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Moment of Inertia

y I = ;[ dl, = J; yidA

. 1,=dl, =[x
A A

Polar Moment of Inertia

r/ y J,=[as, =[raa
A A

" =I(x2+y2)dA=Ix+Iy
A

Always Positive
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(The centroid of the second moment of an area)
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The radius of gyration of
| A | an area A with respect to
the x axis is defined as
the distance k,, where
: I.= k2 A. With similar
definitions for the radii of
gyration of A with respect
19 X to the y axis and with
respect to O, we have

(S gl ez iS5 (50,5

Determine the moment of Inertia about the x-axis

h \
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Need the parallel axis theorem
for the differential element

dl .=dI_+y'’ dA
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Moments of Inertia
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Moments of Inertia
_

h
y Let u=h—;x, then

i du=| " \ix and ax=[ -2 \au
b h

alsou=h@x=0 and
u= 0 @x=>b

e
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The polar moment of inertia of the area is J.=23 in* about the z’ axis passing
through the centroid C. If the moment of inertia about the y’ axis is 5 in, the
moment of inertia about the x axis is 40 in%, determine the area A.

'

Y
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The polar moment of inertia of the area is J.=23 in* about the z’ axis passing
through the centroid C. If the moment of inertia about the y’ axis is 5 in, the
moment of inertia about the x axis is 40 in%, determine the area A.
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Je=1,.+1,
and
I.=J.-1,

I,=23-5=18 in*
using the parallel axis theorem

I,=1,+4d

A= (Ix_zlx’)
d}’

e (403—218)

A=2.44 in?
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Determine the moment of inertia of the beam’s cross-sectional area about
the x’ axis. Neglect the size of the corner welds at A and B for the
calculation , y=154.4 mm

15 mm |

150 mm

//
"\50 nk/
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15 mm |

150 mm
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50 mm——~

15 mm

[.=1+Ad]’
I&Ow|w6|ﬁ

x! :Z(]x')i :Z(I__'_Adyz)i

[.,=95.9(10") mm*

150 mm

|

150(15) 150(15%)/12 | 48.554(10% | 48.596(10°
15(150) 64.4 15(150°)/12 9.332(10°%) 13.550(10°)
n(50)° 60.6 n(50%)/4 28.843(10%) | 33.751(10°%)
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, Y The product of inertia of an
Y area Ais defined as
X’
0 [Xy = _[ xy dA
o * I,=0ifthe area A is
symmetrical with respect to

either or both coordinate
axes.

The parallel-axis theorem for products of inertia is
]Xy - ]X ’y’+ XY. A

where Z,,y, is the product of inertia of the area with respect to
the centroidal axes x’and y’which are parallel to the xand y

axes and x and y are the coordinates of the centroid of the area.

(5 el oo 1SS 5 555105

s 4 The relations between the
Y moments and products of inertia
X’ in the primed and un-primed
0 coordinate systems (assuming
the coordinate axes are rotated
o ¥ counterclockwise through an
angle 0 ) are
[+ 1 I -1
L ) 6 1, sin 20
[ +1 I -1
- X "y . S 4 CcOS 29 :
1, 3 3 + 1, sin 20

Il -1
L= "5 sin20+ 1 cos 20
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, ¥ The principal axes of the area
about O are the two axes

x’ perpendicular to each other, with

0 respect to which the moments of

19) X The angles 0 at which these occur
are denoted as 0,,, obtained from

21

__
tan 20, = I-1,

The corresponding maximum and minimum values of / are

called the principal moments of inertia of the area about O.
They are given by

2
7 AT <%L[X']> +1,

max, min 2 — 2 Xy

(5 el oo 1SS 5 555105

inertia are maximum and minimum.

1

min

Transformation -I,y
of the moments -1y I
and products of
inertia of an area
under a rotation of —I—
axes can be rep- — L L.

resented graphically

by drawing Mohr’s circle. An important property of Mohr’s
circle is that an angle 0 on the cross section being considered
becomes 26 on Mohr’s circle.
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Determine the product of inertia of the shaded portion of the parabola

with respect to the x and y axes.

¥
100 mmﬂ
A
200 mm
y= sz
50
X
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Moments of Inertia

."“‘

100 mmﬂ—i

200
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Moments of Inertia
1
x = x/EyZ and
1
dA = 2xdy = 2~/50 y2dy
y ; = 0
=100 mm ~ ; =y

al,, =dl ., +dAdxy
L
ar, =dl ., +{V50y2dy](0)(y)

dl ., =0 Theref ore
I,=[dl, =0
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Determine the product of inertia of the shaded area with respect to the x
and y axes
y

1 in.

