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y 
The radius of gyration of 
an area A with respect to 

the x  axis is defined as 

the distance kx, where 

Ix = kx A. With similar 

definitions for the radii of 

gyration of A with respect 

to the y axis and with 

respect to O, we have 

kx = 

x 

kx 
2 

O 

Ix 
A ky = 

Iy 
A 

kO = 
JO 
A 

A 
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Determine the moment of Inertia about the x-axis 
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The polar moment of inertia of the area is JC=23 in4 about the z’ axis passing 

through the centroid  C. If the moment of inertia about the y’ axis is 5 in4, the 

moment of inertia about the x axis is 40 in4, determine the area A. 
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The polar moment of inertia of the area is JC=23 in4 about the z’ axis passing 

through the centroid  C. If the moment of inertia about the y’ axis is 5 in4, the 

moment of inertia about the x axis is 40 in4, determine the area A. 
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Determine the moment of inertia of the beam’s cross-sectional area about 

the x’ axis. Neglect the size of the corner welds at A and B for the 

calculation , y=154.4 mm 
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Segment A dy Ix' Ady
2
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4
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2
x yI I Ad′ = +

( ) ( )2
x x yi i

I I I Ad′ ′= = +∑ ∑
6 495 9 (10 ) mmx'I .   =

Segment A dy Ix' Ady
2
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(mm
2
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4
) (mm

4
) (mm

4
)

1 150(15) 146.9 150(15
3
)/12 48.554(10

6
) 48.596(10

6
)

2

3

Segment A dy Ix' Ady
2

Ix'

(mm
2
) (mm) (mm

4
) (mm

4
) (mm

4
)

1 150(15) 146.9 150(15
3
)/12 48.554(10

6
) 48.596(10

6
)

2 15(150) 64.4 15(150
3
)/12 9.332(10

6
) 13.550(10

6
)
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4
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1 150(15) 146.9 150(15
3
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6
) 48.596(10

6
)

2 15(150) 64.4 15(150
3
)/12 9.332(10

6
) 13.550(10

6
)

3 π(50)
2

60.6 π(50
4
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6
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6
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y 

x’ 

y’ 

O 

θ 

The product of inertia of an  
area A is defined as 

Ixy =   xy dA 

Ixy = 0 if the area A  is  

symmetrical with respect to 

either or both coordinate 

axes. 

The parallel-axis theorem for products of  inertia  is 

Ixy = Ix’y’ + xyA 

where Ix’y’  is the product of inertia of  the area with respect to  

the centroidal axes x’ and y’ which are parallel to  the x and y 

axes and x and y are the coordinates of the centroid of the area. 
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The relations between the 

moments and products of inertia  

in the primed and un-primed 

coordinate systems (assuming 

the coordinate axes are rotated  

counterclockwise through an  

angle θ ) are 

Ix’ =                +                          - Ixy sin 2θ 
Ix + Iy 

2 
Ix - Iy 

2 
cos 2θ 

Iy’ =                -                          + Ixy sin 2θ 
Ix + Iy 

2 
Ix - Iy 

2 
cos 2θ 

Ix’y’ =              sin 2θ + Ixy cos 2θ 
Ix - Iy 

2 
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x 

y 

x’ 

y’ 

O 

θ 

The principal axes of  the area  
about O  are the two axes  

perpendicular to each other, with  

respect to which the moments of  

inertia are maximum and minimum. 

The angles θ at which these occur 

are denoted as θm , obtained from 

tan 2θm = − 
2 Ixy  
Ix - Iy 

 + Ixy 

Ix + Iy 
2 

Ix - Iy 
2 I max, min = 

The corresponding maximum and minimum values of I  are  

called the principal moments of inertia  of the area about O.  

