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Lecture 5

Controllability, Observability and Realization

Topics to be covered include:

Controllability and Observability of Linear Dynamical Equations
Output Controllability and Functional Controllability

Realization of Proper Rational Transfer Function Matrices

Model Order Reduction of Non-Minimal Representations

Model Order Reduction of Minimal Representations
Truncation Method
Residualization Method

Hankel Norm Approximation
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Lecture 5

Controllability and Observability of Linear Dynamical Equations

Definition 7-1

The state equation X=AX + BU or the pair (A, B) is said to be controllable

If for any initial state x, and any final state x,, there exists an input that transfers

Xp to X, In a finite time. Otherwise (A,B) is said to be uncontrollable.

Definition 7-2

The state equation .
q X=AX+ Bu

y=Cx+ Du

or the pair (A,C) is said to be observable if for any unknown initial state X, there
exists a finite time t, > 0 such that the knowledge of the input u and the output y
over [0,t,] suffices to determine uniquely the initial state X,.

Other wise, the equation is unobservable.
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Lecture 5

Controllability and Observability of Linear Dynamical Equations

Theorem 7-1: Controllability

The s2-dimensional linear time-invariant state equation

*=Ax+ Bu

15 controllable 1f and only if any of the following equivalent condition is satisfied

1. The »x(xp) controllability matrix
S=|B 4B A*B .. AB|

has rank n (full row rank).
2. The »xxn controllability grammian

W, = [ e* BB dr

1s nonsingular for any ¢ >0,
3. For every eigenvalue 1 of A the nx(n+p) complex matrix [A/—A4 | £] has rank s(full

row ranlk).
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Lecture 5

Controllability and Observability of Linear Dynamical Equations

Controllability test

i =Ax+ Bu

The n-dimensional linear time-invariant dynamical equation = Cx +Bu 15 controllable if and only 1f

the matrix §=[8 AB A°B ... A™B] hasrank n (full row rank).

s it necessary to calculate till A*"1B? No! A*~'B or A™PB

p Is rank of B and u Is controllability index and it is the maximum value
In the set of controllability indices. u = max{u4, uy, ... }

Corollary 7-1: Controllability from controllability index.

i=Ax+ Bu

The n-dimensional linear time-invariant dynamical equation = Crx+Bu 15 controllable 1f and only 1f

the matrix [B AB A®B ... A*""B] hasrank n (full row rank).

k, Partial controllability matrix.

How to derive controllability indices? °

Dr. Ali Karimpour Mar 2022



Lecture 5

Controllability and Observability of Linear Dynamical Equations

Controllability indices?

1- Derive
S — [b]_ bz Ab1 Abz Azb]_ Azbz ..... A3b1 A3b2 ..... ]

2- Choose the initial column of S which make it full rank

S - lbl bz Ab1 Abz Azbl Azbz ..... A3b1 A3b2]

t41s number independent columns of S corresponding to b4

U, 1S number independent vectors of S corresponding to b, and also independent from
by, Aby, ... AM171p,.

U3 1S number independent vectors of S corresponding to b; and also independent from
by, Aby, ... A¥171p, and b,, Ab,, ... A*271p,,

Note: yuq + pp + - =n

Controllability index? u = max{uq, Uy, ... } °
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Lecture 5

Controllability and Observability of Linear Dynamical Equations

Theorem 7-2: Observability

The n-dimensional linear time-invariant dynamical equation
%= Ax+ Bu
y=Cx+EBu
is observable if and only 1f any of the following equivalent condition is satisfied.

1. The (»g)xx» observability matrix [ C
CA
c4?

2-1
has rank » (full column rank). |CA™

2. The »nx»observability grammian
W, = [[et'CTCetdr
1s nonsingular for any ¢ >0,

3. For every eigenvalue 2 of A the (z+g)x» complex matrix rf‘ﬂ]

has rank » (full column rank). C
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Lecture 5

Controllability and Observability of Linear Dynamical Equations

i=Ax+5Bu . .
The n-dimensional linear time-invariant dynarnical equation is observable if and only 1f

C y=Cx+Bu

CA

the matrix Vv = has rank » (full column rank)

A1
s it necessary to calculate till CA*1?  No! CAV~' or CA™1

q I1s rank of C and v is observability index and it is the maximum value
In the set of observability indices. v = max{v,, v,, ... }

Corollary 7-2: Observability from observability index.

X=Ax+ Bu , ,
The n-dimensional linear time-invariant dynamical equation is observable 1f and only 1f
C y=Cx+Eu
the matrix V = ¢4 has rank #» (full column rank)
i

Partial observability matrix.
How to derive observability indices?  Similar to controllability indices.
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Lecture 5

Controllability and Observability in Rosenbrock’s system matrix

Rosenbrock’s system matrix 1s:

P(s) Q(s)
—R(s) W(s)

Now suppose one find the greatest left common factor of P and Q as

P(s) { } G(s) =R(s)P(s) "Q(s) +W(s)

P(s)=L(s)P(s) Q(s)=L(s)Q(s)

Now If L(s) i1s not unimodular then there is 1.d.z and so reduced order
system Is:

G(s) =R(5)P(s) " Q(s) +W(s) =R(s)P(s) " Q(s) +W(s)
How to derive 1.d.z. ?
[P(s) Q(9)] Smith —form [S(s) O]

Input decoupling zeros are roots of |S(s)|=0 ’
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Lecture 5

Controllability and Observability in Rosenbrock’s system matrix

Rosenbrock’s system matrix 1s:

P(s) Q(s)
—R(s) W(s)

Now suppose one find the greatest right common factor of P and R as

P(s) { } G(s) =R(s)P(s) "Q(s) +W(s)

P(s)=P(s)L(s)  R(s)=R(s)L(s)
Now if L(s) is not unimodular then there is 0.d.z and so reduced order
system Is:

G(s) = R(5)P(3) ' Q(s) +W () = R(S)P(5) ' Q(S) +W (s)

How to derive 0.d.z. ?
P(s) | S(s)
Smith —form
R(S) 0

Output decoupling zeros are roots of |S(s)|=0 10
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Lecture 5

Controllability and Observability of Linear Dynamical Equations

Example 7-1: Find the 1.d.z. and o.d.z. of following system.

s(s+1) 0 Es_
P(s)=| 0  s(s+2): s

_________________________________

Ps) O (S)]:{S(S+1) 0 s} Smith_imm {s 0 O}

0 S(s+2) s 0 s O
So intput decoupling zeros are: |S(s)|[=0 - 0Oand 0

[ s(s+1) 0 | | 1 0
P(S) Smith Form
= O S(s+2) —> 0 s
R(s)
1 1 0 0

So output decoupling zero is: [S(s)[=0 = 0 11
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Lecture 5

Controllability and Observability of Linear Dynamical Equations

Example 7-2: Reduce the following system if it is possible.
s(s+1) 0 s
P(s)=| O s(s+2): s| Clearlyorder of systemis 4.

_________________________________

s O|s+1 O s 01
P(S){o s}{ 0 s+2} Q(S){O S}m

So the reduced order system Is:

's+1 0 1
P(s)=| 0 s+2 1| Clearlyorderof systemis 2.
-1 -1 O
Exercise 7-1: Find tﬁe 1.d.z. and o.d_.z. of following system and also check the
controllability and observability of system. (5112 s°
P(s){-—-—;—-1----;--2-:;} 12
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Lecture 5

Controllability, Observability and Realization

Controllability and Observability of Linear Dynamical Equations
Output Controllability and Functional Controllability

Realization of Proper Rational Transfer Function Matrices
Model Order Reduction of Non-Minimal Representations

Model Order Reduction of Minimal Representations
Truncation Method
Residualization Method
Hankel Norm Approximation
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Lecture 5

Output Controllability

Definition 7-3: Output Controllability

Dynamical system

X(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
is said to be output controllable if for every y(0) and every vector yle RP
there exist a finite time ¢; and control u (t) € R™, that transfers the output

from y(0) to Y, = y(t1).

Dynamical system is output controllable if and only if

rank|CB CAB .. CA"™'B D|=p
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Lecture 5

Functional Controllability

Definition 7-4: Functional controllability.

An m-input l-output system G(s) is functionally controllable if the

normal rank of G(s), denoted r, is equal to the number of outputs; that is,

If G(s) has full row rank. A plant is functionally uncontrollable if r <|.

Remark 1: The minimal requirement for functional controllability is

that we have at least many inputs as outputs, I.e. m >

Remark 2: A plant is functionally uncontrollable if and only if
0,(G(jw))=0, Vw

Remark 3: For SISO plants just G(s)=0 is functionally uncontrollable.

Remark 4: A MIMO plant is functionally uncontrollable if the gain is
Identically zero in some output direction at all frequencies. 15
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Functional Controllability

Lecture 5

Example 7-3: a)A Functionally controllable system that is not state controllable.

1 2

G(s) = SIl S—{3

' s+1 s+1

X(t) =

y(t) =

0 -3

[HRN

I

N
R O O O

X(t) +

3 2

1 2
1 1
1 1

u(t)

b) A state and output controllable system that is not Functionally controllable.

0 0O
X(t)={1 0 O0|x(t)+
0 1 0
010
y(t){O o 1O

0 11
1 0

u(t)

G(s) =

"’,\,‘Hm | =

L
S

1
N

2

16
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Lecture 5

Functional Controllability

Example 7-4: dc-dc boost converter

1
r\)><) |a><)

functionally uncontrollable

2498s +3.049x10°
s? +609s +3.207 x10°
—2.5%x10°s+1.217x10°

| s*+609s+3.207x10°

or new systemdesign :

+ —_—
Vi
—— 9 >
e |+
L SW2
—
X1

2498s +3.049x10° 12.5's + 7440
52 +609s+3.207x10° 5% +609s +3.207 x 10° {
—2.5%x10°s+1.217x10° 6.25x10°
| $?+6095+3.207x10°  s?+609s +3.207 x10° |

functionally controllable
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Lecture 5

Functional Controllability

An m-input l-output system G(S) = C(sl — A)‘1 B is functionally uncontrollable if

1- The system is input deficient or rank(B) <1
2- The system is output deficient or rank(C) < |
3- The system has fewer states than outputs rank(sl — A) <

If the plant is not functionally controllable, i.e. T <l then there are
I-r output directions, denoted y; which cannot be affected.

