طرح درس (براساس سرفصل)

طرح درس (براساس سرفصل)
# عنوان توضیحات
1 جایگاه درس در برنامه درسی دوره نخستین برخورد دانشجویان با مفهوم مصالح در دانشگاه و نیاز به فهم چند لایه ای اهمیت مصالح از اقتصاد تا محیط زیست
2 هدف کلی 1. درک خواص مواد: تجهیز دانشجویان با دانش مربوط به مواد مختلف مورد استفاده در معماری، شامل خواص فیزیکی، شیمیایی و مکانیکی آن‌ها. 2. کاربرد در طراحی: توانمندسازی دانشجویان برای به‌کارگیری دانش مواد در طراحی معماری، با در نظر گرفتن پایداری، زیبایی‌شناسی و عملکرد. 3. ارزیابی انتقادی: پرورش توانایی ارزیابی انتقادی مواد برای کاربردهای خاص معماری.
3 شایستگی های پایه 1. شناسایی مواد: شناسایی و دسته‌بندی مواد مختلف ساختمانی. 2. تحلیل عملکرد: ارزیابی ویژگی‌های عملکردی مواد در شرایط محیطی مختلف. 3. آگاهی از پایداری: درک تأثیرات زیست‌محیطی انتخاب مواد و ترویج شیوه‌های پایدار.
4 اهداف یادگیری 1. کسب دانش: به دست آوردن درک جامع از مواد سنتی و نوآورانه. 2. کاربرد عملی: توسعه مهارت‌ها برای انتخاب مواد مناسب برای پروژه‌های خاص معماری. 3. حل مسئله: تقویت مهارت‌های تفکر انتقادی و حل مسئله مرتبط با انتخاب و کاربرد مواد.
5 روش تدریس 1. درس‌ها و سمینارها: ارائه دانش پایه از طریق ارائه‌های ساختاریافته و بحث‌ها. 2. کارگاه‌های عملی: درگیر کردن دانشجویان در جلسات عملی برای بررسی خواص و کاربردهای مواد. 3. مطالعات موردی: تحلیل پروژه‌های واقعی معماری برای درک انتخاب‌های مواد و پیامدهای آن‌ها. 4. پروژه‌های گروهی: تشویق همکاری و کاربرد دانش در وظایف گروهی.
6 وظایف دانشجو 1. شرکت فعال: شرکت در بحث‌های کلاسی، کارگاه‌ها و فعالیت‌های گروهی. 2. تحقیق و مطالعه: انجام تحقیقات مستقل درباره مواد و به‌روز ماندن در روندهای صنعتی. 3. وظایف و پروژه‌ها: تکمیل تمام وظایف و پروژه‌ها به‌موقع، با نشان دادن درک و کاربرد محتوای دوره. 4. همکاری: کار مؤثر با همتایان در محیط‌های گروهی و مشارکت در یادگیری جمعی.
7 منبع • Nakanishi, E. Y., Poulin, P., Blanchet, P., Dubuis, M., Drouin, M., Rhéaume, C., & Goupil-Sormany, I. (2024). A systematic review of the implications of construction materials on occupants’ physical and psychological health. Building and Environment, 257, 111527. https://doi.org/10.1016/j.buildenv.2024.111527 • Pahlavan, P., Manzi, S., Rodriguez-Estrada, M. T., & Bignozzi, M. C. (2017). Valorization of spent cooking oils in hydrophobic waste-based lime mortars for restorative rendering applications. Construction and Building Materials, 146, 199–209. • Al-Obaidi, K. M., Azzam Ismail, M., Hussein, H., & Abdul Rahman, A. M. (2017). Biomimetic building skins: An adaptive approach. Renewable and Sustainable Energy Reviews, 79(January), 1472–1491. https://doi.org/10.1016/j.rser.2017.05.028 • Architecture, C. (2005). Constructing Architecture. In Constructing Architecture. https://doi.org/10.1007/3-7643-7666-x • Brischke, C., & Humar, M. (2017). Performance of the bio-based materials. In Performance of Bio-based Building Materials. https://doi.org/10.1016/B978-0-08-100982-6.00005-7 • Casini, M. (2016). Smart buildings advanced materials and nanotechnology to improve energy-efficiency and environmental performance (1st ed.). Woodhead Publishing. • Curling, S. (2017). Test methods for bio-based building materials. In Performance of Bio-based Building Materials. https://doi.org/10.1016/B978-0-08-100982-6.00007-0 • Jalil, W. D. A. (2020). Smart textiles for the architectural façade. IOP Conference Series: Materials Science and Engineering, 737(1). https://doi.org/10.1088/1757-899X/737/1/012078 • Köhler-Hammer, C., Knippers, J., & Hammer, M. R. (2016). Bio-based plastics for building facades. Start-Up Creation: The Smart Eco-Efficient Built Environment, 329–346. https://doi.org/10.1016/B978-0-08-100546-0.00013-3 • Kuru, A., Oldfield, P., Bonser, S., & Fiorito, F. (2019). Biomimetic adaptive building skins: Energy and environmental regulation in buildings. Energy and Buildings, 205, 109544. https://doi.org/10.1016/j.enbuild.2019.109544 • LYONS, A. (2007). Materials for Architects & Builders. In The effects of brief mindfulness intervention on acute pain experience: An examination of individual difference (Vol. 1). • Mohamed, A. S. Y. (2017). Smart Materials Innovative Technologies in architecture; Towards Innovative design paradigm. Energy Procedia, 115, 139–154. https://doi.org/10.1016/j.egypro.2017.05.014 • Ritter, A. (2013). Architectural applications of smart textiles. In Multidisciplinary Know-How for Smart-Textiles Developers (Vol. 1, Issue c). Woodhead Publishing Limited. https://doi.org/10.1533/9780857093530.3.468 • Sandak, A., Sandak, J., Brzezicki, M., & Kutnar, A. (2019a). Designing building skins with biomaterials. In Environmental Footprints and Eco-Design of Products and Processes. https://doi.org/10.1007/978-981-13-3747-5_3 • Sandak, A., Sandak, J., Brzezicki, M., & Kutnar, A. (2019b). Portfolio of bio-based façade materials. In Environmental Footprints and Eco-Design of Products and Processes. https://doi.org/10.1007/978-981-13-3747-5_6 • Schleicher, S., Lienhard, J., Poppinga, S., Speck, T., & Knippers, J. (2015). A methodology for transferring principles of plant movements to elastic systems in architecture. CAD Computer Aided Design, 60, 105–117. https://doi.org/10.1016/j.cad.2014.01.005 • گلابچی، محمود؛ تقی زاده، کتایون ؛ سروش نیا، احسان. (1398)، نانو فناوری در معماری و مهندسی ساختمان، دانشگاه تهران، تهران، ایران. • فروتنی، سام؛ فروتنی، سیروس. (1396)، مصالح و ساختمان. انتشارات روزنه. تهران، ایران
8 فایل Pdf File