2, A𝑏2, … 𝐴𝜇2−1𝑏2.

𝜇 = max{𝜇1, 𝜇2, … }Controllability index?

Note: 𝜇1 + 𝜇2 +⋯ = 𝑛
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Controllability and Observability of Linear Dynamical Equations

Theorem 7-2: Observability
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Controllability and Observability of Linear Dynamical Equations

Corollary 7-2: Observability from observability index.

Is it necessary to calculate till 𝐶𝐴𝑛−1 ? No! 𝐶𝐴𝑣−1 𝐶𝐴𝑛−𝑞or

𝑞 is rank of C and 𝑣 is observability index and it is the maximum value

in the set of observability indices. 𝑣 = max{𝑣1, 𝑣2, … }

How to derive observability indices? Similar to controllability indices.
Partial observability matrix.
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Controllability and Observability in Rosenbrock’s system matrix

)()()()()(
)()(

)()(
)(P 1 sWsQsPsRsG

sWsR

sQsP
s +=









−
= −

Rosenbrock’s system matrix is:

Now suppose one find the greatest left common factor of P and Q as

)()()()()()( sQsLsQsPsLsP ==

Now if L(s) is not unimodular then there is i.d.z and so reduced order 

system is: 

)()()()()()()()()( 11 sWsQsPsRsWsQsPsRsG +=+= −−

How to derive i.d.z. ?

]0)([])()([ sSsQsP →Smith       form

Input decoupling zeros are roots of |S(s)|=0
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Controllability and Observability in Rosenbrock’s system matrix

)()()()()(
)()(

)()(
)(P 1 sWsQsPsRsG

sWsR

sQsP
s +=









−
= −

Rosenbrock’s system matrix is:

Now suppose one find the greatest right common factor of P and R as

)()(ˆ)()()(ˆ)( sLsRsRsLsPsP ==

Now if L(s) is not unimodular then there is o.d.z and so reduced order 

system is: 

)()()(ˆ)(ˆ)()()()()( 11 sWsQsPsRsWsQsPsRsG +=+= −−

How to derive o.d.z. ?









→









0

)(

)(

)( sS

sR

sP
Smith       form

Output decoupling zeros are roots of |S(s)|=0
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Controllability and Observability of Linear Dynamical Equations

Example 7-1: Find the i.d.z. and o.d.z. of following system.

  







→









+

+
=

00

00

)2(0

0)1(
)()(

s

s

sss

sss
sQsP

FormSmith

















−−

+

+

=

011

)2(0

0)1(

)(P sss

sss

s

So intput decoupling zeros are: |S(s)|=0   → 0 and 0

















→

















+

+

=








00

0

01

11

)2(0

0)1(

)(

)(
sss

ss

sR

sP FormSmith

So output decoupling zero is: |S(s)|=0   → 0
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Controllability and Observability of Linear Dynamical Equations

Example 7-2: Reduce the following system if it is possible.










+

+








=

20

01

0

0
)(

s

s

s

s
sP

4. is system oforder Clearly 

011

)2(0

0)1(

)(P

















−−

+

+

= sss

sss

s

So the reduced order system is:

















=

1

1

0

0
)(

s

s
sQ

2. is system oforder Clearly 

011

120

101

)(P

















−−

+

+

= s

s

s

Exercise 7-1: Find the i.d.z. and o.d.z. of following system and also check the 

controllability and observability of system.










−−

+
=

s

ss
s

21

)1(
)(P

32
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Controllability, Observability and Realization

• Controllability and Observability of Linear Dynamical Equations

• Output Controllability and Functional Controllability

• Realization of Proper Rational Transfer Function Matrices

• Model Order Reduction of Non-Minimal Representations

• Model Order Reduction of Minimal Representations

Truncation Method

Residualization Method

Hankel Norm Approximation
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Output Controllability

Definition 7-3: Output Controllability

  pDBCACABCBrank n =−1...

Dynamical system

)()()(

)()()(

tDutCxty

tButAxtx

+=

+=
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Functional Controllability

Definition 7-4: Functional controllability.