2 in. |
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I in.
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Ixy :£d1xy =j;xydA

— X —
X=75; y=y

- dIXy = dlx' y' + dAXy

S riadlypl i dazme ealaS g (5)500,5

dly =0+ LZyédyJ(gj(y)
dlyy = (2yédyj[yéJ(Y)

dly, = 2y%dy

12/2/2025
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Determine the product of inertia of the shaded area with respect to the x
and y axes that have their origin located at the centroid C.

Yy
4 in. {
L :[1 in.
-~ =0.5in.
5 in. C X
- B.5 in.
i
1 in.

L P
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A dyx dy
(in®)  (in)  (in)

by
(in%)
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§ 9.11-9.15 Mass Moments of Inertia

The mass moment of inertia is a measure of a body’s
“resistance” to angular acceleration

=lo

units: (mass)(length)

6yl oo 1SS 5 (555105 9.1
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Applications:

L= Pdm=] (x*+? dm

1= Pdm=] (x*+2) dm

similarly ...

=] rdm=] (#+2) dm

Parallel axis theorem:

=] _+md°

I.= moment of inertia about mass center G
m = mass of body
d= perpendicular distance between parallel axes.

Radius of gyration, 4: Composite bodies:

I=mk? or k=\I/m = (1+md°)

(gl ez iS5 5 (50,5 9.-TA
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For homogeneous
thin flat plate bodies,
the mass moment of
inertia is directly
related to the area
moment of inertia!

S

(t<<b& ¢)

Mass Moments of Inertia for Solids of Revolution

o

shell element disk element

Usually, we will
take r=x or r=y dV =2rnrzdr dV=nr dz

(choice depends dl, =12 dm dl =(r /2) dm
on how the eqn. =2pdV :(12/2) odV

for the generating
curve is given).

il o el 5 5591058 9.¢.
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Moments of Inertia
I = J‘rzdm

- I, =er2dm

\
i m

dm always positive

usually defined about the center of mass G

I=Ir2dm=jr2p depj‘rde
m Vv 14

(Sl (rmdazma 1okl 5 (5515
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1= Irzdm =j[(d+x')2 +y'2]dm

1 =J.[x':12 +y'2];m +2djx'dm +dzjdm

I=1,+md’
dm
//7?
r "oy
A G ¥
/ ¢ e
il oo iela 5 5 pplo S
Moments of Inertia

I =mk’
I
k= |—
m

I; = Zi:l(IG)i +midi2J

Sl G dame 10 i 5 (5005
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Moments of inertia of mass are
encountered in dynamics. They
involve the rotation of a rigid body
about an axis. The mass moment
of inertia of a body with respect
to an axis AA’ is defined as

I=r2dm

where r is the distance from AA’
to the element of mass.

The radius of gyration of the body is defined as

(5 el oo 1SS 5 555105

The moments of inertia of mass with respect to the coordinate
axes are

1,=l(y?+2%) dm
1,=1(z*+x?) dm

L=(x>+y?) dm
AJ
d The parallel-axis theorem also
B’ applies to mass moments of inertia.

I=1+d*m

A 1 is the mass moment of inertia with
respect to the centroidal BB axis,
which is parallel to the A4 axis. The

B mass of the body is m.

(Sl e dazms iS5 5 (50,5
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The moments of inertia of thin plates
can be readily obtained from the
moments of inertia of their areas. For
a rectangular plate, the moments of
inertia are

1 1

. 2 = — 2

1
lec=Iaa + Igp = ;M (a+b?)

For a circular plate they are

The moment of inertia of a body with
respect to an arbitrary axis OL can
be determined. The components of
the unit vector A along line OL are A,
A, ,and 2, .

The products of inertia are

L, =[ xy dm l,= lyz dm

L= zx dm

The moment of inertia of the body with respectto OL is

_ 2 2 2
[OL_[XA‘X—F [y}\‘y—i_lzy\‘z _2])(y7\‘)(>\‘y
2L L2 L

(Sl e dazms iS5 (50,5
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«» By plotting a point Q along each axis

/ OL at a distance 0OQ = 1/V1,, from O,
Y ) we obtain the ellipsoid of inertia of
\ 7 a body. The principal axes x’, y’, and
é%/_____ z of this ellipsoid are the principal

& x axes of inertia of the body, that is
/ ' each product of inertia is zero, and
T P we express /,, as

2 2 2
Iop= L2204 120+ LA

zZ 4

where 1., 1., 1,- are the principal moments of inertia of the
body at O.