V' (j@)G(jo)=0 i=1..1-r

From an SVD of G(jw) the uncontrollable output directions y;(jw) are
the last I-r columns of Y(jw). 1
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Lecture 5

Functional Controllability

Example 7-5:
- 5 -
_| s+1 s+1
CE)= 7" 7y
1 S+2 S+2_

This is easily seen since column 2 of G(s) Is two times column 1.

The uncontrollable output directions at low and high frequencies are,
respectively,

1 2
y0(0)=%u, yo(oo>=%{_l}

19
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Lecture 5

Controllability, Observability and Realization

Controllability and Observability of Linear Dynamical Equations
Output Controllability and Functional Controllability

Realization of Proper Rational Transfer Function Matrices
Model Order Reduction of Non-Minimal Representations

Model Order Reduction of Minimal Representations
Truncation Method
Residualization Method
Hankel Norm Approximation

20
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Lecture 5

Realization of Proper Rational Transfer Function Matrices

Dynamical equation

o _ _ The input-output descriptio
(state-space) description This transformation

(transfer function matrix)

% = AX + Bu IS unique.
_ AL
y = Cx + Eu G(s)=C(sl—-A) "B+E
The input-output description o Dynamical equation
(transfer function matrix) Realization  (state-space) description
IS ot unique = Ax + BY
G(s)=C(sl —A)'B+E B
y=Cx+ Eu

Theorem 7-3

A transfer function matrix G(s) is realizable by a finite dimensional

linear time invariant dynamical equation if and only if G(s) is a proper

rational matrix.

21
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Lecture 5

Irreducible realizations

Definition 7-6
A linear time-invariant dynamical equation is said to be reducible if and only if there

exist a linear time-invariant dynamical equation of lesser dimension that has the same

transfer function matrix. Otherwise, the equation is irreducible.

Theorem 7-5
A linear time invariant dynamical equation is irreducible if and only if it is controllable

and observable.
Theorem 7-6

Let the dynarmical equation {4, 5,C,E} be an irreducible realization of a pxg proper rational
matrix Gfs). Then {A.5.C,E iz also an irreducible realization of GfE) if and only if

(A B.C Eyand {4,5.C, E}are equivalent, that is, there exist a nonsingular constant matrix P

suchthat A=PAP E=P8. =P and E=F
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Lecture 5

Irreducible realizations

Definition 7-5: Characteristic polynomial and degree of G(s)
Consider a proper rational matrix G(s) factored as G(s)=D, " (s)N,(s)=N,(s)D, ' (s). It is

assumed that D,(s5). N,(s). D,(s) and N, (s) are polynomials matrices. It 1s assumed that D,(s)
and N,(s) are left coprime and D, (s)and N, (s) are right coprime(Irreducible LMFD and

RMFD). Then the characteristic polynomial of Gys) is defined as
detD (s5) or det D, (5)
And the degree of G(s) 1s defined as
deg G(5) = degdet D (s5) =degdet D, (s)

where deg det stands for the degree of determinant. Note that the polynomialdetD, (s)and

det D, (s) differ at most by a nonzero constant.

Theorem 7-4:

Let the multivariable linear time-invariant dynamical equation

%= Ax+ Bu
v=0_Cx+Bu

be a realization of the proper rational matriz G(s). Then the state space realization 15 irreducible
(controllable and observable) 1f and only if
det(sf — A) = k [Characteristic polynomial of Gis)]



Lecture 5

Realization of proper rational transfer functions

A,S" +aSs" "+ + 4, "+ ST+, 4
There are different forms of realization
e Observable canonical form e Controllable canonical form
x1 [0 0 .. 0 —a x| [B8] x] [ 0 1 0 .. 07 x7] [0
x| |10 ..0 —a |[x]| |A, X, 0 0 1 .. 0 x| |0
X, =10 1 .. 0 —a_,|X |[+|f., U X |=] . . : e o X |+|O0u
. 0 0 0 1
(x| |0 O 1 —a | X ] | B ] X | |-a -a, -a, —a, | X | |1]
o %
X | . X, | .
y=[0 0 0 1] x, By v=[8 B. B. B x, +@u
a, a,
X X |
o 24
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Lecture 5

Irreducible realization of proper rational transfer functions

Realization from the Hankel matrix (Minimal)

g(s) = ﬁOfn " ﬂlf_nl_l Fot g(s) = h(0) + h()s™ + h(2)s2 + h(3)s ™ +.....
s"+aS" T+t

The coefficients h(i) will be called Markov parameters.

' h(l) h(2 h3) .. h(5)
h2)  h@) h(4) .. h(B+)
h3)  h(4) hG) .. h(B+2)

H(a, B) =

h@) h(@+1) h@+2) .. h(a+p-1)]

It 1z called a Hanlel matrix of order ax 8. Mote that the coefficient #200) 13 not

involved in Hie, &)
25
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Lecture 5

Irreducible realization of proper rational transfer functions

Realization from the Hankel matrix

Theorem 7-7: Consider the proper transfer function g(s) as

Bos" + BS"+ B8+ + B
"+, S"

g(s) =

then g(s) has degree m if and only if

p(H(m,m))=p(H(M+k,m+1)) forewery k,1=1,2,3, ..