They are given by 

2 + _ 
2 
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Ix ,Iy 

Imax 

Imin 

C 

X’ 

X 

Y’ 

Y 

Iy’ 

Iy 

-Ixy 

-Ix’y’ 

A 

B 

Ixy Ix 

Ix’ 

Ixy 

Ix’y’ 

O 

2θ 

2θm 

x 

y 

x’ 

y’ 

a 

b 

θ 
θm 

O 

Transformation 

of the moments 

and products of 

inertia of an area 

under a rotation of 

axes can be rep- 

resented graphically  

by drawing Mohr’s circle.  An important property of Mohr’s  

circle is that an angle θ on the cross section being considered  

becomes 2θ on Mohr’s circle. 
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Determine the product of inertia of the shaded portion of the parabola 

with respect to the x and y axes. 
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Determine the product of inertia of the shaded area with respect to the x 

and y axes 
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Determine the product of inertia of the shaded area with respect to the x 

and y axes that have their origin located at the centroid C. 
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( ) 4

i
ixyxy    in0.36II == ∑

1 

2 

3 

Segment A dx dy Ixy'

(in
2
) (in) (in) (in

4
)

1

2

3

Segment A dx dy Ixy'

(in
2
) (in) (in) (in

4
)

1 3(1) 2 3 18

2

3

Segment A dx dy Ixy'

(in
2
) (in) (in) (in

4
)

1 3(1) 2 3 18

2 7(1) 0 0 0

3

Segment A dx dy Ixy'

(in
2
) (in) (in) (in

4
)

1 3(1) 2 3 18

2 7(1) 0 0 0

3 3(1) -2 -3 18
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units:   (mass)(length)2 

  § 9.11-9.15  Mass Moments of Inertia 

      

  I = r
2

m

∫ dm = r
2ρ

m

∫ dV = ρ r
2

m

∫ dV

if ρ=constant
� � � � � 

  

The mass moment of inertia is a measure of a body’s 
“resistance” to angular acceleration 

M=Iα 
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x 
y 

z 

r 

dm 

x 
y 

z 

r 

dm 

Applications: 
 

Iz = ∫ r2 dm = ∫ (x2+y2) dm 
 
 
 
 
 

Iy = ∫ r2 dm = ∫ (x2+z2) dm 
 

similarly ... 

Ix = ∫ r2 dm = ∫ (y2+z2) dm 

9 - ٣٨ 

Parallel axis theorem: 
 

I=IG+md2 
 

 IG = moment of inertia about mass center G 
m = mass of body 

d = perpendicular distance between parallel axes. 
 

Radius of gyration, k: 
 

I = mk2  or  k =   I/m 

Composite bodies: 
 

I=∑(IG+md2) 
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For homogeneous 
thin flat plate bodies, 
the mass moment of 

inertia is directly 
related to the area 
moment of inertia! 

x

y

z

G
b

c

t

(t<<b & c)       

                      area moments

  Iz
area =

1
12

cb3      ⇐ Iz
area = y2∫ dA

  Iy
area =

1
12

bc3       Jc
area =

1
12

bc b2 + c2( )
                     mass moments

  Iz
mass = y

2
dm
ρtdA
�∫

          = ρt y2∫ dA  (ρt constant)

          = ρt Iz
area =

ρt

12
cb3         =

m

12
b2

  also   Iy
mass = ρt Iy

area =
ρt

12
bc3

           IG
mass = ρt Jc

area =
ρt

12
bc b2 + c2( )

9 - ٤٠ 

Mass Moments of Inertia for Solids of Revolution 
z

y y

x

y

z

x x

r

z

 shell element 
 

dV = 2πrz dr 
dIz = r2 dm 
     = r2 ρ dV 

  disk element 
 

dV = πr2 dz 
dIz = (r2 /2) dm 
     = (r2 /2) ρ dV 

Usually, we will 
take r=x or r=y 
(choice depends 
on how the eqn. 

for the generating 
curve is given). 
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∫=
m

2

GG dmrI

G mass ofcenter  theabout  defined usually

positive always

∫=
m

2
dmrI
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∫∫∫ ===
V

2

V

2

m

2
dVrρρ dVrdmrI
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r1 

r2 

∆m1 

∆m2 

r3 
∆m3 

A 

A’ 
Moments of inertia of mass are 

encountered in dynamics. They 

involve the rotation of a rigid body 

about an axis. The mass moment  

of inertia of a body with respect 

to an axis AA’  is defined as 

I = ∫r 2dm 

where r  is the distance from AA’ 
to the element of mass. 