(5 el oo 1SS 5 555105

The principal axes of inertia are determined by solving the
cubic equation

2 2 2
K> - (]X+ ]y+ ]Z)KZ + (]X]y+ ]_ylz+ ]Z]X- ]Xy_ ]_yz_ ]XZ
)K 2 2 2
L L- L= I L 10y =2 1y 1, [,) =0

The roots K, K, , and K of this
equation are the principal moments
of inertia. The direction cosines of

the principal axis corresponding \ P
to each root are determined by v |
using Eq. (9.54) and the identity g Z—
2 2 2 / T
At A, A= 2z

(Sl e dazms iS5 5 (50,5
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Determine the mass moment of inertia /, for the slender rod. The rod’s
density p and cross-sectional area A are constant. Express the results in
terms of the rod’s tot: z

il e dome 3alaiS 5 (5,915,5

S riadlypl i dazme ealaS g (5)500,5
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The solid is formed by revolving the shaded area around the x axis.
Determine the radius of gyration k,. The density of the material is p=5
Mg/nP. ¥

/}’2 =1-50x

(Sl (rmdazma 1okl 5 (5515
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Moments of Inertia
dm = pdV
5 dm = pry’dx

(Sl (rmdazma 1okl 5 (5515

dm = pr (1-0.5x )dx

1
dl = —dmy*
T Y

dl , = %[pﬂ (1-0.5x)dx J1-0.5x)

dl = '077[(.25x2 —x+1)dx

12/2/2025
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Moments of Inertia
y B Ix
LS
m

(S il oo a5 5 (55919,

I ={d,

I = J:%T(QS)CZ -x+ l)dx

i P_(25_
! 2 3 2

2=1-50 0
— Y1, =23333p

(Sl (rmdazma 1okl 5 (5515
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- \/ \/3333 o

k.=.57T m

X

/_v2 =1-50x

(Sl (rmdazma 1okl 5 (5515

Determine the moment of inertia of the wheel about an axis which is
perpendicular to the page and passes through the center of mass G. The
material has a specific weight y = 90 Ib/f?.

N N 0.25 ft

L]
1 fi]

(Sl (rmdazma 1okl 5 (5515
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!
|
.25 ft
P 7 i
e il i
s 1 fe
(S il oo a5 5 (55919,
Moments of Inertia

—

(Sl (rmdazma 1okl 5 (5515
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Moments of Inertia
—

e~ note that

I A _ I \\] 1

{ 0 v | v‘ P = — 2

'*:-.;-\-7;_ ) 1. 5 mr “then

R hind I; = Z l(IG )i + midi2J

I;= l{m}cs)ﬁ _ %[M}(ﬁ

2 322 322
1| z(25)(25)90) ;| 2(25)(25)90) | v
4{5{ 322 }('25) { 322 )}(1) }
|IG =118 slug - ft2 |

(S il oo a5 5 (55919,

§ 9.1-9.5 Area moments of inertia

The moments of inertia of an area are defined to
e:

J, is the polar moment of
[nertia. Since r’=x’+y?,
skim JO:[X+[V

12/2/2025
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Radius of Gyration of an Area
The radius of gyration of an area is definedto be:

The radius of gyration has units of length. For a
complicated object (one that doesn’t lend itself to easy
integration), it may be easier to specify this radius. It is
equivalent to the whole area existing at a single distance,
k, from the axis.

a)

H O O

(Sl (rmdazma 1okl 5 (5515 9.1

Important Subtlety in Evaluating Moments of Inertia using

single integrals
Consider evaluation of I . I,=/5%dA

X

double integral  single integral single integral

L=/y?dxdy I,=/y?w()dv I,=/y?hx)dx

OK because OK because NO GOOD
entire area entire area  because y~distance is
increment has increment has  different throughout
the same the same the area slice.
y-~distance. y-~distance. () dxdy#y* hdx)

33



So, for thzs lecture (more next time):

 when computing /, we must use
an area slice parallel to the x-axis,
and

* when computing [ywe must use
an area slice parallel to the y~axis.

In §9.6 we will use the parallel axis
theorem to remove this restriction.

6yl oo 1SS 5 555105 9.1V

§ 9.6-9.7 Parallel axis theorem; Composite Areas

Relations between moments of inertia referred to parallel axes

_[X, }y ._/c = moments about cenfroidal axes

12/2/2025
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proof:

What is the parallel axis theorem good for?

In practice, it will often be convenient for us to compute
moments of inertia about centroidal axes. Using the
parallel axis theorem, we can then express moments of
inertia about other axes that are needed.

6yl oo 1SS 5 (555105 9.