26
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Lecture 5

Irreducible realization of proper rational transfer functions

Now consider the dynamical equation

X = AX +bu g(s)=c(sl —A)*b+e=s"c(l —s*A)‘b+e
y=Ccx+ed =e+cbs™ +cAbs ™ +cA%bs > +.....
-\ aidl .
:> h()=cA~b 1=1,2,3,..
Ch@)  h@) ... h(n) ]
he .. h(n+1)
Hn+in=| ~ 77
h(n) h(n+1) .. h(2n-1)
'h(n+1) h(n+2) .. h(2n) |

Let the first m rows be linearly independent and the (m +1) th row of H(n+1,n) be
linearly dependent on its previous rows. So

[a, &, ... a, 1 0 .. OJH(n+1n)=0 27
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Lecture 5

Irreducible realization of proper rational transfer functions

2,
0 1
0 O
0 0
X =
0 O
| a4 —&
y=[1 0 0

a,

0

_a3

10

0 0
0 0
0 0
X+
0 1
m-1 A |

O]JH(n+1,n)=0
We claim that the m -dimensional dynamical equation

) -
h(2)
h(3)

h(m.—l)

v ()

| h(m) |

IS a controllable and observable (irreducible realization).

Exercise 7-2: Show that (1) is a controllable and observable (irreducible realization) of

X = AX+bu
y = CX + €U

28
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Lecture 5

Irreducible realization of proper rational transfer functions

Example 7-6: Derive three different realization for following system.
2s® +18s° +485+32  65° +265+20

9(8)= 1652411546 S +65 +115+6
Observable canonical form realization is: Controllable canonical form realization is:

_)'(1_ 0 0 —6__X1_ (20 _)'(1_ 0 1 0 _Xl_ (0
%, |=|1 0 —11|x, |+|26|u 0=/ 0 0 1]x |+ 0
X, | |0 1 —6__X3_ 6 (X3 | [-6 -11 -6 x| |1]

[ X, | X, |
y=[0 0 1] x, [+2u y=[20 26 6]x, |+2u

X, X3

"6 -10 14 We can show that the rank of I:I(4,3) is 2. So

-10 14 -10
_ 0 1 6
HE3)=1 14 10 —24] [6 5 1 0JH(43)=0 xz[ }x+{ }u

10 —34 230 I
- - y=[1 0Jx+2u

Dr. Ali Karimpour Mar 2022




Lecture 5

Realization of Proper Rational Matrices

There are many approaches to find irreducible realizations for proper
rational matrices.

1. One approach is to first find a reducible realization and then apply
the reduction procedure to reduce it to an irreducible one.

2. Inthe second approach irreducible realization will yield directly.

30
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Lecture 5

Realization of Proper Rational Matrices

Method I: Gilbert diagonal representation.

Each element of G(s) has real distinct poles.

_ G
G(s)=C dfag{is—)11}'1,---,i5—2..r}_1}8 +D=Z £ +D
k=15_i'k
Reminders
G, =CB, C, isqxp, B, isp xp G = m(s = 4)G(s)
A=diagil,, ., Al |
B

c=[|c, .. C] B=| :

B 31
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Lecture 5

Realization of Proper Rational Matrices

Example 7-7: Derive Gilbert diagonal representation for following system.

1
s+1
-1
 (s+1)s+2)

G(s)=

-1 0 O
0O -1 0
0O 0 -2
0O 0 O

2(s+4) ]

0
0
0

—4

1 200
y = X
Llo 10}

(s +1)(s + 4)
1

S+2

X+

[ 1
e =

1 2

“E=l o1 o

_I_—

P PP o

e =

o [

'00+1 00
s+2/1 1| s+4(0 O

-1 0 0 1 0
X O -1 0 [x+|{0 1y
0 0 -2 1 1

(1 2 0
X
-1 0 1

B 32
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Lecture 5

Realization of Proper Rational Matrices

Method I: Gilbert diagonal representation.
Repetitive real poles.

-2 1 0] [0 0 O] ! 1 1 1
|0 -2 1 000 s+2 (s+2f (s+2) (s+2) i _
X = X+ u 1 1 0 0 O
0 0 -2 1 000 a d g k| o : 0 0 0
0 0 0 -2| |1 23] GE)=|b e h I s+2 (s+2) (S+2)
- - - N 0 1 000
r d g k} ‘ S+2 (s+2) 1 2 3
y=/b e h 1| |x - -
0 0 0 ——
c f 1 m s+2 i
1 @ 1 B 1 N 1 N
G(s) = bjil 2 3 el 2 3|+ hifl 2 3 |1 2 3
O=frar PP 2 Priap| o 2 gy 2 g 2 0
C | i m
33

Dr. Ali Karimpour Mar 2022



Realization of Proper Rational Matrices

Method I: Gilbert diagonal representation.

Repetitive real eigenvalues.