An m-input l-output system G(s) is functionally controllable if the

normal rank of G(s), denoted r, is equal to the number of outputs; that is, 

if G(s) has full row rank. A plant is functionally uncontrollable if r < l.

Remark 1: The minimal requirement for functional controllability is 

that we have at least many inputs as outputs, i.e. m ≥ l

Remark 2: A plant is functionally uncontrollable if and only if

 = ,0))(( jGl

Remark 3: For SISO plants just G(s)=0 is functionally uncontrollable.

Remark 4: A MIMO plant is functionally uncontrollable if the gain is 

identically zero in some output direction at all frequencies.
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Functional Controllability

















++

++=

1

1

1

1
3

2

1

1

)(

ss

sssG

Example 7-3: a)A Functionally controllable system that is not state controllable.

)(
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b) A state and output controllable system that is not Functionally controllable.
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
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












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=
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2
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Functional Controllability

Example 7-4: dc-dc boost converter

17

6
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Functional Controllability

BAsICsG 1)()( −−= is functionally uncontrollable ifAn m-input l-output system

lBrank )(1- The system is input deficient or

2- The system is output deficient or lCrank )(

3- The system has fewer states than outputs lAsIrank − )(

If the plant is not functionally controllable, i.e. lr  then there are

l-r output directions, denoted yi which cannot be affected.

rlijGjyH

i −== ,...,10)()( 

From an SVD of G(jω) the uncontrollable output directions yi(jω) are 

the last l-r columns of Y(jω).
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Functional Controllability

Example 7-5:


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This is easily seen since column 2 of G(s) is two times column 1.

The uncontrollable output directions at low and high frequencies are, 

respectively,










−
=
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)0( 00 yy
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Controllability, Observability and Realization

• Controllability and Observability of Linear Dynamical Equations

• Output Controllability and Functional Controllability

• Realization of Proper Rational Transfer Function Matrices 

• Model Order Reduction of Non-Minimal Representations

• Model Order Reduction of Minimal Representations

Truncation Method

Residualization Method

Hankel Norm Approximation
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Realization of Proper Rational Transfer Function Matrices

EuCxy

BuAxx

+=

+=

Dynamical equation 

(state-space) description This transformation

is unique.

EBAsICsG +−= −1)()(

The input-output description 

(transfer function matrix)

EBAsICsG +−= −1)()(

The input-output description 

(transfer function matrix)

EuCxy

BuAxx

+=

+=

Dynamical equation 

(state-space) descriptionRealization 

is not unique

Theorem 7-3

A transfer function matrix G(s) is realizable by a finite dimensional 

linear time invariant dynamical equation if and only if G(s) is a proper

rational matrix.

Proof: See “Linear system theory and design” Chi-Tsong Chen
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Definition 7-6

A linear time-invariant dynamical equation is said to be reducible if and only if there 

exist a linear time-invariant dynamical equation of lesser dimension that has the same 

transfer function matrix. Otherwise, the equation is irreducible.

Theorem 7-5

A linear time invariant dynamical equation is irreducible if and only if it is controllable 

and observable.

Theorem 7-6

Irreducible realizations
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Irreducible realizations

Definition 7-5: Characteristic polynomial and degree of G(s)

Theorem 7-4:
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Realization of proper rational transfer functions 

• Observable canonical form

There are different forms of realization

  u
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• Controllable canonical form

  u
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Realization from the Hankel matrix (Minimal)
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The coefficients  h(i) will be called Markov parameters.

Irreducible realization of proper rational transfer functions 



Dr. Ali Karimpour  Mar 2022

Lecture 5

26

Irreducible realization of proper rational transfer functions 

Realization from the Hankel matrix

Theorem 7-7:   Consider the proper transfer function g(s) as

( ) ( ) ....,3,2,1,everyfor),(),( =++= lklmkmHmmH 
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then g(s) has degree m if and only if
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Irreducible realization of proper rational transfer functions 

eucxy

buAxx

+=

+=

Now consider the dynamical equation
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Let the first m rows be linearly independent and the (m +1) th row of H(n+1,n) be 

linearly dependent on its previous rows. So

0),1(]0.....01.....[ 21 =+ nnHaaa m
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Irreducible realization of proper rational transfer functions 