To evaluate /, use
parallel axis theorem
applied to the area
slice:

12/2/2025
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Moments of Inertia for composite areas

n =# of composite areas

I,- 1, J.=moments of area 7about centroidal axes

of area 7 (easy to get for simple shapes)

il e ome el 5 5591058 9.V

Vi 1A U IVIA NIA

Symmetric Member in Pure Bending

* Internal forces in any cross section are equivalent
to a couple. The moment of the couple is the
section bending moment.

 From statics, a couple M consists of two equal
and opposite forces.

* The sum of the components of the forces in any
direction is zero.

* The moment is the same about any axis
perpendicular to the plane of the couple and
zero about any axis contained in the plane.

* These requirements may be applied to the sums
of the components and moments of the statically
indeterminate elementary internal forces.

F,=[c,dA=0
M, =]z0,dA=0
M,=[-yo,dd=M

12/2/2025
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Bending Deformations

(a) Longitudinal, vertical section
(plane of symmetry)

Beam with a plane of symmetry in pure
bending:
* member remains symmetric

* bends uniformly to form a circular arc

* cross-sectional plane passes through arc center
and remains planar

* length of top decreases and length of bottom
increases

* a neutral surface must exist that is parallel to the
upper and lower surfaces and for which the length
does not change

* stresses and strains are negative (compressive)
above the neutral plane and positive (tension)
below it

Vi A A Seer + Johnston - Do

Neutral
axis

Consider a beam segment of length L.

After deformation, the length of the neutral
surface remains L. At other sections,

L'=(p-y0
§=L-L'=(p-y)0-p0=-y0

£ = o = _0 =2 (strain varies linearly)
L po p
c c
Ep=— O p=—o
P Em
&x = _ng
c

12/2/2025
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B

=\ HA QF V
Stress Due to Bending

* For a linearly elastic material,

o, =FE¢g, = —%Egm

= —Xam (stress varies linearly)
c

* For static equilibrium,

F,=0=[o,dd=[-"o, d4 .
c
0= _Glj yd4 c
C
_oulr 2 ] ouk]
First moment with respect to neutral = ¢ 17" ¥=""
plane is zero. Therefore, the neutral ~—  _Mc_M
surface must pass through the s
section centroid. Substituting o, =2 o,
C

Sl mmtazs a5 5 (5591055

Chapter 9 DISTRIBUTED FORCES:
MOMENTS OF INERTIA

4 The rectangular moments of
inertia I, and I, of an area are
defined as

L= y?dA  I,=[ x%dA

Y

dx X

These computations are reduced to single integrations by
choosing dA to be a thin strip parallel to one of the coordinate
axes. The result is

d[X=% y3dx  dl,= x’ydx

(gl ez iS5 5 (50,5
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The polar moment of
dA inertia of an area A with
respect to the pole O is
defined
r y efined as
Jo=| r2dA
(0 X X
A

The distance from O to the element of area dAis r. Observing
that r2=x2%+ y?, we established the relation

(5 el oo 1SS 5 555105

The parallel-axis theorem

c states that the moment of
B r o — B’ inertia / of an area with
d respect to any given axis
AA’ is equal to the moment
A A’ of inertia 7 of the area with

respect to the centroidal
axis BB’ that is parallel fo AA’ plus the product of the area A
and the square of the distance dbetween the two axes:

J= I+ Ad?

This expression can also be used to determine 7 when the
moment of inertia with respect to AA’ is known:

I=1- Ad?

6yl oo 1SS 5 (555105
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A similar theorem can be
used with the polar moment
of inertia. The polar
moment of inertia
J, of an area about O and
[ J . .
0 the polar moment of inertia
J.of the area about its

centroid are related to the distance d between points Cand O
by the relationship

J,=J.+ Ad?

The parallel-axis theorem is used very effectively to compute
the moment of inertia of a composite area with respect to a
given axis.

(Sl ez iS5 5 (50,5

Determine the moment of Inertia about the y-axis

i "‘

- 8 in.- -

(Sl (rmdazma 1okl 5 (5515
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Moments of Inertia
y
13—

2in.| [ mm —
8-x | Iv"x

8 in. !

S Iyl > dazme kiS5 559105
Moments of Inertia

(gl ez iS5 5 (50,5

I, =di_ +dA

i1, = s [ 260 5-00)

dl, = (@)s—x) +[y3 +%(8—y3)}2[(8—y3)dy]
a1, = @k <107 -7 ho)

at, {56 b8 )

12/2/2025
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Moments of Inertia
dA = ydx
8
v I, = _[xsz = J:) x”ydx
A
8
s 1 3 10
dx — 3 — 3
21". 2= e Iy B IO X = ﬁx
d 0
— . 1,=307 in*
(Sl (rmdazma 1okl 5 (5515 9. AY

He who would]ike to have something he never had,
will have to do something well, that he hasn’t done yet

42