Lecture 5

G(s)=— M +— v, +—L
(s —2) (s —A) (s —2)

rank (M ,)=1r, ———  r,Jordan block of order 3

M
rank L"’f 1} =7 ——— r,-r;Jordan block of order 2
A
rank | M, |=r, ——  r;—r,Jordan block of order 1
| M, |
WS, S, s m

34
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Lecture 5

Realization of Proper Rational Matrices

Example 7-8: Derive Gilbert diagonal representation for following system.

1
(s +1)°

1
(s +1)°

G(s)=

1 1
{_1 J —G(s)=
M,

= r(M,;)=2=7. and Mlz[é}[l 1]+[ﬂ[—1 1]

M,
— =2=r,.
{Mj) 2
-1 1 0 0] 0 0]
. 0O -1 0 0 1 1
X = X+
0O 0 -1 1 0 0
i 0O 0 0 —1_ _—1 1_

1 0 0 0
X
00 1 0

-1 1

{11

M

1
_|_
(s +1)

|

M,

2 Jordan block of order 2

0 Jordan block of order 1

35
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Lecture 5

Realization of Proper Rational Matrices

Example 7-9: Derive Gilbert diagonal representation for following system.

1 |
A1) (s +2
G(s) = (s +D7 (s +2) Gy 2[1 0} 1 {0 0} 1 {0 1}
I 1 s+D?0 0| (s+D[1 0| (s+2)|0 1
(S +1} (5 +2)_ JMI JME M
1
= r(M,)=1=1,. and M, :LJ[I 0] one Jordan block of order 2.
M, 0
=7 ” Y=1=r,,and M, = | |1 0] 1, —# = zero Jordan block of order 1.
1|
=r(M)=1 and M :H'U 1]
-1 1 0] [0 O]
. 1 0 1
x=[0 -1 0 |x+|1 O]u = x
0 I 1 36
0 0 -2 |0 1]
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Lecture 5

Realization of Proper Rational Matrices

Example 7-10: Derive Gilbert diagonal representation for following system.

1
G(s)=—
)=

s2—s7+1
1.5s +1

s —9s% g +1 —s?+1 s —s5-2

1 s 4572

s+1 —1.55s -2

=>rM,)=1l=n.and M, =1

= r{ﬂél }} =2=n.and M,=|1 -05 { Lol _2} and 7, — 7, = one Jordan block of order 3.

11 2] [0 0 o0 1—10 11 ~1
11 —2+i31.5 1 -15(+=5/0 0 0/+—0 0 0
11 2| =10 -1 T |9 -10] |10 1
M, e M, M, M,

1| |B(4,)

[1 1 -2] one Jordan block of order 4.

1

1C(:,2)lc5)

B(4,:)

0O 0

-1 0 -1 37
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Lecture 5

Realization of Proper Rational Matrices

Example 7-10: Derive Gilbert diagonal representation for following system.

-1 0 1 M, 0 0 1)1 1 -2
M,=0 0 0|=r(M,p)=3=n.andM,=|0 0 0|-1 0 -1|B(7.)
-9 -1 0 M, -1 5 3|-10 1

and 7, —r, = one Jordan block of order 2. Cty| [BO:)
AL
1 0 -1 v
M,=10 0 0 |=r( *‘; ) =3=r,. and r, —r, = zero Jordan block of order 1.
10 1 o
M,
C(:,4) C(,?) B(4,) -

0 0 11 1T -2
M,=|0 0 0})-1 0 -1| [B(7,)
0 -1 0|-1 0 1
C(:9 B(9,:)

38
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Lecture 5

Realization of Proper Rational Matrices

Example 7-10: Derive Gilbert diagonal representation for following system.

01 0 0 1 1o 0o 0]
010 0 0 0
0 1 0 0 0
0 1 1 -2
X = 0O 1 O x+ 0 0 0 |u
0 1 0 0
0 -1 0 -1
0 0 1 0 0 0
i O =1 0 1 J the prant
10 0 0 0 0 0 1 -1 Controllable
y=/11 0 0 05 0 0 0 0 |x Unubzzrvable 9
10 -10 1 5 -13 0] our Var 2022




Lecture 5

Realization of Proper Rational Matrices

Method I1: Hankel form realization of a proper G(s). Let
G(S)=H@O)+HMs " +H(2)s™ +......... .
Consider the monic least common denominator of G(s) as

w(s)=s"+o,s" +a,s" +..+a,
Then after deriving H(i) one can simply show
Hm+1)=—aH(M+i1-)—aHM+1-2)—...—a H({1) 121 (I)

Let {A, B, C and E} be a realization of G(s) then we have
G(s)=E+C(sl —A)'B=E+CBs ™" +CABs “ +CA°Bs™ +.......... .
Then {A, B, C and E } be a realization of G(s) if and only if
E =H(0) H({i+1)=CAB i=0,1,2,....

Exercise 7-3: Proof equation (1)(just PhD students) v
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Realization of proper rational transfer functions

Then {A, B, C and E } be a realization of G(s) if and only if

e Observable canonical form
MO

E =H(0)

H(i+1)=CAB i=0,1,2,...

There are different forms of realization
e Controllable canonical form

X+

H(m-1)
1L H(m) |
y=[I. 0 0 .. Ox+H(O)u

H(2)

H@1) H(2) h(_3)

X+ ..