0),1(]0.....01.....[ 21 =+ nnHaaa m

We claim that the m -dimensional dynamical equation

is a controllable and observable (irreducible realization). 
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Exercise 7-2: Show that (I) is a controllable and observable (irreducible realization) of

eucxy
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Example 7-6: Derive three different realization for following system.
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Observable canonical form realization is:
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Controllable canonical form realization is:
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Irreducible realization of proper rational transfer functions 
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We can show that the rank of H(4,3) is 2. So
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There are many approaches to find irreducible realizations for proper 

rational matrices.

1. One approach is to first find a reducible realization and then apply

the reduction procedure to reduce it to an irreducible one.

2.     In the second approach irreducible realization will yield directly.

Realization of Proper Rational Matrices
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Reminders

Each element of G(s) has real distinct poles.

pisBqisCBCG kkkkkkk = 

 
r

IIdiagA r   ,...,
11=

 rCCC ...1=

















=

rB

B

B 
1

Realization of Proper Rational Matrices

Method I: Gilbert diagonal representation.
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Realization of Proper Rational Matrices

Example 7-7: Derive Gilbert diagonal representation for following system.
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Realization of Proper Rational Matrices

Method I: Gilbert diagonal representation.

Repetitive real poles.



Dr. Ali Karimpour  Mar 2022

Lecture 5

34

Method I: Gilbert diagonal representation.

Repetitive real eigenvalues.

r1 Jordan block of order 3

r2 - r1 Jordan block of order 2

r3 – r2 Jordan block of order 1                     

Realization of Proper Rational Matrices
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2 Jordan block of order 2

0 Jordan block of order 1

Realization of Proper Rational Matrices

Example 7-8: Derive Gilbert diagonal representation for following system.
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Realization of Proper Rational Matrices

Example 7-9: Derive Gilbert diagonal representation for following system.
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:),4(B

)1(:,C

:),4(B
)2(:,C

:),7(B

)5(:,C

Realization of Proper Rational Matrices

Example 7-10: Derive Gilbert diagonal representation for following system.
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Realization of Proper Rational Matrices

Example 7-10: Derive Gilbert diagonal representation for following system.
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Realization of Proper Rational Matrices

Example 7-10: Derive Gilbert diagonal representation for following system.
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Method II: Hankel form realization of a proper G(s). Let

Exercise 7-3: Proof equation (I)(just PhD students)

...........)2()1()0()( 21 +++= −− sHsHHsG

Consider the monic least common denominator of G(s) as 

m

mmm ssss  ++++= −− ...)( 2

2

1

1

Then after deriving H(i) one can simply show 

)(1)(...)2()1()(
21

IiiHimHimHimH
m

−−−+−−+−=+ 

...........)()( 32211 ++++=−+= −−−− BsCACABsCBsEBAsICEsG

Let {A, B, C and E} be a realization of G(s) then we have

Realization of Proper Rational Matrices

Then {A, B, C and E } be a realization of G(s) if and only if

,....2,1,0)1()0( ==+= iBCAiHHE i
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Realization of proper rational transfer functions 

• Observable canonical form

There are different forms of realization

• Controllable canonical form

Then {A, B, C and E } be a realization of G(s) if and only if

,....2,1,0)1()0( ==+= iBCAiHHE i
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Proof ?
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Now we shall discuss in the following a method which will yield directly

irreducible realizations. This method is based on the Hankel matrices.

Irreducible realization of Proper Rational Matrices
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We also define the two following Hankel matrices

Derive SVD of T
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Irreducible realization of Proper Rational Matrices

Derive SVD of T
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Irreducible realization of Proper Rational Matrices

Derive SVD of T

Exercise 7-4: Proof theorem 7-8.
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Example 7-11: Derive an irreducible realization for the following proper rational function.
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Non-zero singular values of T 

are 10.23, 5.79, 0.90 and 0.23.

So, r = 4.