The radius of gyration of the body is defined as 

k = 
I 
m 
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The moments of inertia of mass with respect to the coordinate 

axes are 

Ix = ∫(y 2 + z 2 ) dm 

Iy = ∫(z 2 + x 2 ) dm 

Iz = ∫(x 2 + y 2 ) dm 

A 

A’ 

B 

B’ 

d 

G 

The parallel-axis theorem also 

 applies to mass moments of inertia. 

I = I  + d 2m 
I  is the mass moment of inertia with  

respect to the centroidal BB’ axis,  

which is parallel to the AA’ axis. The 

mass of the body is m. 
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A 

A’ 

B 

B’ 

C 

C’ 

t 

b 

a 

A 

A’ 

B 

B’ 

C 

C’ 

t 

r 

The moments of inertia of thin plates 

can be readily obtained from the 

moments of inertia of their areas. For  

a rectangular plate, the moments of 

inertia are 

IAA’ =      ma 2               IBB’ =      mb 2 1 
12 

1 
12 

ICC’ = IAA’ + IBB’ =      m (a 2 +  b 2) 1 
12 

For a circular plate they are 

IAA’ = IBB’ =      mr 2 1 
4 

ICC’ = IAA’ + IBB’ =     mr 2 1 
2 
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x 

y 

z 

O 

p 

dm 

r 

λ 
θ 

L 
The moment of inertia of a body with 
respect to an arbitrary axis OL can 

be determined. The components of 

the unit vector λ along line OL are λx , 

λy , and λz . 

The products of inertia are 

Ixy =∫ xy dm Iyz = ∫yz dm 

Izx = ∫ zx dm 

IOL = Ix λ x +  Iy λ y  +  Iz λ z   - 2 Ixy λ x λ y  
          - 2 Iyz λ y λ z - 2 Izx λ z λ x 

The moment of inertia of the body with respect to OL  is 

2            2                  2 
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By plotting a point Q  along each axis 

OL at a distance OQ = 1/  IOL  from O, 

we obtain the ellipsoid of inertia of 

a body. The principal axes x’, y’, and 

z’ of this ellipsoid are the principal 

axes of inertia of the body, that is 

each product of inertia is zero, and 

we express IOL as 

IOL = Ix’ λ x’ +  Iy’ λ y’  +  Iz’ λ z’ 
2             2                     2 

x 

y 

O 

z 

x’ 

y’ 

z’ 

where Ix’ , Iy’ , Iz’  are the principal moments of inertia of the 

body at O . 
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The principal axes of inertia are determined by solving the 

cubic equation 

x 

y 

O 

z 

x’ 
y’ 

z’ 

K 3 - (Ix + Iy + Iz)K 2 + (Ix Iy + Iy Iz + Iz Ix - Ixy - Iyz - Ixz 
)K 
- (Ix Iy Iz - Ix Iyz - Iy Izx - Iz Ixy - 2 Ixy Iyz Izx ) = 0 

2          2          2 

2                2               2 

The roots K1, K2 , and K3 of this 

equation are the principal moments 

of inertia. The direction cosines of 

the principal axis corresponding  

to each root are determined by 

using  Eq. (9.54) and the identity 

λ x +  λ y  +  λ z  = 1 
2        2              2 
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Determine the mass moment of inertia Iy for the slender rod. The rod’s 

density ρ and cross-sectional area A are constant. Express the results in 

terms of the rod’s total mass m. 
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dx

x
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xρAI

dxxρAI

ρAdxxI
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=
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∫
∫
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dx 
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The solid is formed by revolving the shaded area around the x axis. 