. —a

H(m)]x+ H (0)u
—apl,
|

L p

—al, |

Dr. Ali Karimpour Mar 2022



Lecture 5

Irreducible realization of Proper Rational Matrices

Now we shall discuss in the following a method which will yield directly
Irreducible realizations. This method 1s based on the Hankel matrices.

We also define the two following Hankel matrices

[ H (1) H(2) H(m) | [ H(2) H(3) H(m+1) |
T_ H(2) H(3) H(m+1) F _ H(3) H(4) H(m+ 2)
_H(.m) H(rr.1+1) H(2r.n—1)_ _H(rr.1+1) H(m+ 2) H(2m) |

Derive SVD of T
T=Ysu#

S 0 .
E:[O 0], S=diag{0,,0,,...,0,} wthgzag,2.... .20 >0

Dr. Ali Karimpour Mar 2022



Lecture 5

Irreducible realization of Proper Rational Matrices

Derive SVD of T TV E

S0 .
E:[o 0], S=diag{0,,0,,....0,} withgzag, 2.2, >0

Let ¥, and U, be the first r column of ¥ and U, then we can write T as

ey

T= YrSUrH — },;Slfﬂsuiyrﬂ — I‘}Lr
Define the pseudo inverse of ¥ and T as

Pl=gtiy® and O'=p g7

¥

Theorem 7_-§

Consider a ¢ x p proper rational matrix Gfs) expanded as G(s) = ZT_UH #)s™ , we form T and factor

TasT = YU, by singular value decomposition Then the {4, B, C, E} defined by

A=7'70" B=UIT (first p columns of U)

y.pm

C=1 Y (first g rowsaof ¥) E = H(0)

§ 4w
leads to an irreducible realization.

43
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Irreducible realization of Proper Rational Matrices

Derive SVD of T TV E

S0 .
E:[o 0], S=diag{0,,0,,....0,} withgzag, 2.2, >0

Let ¥, and U, be the first r column of ¥ and U, then we can write T as

ey

T= YrSUrH — },;Slfﬂsuiyrﬂ — I‘}Lr
Define the pseudo inverse of ¥ and T as

Pl=gtiy® and O'=p g7

¥

Theorem 7_-§

Consider a ¢ x p proper rational matrix Gfs) expanded as G(s) = ZT_UH #)s™ , we form T and factor

TasT = YU, by singular value decomposition Then the {4, B, C, E} defined by

A=7'70" B=UIT (first p columns of U)

y.pm

C=1 Y (first g rowsaof ¥) E = H(0)

§ 4w
leads to an irreducible realization.

44
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Exercise 7-4: Proof theorem 7-8.
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Irreducible realization of Proper Rational Matrices

Example 7-11: Derive an irreducible realization for the following proper rational function.

(-2s°-3s-2 1

G(s) = (S+1)2 S
4s+5 —-35s—-5
s+1 S+1 |

Least common denominator of G_(s), IS
w(s)=s(s+1)°

-2 0 1 1|, |-2 0{, |3 0|, |-4 0|, [5 0] |-6 0
G(s) = + ST+ S+ S+ ST +. S+ S
4 -3 |1 -2 -1 2 1 -2 -1 2 1 -2 -1 2

1 1 -2 o 3 o1 Non-zerosingularvaluesof T
1 -9 1 2 1 _o| @arel0.23,5.79,0.90and0.23.
{H(l) H(2) H(T
T = =

HZ) HE) H@) -2 0 3 0 -4 0

102 1 -2 -1 2 So, r=4.
HE R HOJI 5 5 4 o 5 o0
1 2 1 2 1 -2 45
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Irreducible Realization of Proper Rational Matrices

(-0.3413 0.2545 -0.8902 -0.1621]
-0.2357 -0.5238 -0.0581 -0.0071
0.5127 -0.2078 -0.1054 -0.8264
0.2357 05238 0.0581 0.0071

-0.6738 0.2627 0.4316 -0.5392

[ -0.4003
0.1049
0.5496

1-0.2357 -0.5238 -0.0581 -0.0071

| 0.1382

[ -1.0915 0.6121 -0.8443 -0.0770 |
-0.7539 -1.2598 -0.0551 -0.0034
1.6398 -0.4999 -0.1000 -0.3923

Y T 07539 1.2598 0.0551 0.0034

-2.1553 0.6317 0.4093 -0.2560
-0.7539 -1.2598 -0.0551 -0.0034]
[ -1.2803 0.3355 1.7579 -0.4421 -2.2356 0.4421 |
A ety H -0.0471 1.4124 -0.2543 -1.3066 0.5557 1.3066
U=Ss"U " =

' 0.4652 -0.5711 -0.0927 -0.3675 -0.2797 0.3675
-0.3121 -0.2519 0.0487 -0.0896 0.2147 0.0896 | 46

-0.0196
0.5872
-0.1057

-0.1382 -0.5432 -0.3875 -0.1888
-0.6989 0.2311

0.5432

0.4905 -0.6574
-0.6022 -0.5306
-0.0978 0.1026

-0.2949 0.4522
0.3875 0.1888
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Irreducible Realization of Proper Rational Matrices