Irreducible realization of Proper Rational Matrices
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Irreducible Realization of Proper Rational Matrices
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0.3923-   0.1000-   0.4999-   1.6398    

0.0034-   0.0551-   1.2598-   0.7539-   

0.0770-   0.8443-   0.6121    1.0915-   

ˆ

2/1

2/1

H

r

r

USU

SYY
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Irreducible Realization of Proper Rational Matrices



















== −

0.0149-   1.1356-   0.0149    1.7406-   0.0149-   0.3415-   

0.0613-   0.4551    0.0613    0.1112-   0.0613-   0.9386-   

0.2178-   0.1092    0.2178    0.0864-   0.2178-   0.1058    

0.0737-   0.2107-   0.0737    0.1603    0.0737-   0.1067-   

ˆ 2/1† H

rYSY



























== −

0.3976    0.4086    0.2259    0.0432    

0.9525    0.3109-   0.0961    0.2185-   

0.3976-   0.4086-   0.2259-   0.0432-   

0.2161    0.1031-   0.0440-   0.1718    

1.1176-   0.6349-   0.2441    0.0328    

1.3847-   0.5171    0.0081-   0.1251-   

ˆ 2/1† SUU r



















==

0.4476-   0.1354    0.1181-   0.1246    

0.8076    0.2888-   0.1800-   0.2227-   

0.0772    0.1604-   1.0139-   0.1588    

0.1904-   0.2155    0.0369    1.2497-  

ˆ~ˆ †† UTYA



















==

0.2519-   0.3121-   

0.5711-   0.4652    

1.4124    0.0471-   

0.3355    1.2803-   

ˆ
,

T

pmpIUB









==

0.0034-   0.0551-   1.2598-   0.7539-   

0.0770-   0.8443-   0.6121    1.0915-   
ˆ

, YIC qmq 








−

−
==

34

02
)0(HE

Exercise 7-5: Derive state space model of g(s) by theorem 7-8.
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Controllability, Observability and Realization

• Controllability and Observability of Linear Dynamical Equations

• Output Controllability and Functional Controllability

• Realization of Proper Rational Transfer Function Matrices

• Model Order Reduction of Non-Minimal Representations

• Model Order Reduction of Minimal Representations

Truncation Method

Residualization Method

Hankel Norm Approximation
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EuCxy

BuAxx

+=

+=Theorem 7-10

Consider the n-dimensional linear time –invariant dynamical equation 

If the controllability matrix of the dynamical equation has rank n1 (where n1<n ), then 

there exists an equivalence transformation

Pxx =
which transform the dynamical equation to

  Eu
x

x
CCyu

B

x

x

A

AA

x

x

c

c

cc

c

c

c

c

c

c

c +







=








+
















=









00

12





and the n1-dimensional sub-equation

EuxCy

uBxAx

cc

cccc

+=

+=

is controllable and has the same transfer function matrix as the first system.

Model Order Reduction of Non-Minimal Representations

Theorem 7-9 The controllability and observability of a linear time-invariant dynamical 

equation are invariant under any similarity transformation.
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EuCxy

BuAxx

+=

+=Theorem 7-11

Consider the n-dimensional linear time –invariant dynamical equation 

If the observability matrix of the dynamical equation has rank n2 (where n2<n ), then 

there exists an equivalence transformation

Pxx =

which transform the dynamical equation to

  Eu
x

x
Cyu

B

B

x

x

AA

A

x

x

o

o

o

o

o

o

o

o

o

o

o +







=








+
















=








0

0

21




and the n2-dimensional sub-equation

EuxCy

uBxAx

oo

oooo

+=

+=

is observable and has the same transfer function matrix as the first system.