Determine the radius of gyration kx. The density of the material is ρ=5 

Mg/m3. 
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x dx

yr =
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x dx 

r=y 

( )

( )[ ]( )

( )dxxxdI

xdxxdI

dmydI

dxxdm

dxydm

dVdm

x

x

x

125.
2

5.015.01
2
1
2
1

5.01

2

2

2

+−=

−−=

=

−=
=
=

ρπ

ρπ

ρπ
ρπ
ρ
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x dx 

r=y 

( )

( )
ρπm

x
.

xρπm

dxx.ρπm

dmm

m

I
k

m

x
x

=

−=

−=

=

=

∫

∫

2
2

0

2

0

2
50

501
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x dx 

r=y 

( )

( )
ρπ.I

x
xx.ρπ

I

dxxx.
ρπ

I

dII

x

x

x

xx

3333
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25
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∫
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x dx 

r=y 

 m.k

ρπ

ρπ.

m

I
k

x

x
x

577

3333

=

==
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Determine the moment of inertia of the wheel about an axis which is 

perpendicular to the page and passes through the center of mass G. The 

material has a specific weight γ = 90 lb/ft3. 
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3 

2 2 

3 
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1
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x

y

o

r

dA
A

x~

y
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  § 9.1-9.5 Area  moments of inertia 

The moments of inertia of an area are defined to 
be: 

Jo is the polar moment of 
inertia.  Since  r2=x2+y2,     

J0=Ix+Iy 

∫
∫
∫
∫

=

=

=

=

A
xy

A
o

A
y

A
x

dAyxI

dArJ

dAxI

dAyI

 ~~  

~   

~   

~  

2

2

2

skim 
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Radius of Gyration of an Area 
The radius of gyration of an area is defined to be: 

  
  kx =

Ix

A
      ky =

Iy

A
      ko =

Jo

A

The radius of gyration has units of length.  For a 
complicated object (one that doesn’t lend itself to easy 
integration), it may be easier to specify this radius.  It is 
equivalent to the whole area existing at a single distance, 
k, from the axis. a) 

b) 

k k 
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ỹ
x

y

x

y

x

y
w

dy

dx

h
ỹ

Important Subtlety in Evaluating Moments of Inertia using 
single integrals 

OK because 
entire area 

increment has 
the same  

y-distance. 

OK because 
entire area 

increment has 
the same  

y-distance. 

Consider evaluation of Ix: Ix = ∫  y 2dA 

double integral single integral single integral 

Ix = ∫ y 2 dxdy       Ix = ∫ y 2 w(y) dy  Ix =∫ y 2 h(x) dx     
~ ~ ~ 

NO GOOD 
because y-distance is 
different throughout 

the area slice. 
( y2 dxdy ≠ y2 hdx ) ~ ~ 

~ 
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So, for this lecture (more next time): 
 

•  when computing Ix we must use 
an area slice parallel to the x-axis, 
and 
 

•  when computing Iy we must use 
an area slice parallel to the y-axis. 
 
In §9.6 we will use the parallel axis 
theorem to remove this restriction. 

x

y

y

dy

dx

ỹ

x

x̃

  
Ix = ˜ y 

2∫ dA

  
Iy = ˜ x 

2∫ dA
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  § 9.6-9.7  Parallel axis theorem; Composite Areas 

y

x

y

x

x

y

o

d

dA

C

xd

yd

Relations between moments of inertia referred to parallel axes 

  

  Ix = I ′ x + Ady
2

  Iy = I ′ y + Adx
2

  Jo = J c + Ad2

Ix’    Iy’   Jc = moments about centroidal axes 
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proof: 

    

  Ix = y2dA
A

∫ = ( ′ y + dy)
2 dA

A

∫

     = ′ y 
2
dA

A∫
I ′ x 

� � � � � 

+ 2dy
′ y dA

A∫
0

� � � 

+ dy

2
dA

A∫
A

�

   

     = I ′ x + Ady

2

What is the parallel axis theorem good for? 
 

In practice, it will often be convenient for us to compute 
moments of inertia about centroidal axes.  Using the 

parallel axis theorem, we can then express moments of 
inertia about other axes that are needed. 
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x

y
dx

h
ỹ

To evaluate  Ix  use 
parallel axis theorem 

applied to the area 
slice: 

  

Ix = dIx∫

From ||  axis theorem :    dIx = dI x' + ˜ y 2dA

    where  ˜ y   is the distance to the centroid of  dA.    