[ -0.1067 -0.0737 0.1603 0.0737 -0.2107 -0.0737]
Vi_gl2y H_ 0.1058 -0.21/8 -0.0864 0.2178 0.1092 -0.2178
- " | -0.9386 -0.0613 -0.1112 0.0613 0.4551 -0.0613
| -0.3415 -0.0149 -1.7406 0.0149 -1.1356 -0.0149]
[ -0.1251 -0.0081 0.5171 -1.3847 |
0.0328 0.2441 -0.6349 -1.1176
A - 0.1718 -0.0440 -0.1031 0.2161
Uf=u,s*=
' -0.0432 -0.2259 -0.4086 -0.3976
-0.2185 0.0961 -0.3109 0.9525
| 0.0432 0.2259 0.4086 0.3976 |
[ -1.2497 0.0369 0.2155 -0.1904 | [ -1.2803 0.3355 |
~ A 0.1588 -1.0139 -0.1604 0.0772 A -0. :
AV BUIT. - 0.0471 1.4124
-0.2227 -0.1800 -0.2888 0.8076 PP 0.4652 -0.5711
| 0.1246 -0.1181 0.1354 -0.4476 | | -0.3121 -0.2519]
A -1.0915 0.6121 -0.8443 -0.0770 -2 0
CzqumY: E:H(O):
’ -0.7539 -1.2598 -0.0551 -0.0034 —2

Exercise 7-5: Derive state space model of g(s) by theorem 7-8.
2s° +18s° +48s + 32 47

SS + 652 +11s+6 Dr. Ali Karimpour Mar 2022

g(s) =



Lecture 5

Controllability, Observability and Realization

Controllability and Observability of Linear Dynamical Equations
Output Controllability and Functional Controllability

Realization of Proper Rational Transfer Function Matrices
Model Order Reduction of Non-Minimal Representations

Model Order Reduction of Minimal Representations
Truncation Method

Residualization Method
Hankel Norm Approximation

48
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Lecture 5

Model Order Reduction of Non-Minimal Representations

Theorem 7-9 The controllability and observability of a linear time-invariant dynamical
equation are invariant under any similarity transformation.

Theorem 7-10 X=Ax+Bu
Consider the n-dimensional linear time —invariant dynamical equation y = Cx + Eu

If the controllability matrix of the dynamical equation has rank n, (where n,<n ), then
there exists an equivalence transformation

X = PX
which transform the dynamical equation to

S AT o el
X(_: O A% XC O X(_:

and the n,-dimensional sub-equation
X. =AX_ +B.U
y =C_X_ + Eu .
is controllable and has the same transfer function matrix as the first SyStem «arimpour war 2022



Lecture 5

Model Order Reduction of Non-Minimal Representations

Theorem 7-11 X = AX+ Bu
Consider the n-dimensional linear time —invariant dynamical equation y =Cx + Eu

If the observability matrix of the dynamical equation has rank n, (where n,<n ), then
there exists an equivalence transformation

X = PX
which transform the dynamical equation to

B MU E R

and the n,-dimensional sub-equation
X =AX +B.u
y=C_X_ +Eu

>

X
X

50
Is observable and has the same transfer function matrix as the first SySte i karimpour mar 2022
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Model Order Reduction of Non-Minimal Representations

Theorem 7-12 (Canonical decomposition theorem) X = AX + Bu
Consider the n-dimensional linear time —invariant dynamical equation y = Cx + Eu
There exists an equivalence transformation
X = PX
which transform the dynamical equation to
);(C(j ACG A12 A13 _)_(CG_ _gca_ __)_(CG_

Xco =1 0 'Kco Kz3 Xeo |+ Bco u y:[O Cco C(—;_ Xo |+ EU
);(E_ 0 0 'KE_)_(C_ _O_ _)_(5_
and the reduced dimensional sub-equation _ __
| A%, +B.u
y = CCO X, + EU

IS observable and controllable and has the same transfer function matrix as the first
system. 51
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Controllability, Observability and Realization

Controllability and Observability of Linear Dynamical Equations
Output Controllability and Functional Controllability

Realization of Proper Rational Transfer Function Matrices
Model Order Reduction of Non-Minimal Representations

Model Order Reduction of Minimal Representations
Truncation Method
Residualization Method
Hankel Norm Approximation

52
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Model Order Reduction of Minimal Representations

Consider following system

x1 [A ATx] I8
0 A0+ 80 NENNMEH!
y(t) = Cx(t) + Du(t) > _ X
y=|[C, Cz]{ 1}+Eu

X
There are several model order reduction procedure:

2

e Truncation Method.

 Residualization Method (Singular Perturbation).

Hankel norm truncation Method.

Hankel norm residualization Method (Singular Perturbation).

53
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Model Order Reduction of Minimal Representations

Truncation Method

Consider following system

* Truncation Method.

A ATx] [B
{Aﬂ AJLJ{BJU

Let x,=0

i X
C, CZ]{ 1} Eu

X

2

X, = A X, + B
y=C X +Eu

High frequency response is not changed by truncation method.