Model Order Reduction of Non-Minimal Representations
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EuCxy

BuAxx

+=

+=Theorem 7-12 (Canonical decomposition theorem)

Consider the n-dimensional linear time –invariant dynamical equation 

There exists an equivalence transformation

Pxx =

which transform the dynamical equation to

and the reduced dimensional sub-equation

is observable and controllable and has the same transfer function matrix as the first 

system.
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oc

c
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

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

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






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


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












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








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















0

000

0 23

1312







EuxCy

uBxAx

coco

cocococo

+=

+=

Model Order Reduction of Non-Minimal Representations
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Controllability, Observability and Realization

• Controllability and Observability of Linear Dynamical Equations

• Output Controllability and Functional Controllability

• Realization of Proper Rational Transfer Function Matrices

• Model Order Reduction of Non-Minimal Representations 

• Model Order Reduction of Minimal Representations 

Truncation Method

Residualization Method

Hankel Norm Approximation
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  Eu
x

x
CCy

u
B

B

x

x

AA

AA

x

x

+
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




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




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
+












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


=









2

1

21

2

1

2

1

2221

1211

2

1




Consider following system

There are several model order reduction procedure:

• Truncation Method.

Model Order Reduction of Minimal Representations

• Residualization Method (Singular Perturbation).

• Hankel norm truncation Method.

• Hankel norm residualization Method (Singular Perturbation).

)()()(

)()()(

tDutCxty

tButAxtx

+=

+=

• ………………..
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Consider following system

• Truncation Method.

Model Order Reduction of Minimal Representations

Truncation Method

Let x2=0
EuxCy

uBxAx

+=

+=

11

11111


EGG
r

== )()(

High frequency response is not changed by truncation method.
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
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
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





2

1

21

2

1

2

1

2221

1211

2

1





• Residualization Method (Singular Perturbation). 0Let 2 =x

uBACExAACCy

uBAABxAAAAx

)()(

)()(

2

1

222121

1

2221

2

1

22121121

1

2212111

−−

−−

−+−=

−+−=

)0()0( rGG =

Exercise 7-6: Show that steady state behavior is not changed by 

residualization method
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  Euxcccy
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Truncation procedure

Model Order Reduction of Minimal Representations

Truncation Method
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Error is Error value related to:
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Consider following system

Model Order Reduction of Minimal Representations

Hankel Norm Approximation

EuCxy

BuAxx

+=

+=

Controllability gramians and observability gramians are:








=

=

0

0

dtCeCeQ

dteBBeP

AtTtA

tATAt

T

T

Minimum energy required to steer the state of system from 0 to xr is:

r

T

r xPxu 12 −=

Maximum energy produced by observing the output of the system with initial state 

x0 is:

00

2
Qxxy T=
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Consider following system

Model Order Reduction of Minimal Representations

Hankel Norm Approximation

EuCxy

BuAxx

+=

+=

Controllability gramians and observability gramians are changed by similarity

transformation.

  121 ... +=== iindiagQP 

n.realizatioorder  reducedfor   valuesuitable isk       If 1+ kk 

A balanced realization is a realization with following property.

)()()(

)()()(

tDutCxty

tButAxtx

+=

+= A balanced realization

Hankel singular values

Hankel norm truncation method.

Hankel norm residualization Method 
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Example 7-12: Consider following system.

Model Order Reduction of Minimal Representations

Hankel Norm Approximation

a) Derive a reduced 1st order system by Hankel truncation method.

b) Derive a reduced 1st order system by Hankel residualization  method.

c) Draw Bode plot of real system and all reduced orders in the same plot.

d) Draw step response of real system and all reduced orders in the same plot.

 xy
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
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
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Matlab: system=pck(A,B,C,D); sysbal(system)
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Hankel residualization method uxy
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Example 7-13: Consider following system.

Model Order Reduction of Minimal Representations

Hankel Norm Approximation

8741.0
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Exercises

Exercise 7-1: Mentioned in the lecture. Exercise 7-2: Mentioned in the lecture.

Exercise 7-3: Mentioned in the lecture(just for PhD student).

Exercise 7-4: Mentioned in the lecture.

Exercise 7-7: Check the contollability and observability of following systems.

Exercise 7-5: Mentioned in the lecture.

Exercise 7-6: Mentioned in the lecture.

Exercise 7-8: Find irreducible

realization for following systems.
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Exercises

Exercise 7-9: Find a reduced order(2nd order) for following

System:

a) By Hankel truncation method.

b) By Hankel residualization method.

c) Draw Bode plot of real system and all reduced orders in the same plot.

d) Draw step response of real system and all reduced orders in the same plot.
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