Ix = dI x '∫ + ˜ y 2dA∫

=
1

12
h3dx∫ +

h

2
 
 
  

 
 

2
hdx∫
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  Ix = I ′ x + Ady
2( )

i
i=1

n

∑        Iy = I ′ y + Adx
2( )

i=1

n

∑
i

  Jo = J c + Ad
2( )

i=1

n

∑
i

n = # of composite areas 
 

Ix’    Iy’   Jc = moments of area i about centroidal axes 
of area i  (easy to get for simple shapes) 

  Moments of Inertia for composite areas 
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Symmetric Member in Pure Bending 

∫ =−=

∫ ==
∫ ==

MdAyM

dAzM

dAF

xz

xy

xx

σ

σ

σ

0

0

• These requirements may be applied to the sums 
of the components and moments of the statically 
indeterminate elementary internal forces. 

• Internal forces in any cross section are equivalent 
to a couple.  The moment of the couple is the 
section bending moment. 

• From statics, a couple M consists of two equal 
and opposite forces. 

• The sum of the components of the forces in any 
direction is zero. 

• The moment is the same about any axis 
perpendicular to the plane of the couple and 
zero about any axis contained in the plane. 
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Bending Deformations 

Beam with a plane of symmetry in pure 
bending: 

• member remains symmetric 

• bends uniformly to form a circular arc 

• cross-sectional plane passes through arc center 
and remains planar 

• length of top decreases and length of bottom 
increases 

• a neutral surface must exist that is parallel to the 
upper and lower surfaces and for which the length 
does not change 

• stresses and strains are negative (compressive) 
above the neutral plane and positive (tension) 
below it 

© 2002 The McGraw-Hill Companies, Inc. All rights reserved.  
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Strain Due to Bending 

Consider a beam segment of length L. 

After deformation, the length of the neutral 
surface remains L.  At other sections, 

( )
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mx

m
m
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y
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ρ
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εε

ερ
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ρρθ
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or        

linearly) ries(strain va     
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Stress Due to Bending 

• For a linearly elastic material, 

linearly)  varies(stressm

mxx

c

y

E
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y
E
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εεσ
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−==

• For static equilibrium, 

∫
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0

First moment with respect to neutral 
plane is zero.  Therefore, the neutral 
surface must pass through the 
section centroid. 

• For static equilibrium, 
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Chapter 9   DISTRIBUTED FORCES:  

MOMENTS OF INERTIA 

x 

y 

y 

dx 

x 

The rectangular moments of 
inertia Ix and Iy of an area are 

defined as 

Ix =   y 2dA       Iy =   x 2dA ∫  ∫  

These computations are reduced to single integrations by 

choosing dA to be a thin strip parallel to one of the coordinate 

axes. The result is 

dIx =      y 3dx       dIy =   x 2ydx 1 
3 
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y 

x 

The polar moment of 
inertia of an area A with 

respect to the pole O  is 

defined as 

JO =   r 2dA ∫  

The distance from O to the element of area dA is r. Observing 

that r 2 =x 2 + y 2 , we established the relation 

  

JO =  Ix + Iy 

x 

y r 

A 

dA 

O 
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The parallel-axis theorem 
states that the moment of 

inertia I  of an area with 

respect to any given axis 

AA’ is equal to the moment 

of inertia I  of the area with 

respect to the centroidal 

I = I + Ad 2 

A 

B’ 

A’ 

B 

d 

c 

axis BB’ that is parallel to AA’ plus the product of  the area A  
and the square of the distance d between the two axes: 

This expression can also be used to determine I  when the  

moment of inertia with respect to AA’ is known: 

I = I - Ad 2 
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A similar theorem can be 

used with the polar moment 

of  inertia. The polar 

moment of inertia 

JO of an area about O and 

the polar moment of inertia 

JC of the area about its 

JO = JC + Ad 2 

d 

c 

The parallel-axis theorem is used very effectively to compute  

the moment of inertia of a composite area  with respect to a  

given axis. 

o 

centroid are related to the distance d  between points C and O 

by the relationship 
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Determine the moment of Inertia about the y-axis 
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8-x y 

dy 
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 He who would like to have something he never had, 
 will have to do something well, that he hasn’t done yet 