G(0) =G (0)=E

* Resldualization Method (Singular Perturbation). et x, =0
X =(A; - A12A22_1A21)X1 +(B, - A12A22_182)u

y=(C,—C,A, Ay)X +(E-C,A;, 'B,)u
Exercise 7-6: Show that steady state behavior is not changed by

residualization method

G(0) =G, (0)

o4
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Model Order Reduction of Minimal Representations
Truncation Method

Truncation procedure

A, 0 0 b/ A 0 b/
|10 4 0 b, . 0 0 b,
X = X+ U Truncation Method Xr — Xr +

0 0 .. 4] |b 0 0 . A b
y=[c, ¢, ¢, [x+Eu y=[c, ¢, ¢, [x+Eu

A, Ay seny A, @re dominant polesand othersare insignificant.

o ch'

G(5) -G, (5)= > =

Error is Error value related to:

55
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Model Order Reduction of Minimal Representations
Hankel Norm Approximation

Consider following system X = AX + Bu
y=Cx+Eu

Controllability gramians and observability gramians are:
P=| e"BBTe"dt

Q=["e*'CTCeMdt

J0

Minimum energy required to steer the state of system from O to X, is:
2 _
ol =x7Px,
Maximum energy produced by observing the output of the system with initial state
X IS: ,
T
HYH = Xo QX 56
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Model Order Reduction of Minimal Representations
Hankel Norm Approximation

Consider following system X = AX + Bu
y=Cx+Eu

Controllability gramians and observability gramians are changed by similarity
transformation.

A balanced realization is a realization with following property.
P=Q=2= diag{al o, .. Gn} O, =20,,; Hankelsingular values

If o, >>o,,, Kissuitable value for reduced order realization.

x1 [A AJx].[B
X(t) = Ax(t)+Bu(t) A balanced realizgtion L-(z - {Al Aj{xj + {Bju
y(t) =Cx(t)+Du(t) ) )
Hankel norm truncation method. y=[C, C, ]L(l}r Eu N

2

Hankel norm residualization Method Dr. Ali Karimpour Mar 2022
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Model Order Reduction of Minimal Representations
Hankel Norm Approximation

Example 7-12: Consider following system. o s) L 1
B 541 24544
a) Derive areduced 1%t order system by Hankel truncation method.
b) Derive areduced 15t order system by Hankel residualization method.
c) Draw Bode plot of real system and all reduced orders in the same plot.

d) Draw step response of real system and all reduced orders in the same plot.

"0 1 0] o —0.8741 -1.1929 0343877 [ 1.1176 ]
x=| 0 0 1 |x+|0u —x=| 1.1929 -0.8161 1.5679 |x+|—0.5585 |u
-4 -5 -2| |1 03438 -1.5679 —0.3098| |-0.2510

y=[5 2 1Jx y=[1.1176 05585 —0.2510]x
Matlab: system=pck(A,B,C,D); sysbal(system)

% = —0.8741x +1.1176u 1.249
Hankel truncation method y=1.1176x =0,(s)= s+ 08741

% = —1.4754x +1.452u  —0.17895+1.844

; - . — S) =
Hankel residualization method y =1.452x —0.1789u g, (s) S+14754



Amplitude

:I:.H'] p - | ,L,'j | < | ]. ght (S):

Lecture 5

Model Order Reduction of Minimal Representations
Hankel Norm Approximation

Example 7-13: Consider following system.

I ! 1.249  —0.1789s +1.844

S) =
s+0.8741 9. (3) S+1.4754

Bode Diagram
T =IIIIII| T T IIIIII| T T IIIII:
Real_sy=stem

Step Response
p IIIl' 20

1.6

Hankel_trunc | _|
Hankel_resid

Real_system
Hankel_trunc |
Hankel_resid A0+

M agnitude (dB)
3
[
=

FPhase (deg)
=

1 | 1

6 8 10 1z 180 & L1l
] = (i 1 2 3

Time (seconds) 10 10 10 10 10 107

Frequency (rad/s)
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Lecture 5

Exercises

Exercise 7-1: Mentioned in the lecture. Exercise 7-2: Mentioned in the lecture.
Exercise 7-3: Mentioned in the lecture(just for PhD student).

Exercise 7-4: Mentioned in the lecture. Exercise 7-5: Mentioned in the lecture.

Exercise 7-6: Mentioned in the lecture.

Exercise 7-7: Check the contollability and observability of following systems.

. )
s+ 35+ 2 3+250 35+ 6 o 4 3 >
a. P(s)= sl s+2:1 .0 L £=[0 20 16 54| 3
0 s+210 0 0 —25 -20| |o
s+ 1 0 ‘0 0 y=[-1 3 o
Exercise 7-8: Find irreducible es
. . . 2
realization for following systems. a [EFEFV+H )| %43 sl +2s+2
¢ +est+2 (s+D(s+2)  s(s+1)°
| s(s+ 1) (s+4)

60
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Exercises

Exercise 7-9: Find a reduced order(2" order) for following
System:

a) By Hankel truncation method. G(5)
b) By Hankel residualization method.

c) Draw Bode plot of real system and all reduced orders in the same plot.

d) Draw step response of real system and all reduced orders in the same plot.

10)
(54 1)(s% + 5+ 10)

61
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