Chapter 6
(10 and 11 of 2"d ed.)
Numerical Methods for
Constrained
Optimum Design

© M.H. Abolbashari, Ferdowsi University of Mashhad

Basic Concepts Related to Algorithms
for Constrained Problems

All numerical methods discussed in this chapter
are based on the following iterative prescription
as also given in Eqgs. (8.1) and (8.2) for
unconstrained problems:

Vector form

X6 D=xW4Ax®), k=0,1,2,... (10.2)
Component form

xfkD=x®+Ax®, E1to m,  k=0,1,2,...  (10.3)

Axt=g, oW
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The starting design can be feasible or infeasible. If it is inside the
feasible set as Point A, then there are two possibilities:

1. The gradient of the cost function vanishes at the point so it is
an unconstrained stationary point. We need to check the
sufficient condition for optimality of the point.

2. If the current point is not stationary, then we can reduce the
cost function by moving along a descent direction, say, the
steepest descent direction (-¢) as shown in Fig. We continue
such iterations until either a constraint is encountered or an
unconstrained minimum point is reached.

Optimum point

FIGURE 10-1 Conceptual steps of constrained optimization algorithms initiated from a
feasible point. 3/28

When the starting point is infeasible, as Point A, then one
strategy is to correct constraints to reach the constraint boundary
at Point B. From there, the strategies described in the preceding
paragraph can be followed to reach the optimum point. This is
shown in Path 1 in Fig.

The second strategy is to iterate through the infeasible region by
computing directions that take successive design points closer to
the optimum point, shown as Path 2 in Fig.

Optimum point

FIGURE 10-2 Conceptual steps of constrained optimization algorithms initiated from an
infeasible point. 4/28




Most of the algorithms based on these strategies have
the following four basic steps:

1. Linearization of cost and constraint functions about
the current design point.

2. Definition of a search direction determination
subproblem using the linearized functions.

3. Solution of the subproblem that gives a search
direction in the design space.

4. Calculation of a step size to minimize a descent
function in the search direction.
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10.1.2 Constraint Status at a Design Point
An inequality constraint can be either active, sactive, violated, or
inactive at a design point. On the other hand, an equality
constraint is either active or violated at a design point. The precise
definitions of the status of a constraint at a design point are
needed in the development and discussion of numerical methods.

Active Constraint

An inequality constraint g,(x) <0
is said to be active (or tight) at a
design point x® if it is satisfied

as an equality at that point, i.e., 5 P nactive | weeso
g,(X(k)) =0. At C-active Status of a constraint at design points A, B, C, and D.

*D
Infeasible

g;(x)=0

Inactive Constraint
An inequality constraint gx) <0 is said to be inactive at a design
point x¥ if it has negative value at that point, i.e., g(x™*)<0.

i) s s 3 515 At A-inactive

7/28

Violated Constraint

An inequality constraint g(x) <0 is said to be violated at a
designpoint x® if it has positive value there, i.e., g(x*)>0. An
equality constraint A(x*) =0 is violated at a design point x* if it
has nonzero value there, i.e., h(x*) #0. Note that by these
definitions, an equality constraint is always either active or
violated for any design point. At pviolated

e-Active Constraint

Any inequality constraint gx) <0 is said to be &active at the
point x® if g(x) <0 but g(x™®)+e >0, where ¢ >0 is a small
number. This means that the point is close to the constraint
boundary on the feasible side (within an &band as shown in

. 7 D
Flg) Infeasible violated
ULy,
¥ _eacti e(;%%"zY
__-Y.gacly .
gm=0 At B-&active
Feasible oA Ry
gi(x)+€=0
Status of a constraint at design points A, B, C, and D. 8/28




10.1.3 Constraint Normalization

In numerical calculations, it is desirable to normalize all the
constraint functions. As noted earlier, active and violated
constraints are used in computing a desirable direction of design
change.

Usually one value for ¢ (say 0.10) is used for all constraints.
Since different constraints involve different orders of magnitude, it
is not proper to use the same & for all the constraints unless they
are normalized. For example, consider a stress constraint as

o<o, or 0-0,<0 (10.5)
and a displacement constraint as
0<o, or 0-0,<0 (10.6)

where

o = calculated stress at a point
o, = an allowable stress

0 = calculated deflection at a point

0,= an allowable deflection
9/28

Note that the units for the two constraints are different.
Constraint of Eq. (10.5) involves stress, which has units of
Pascals (Pa, N/m?2). For example, allowable stress for steel is 250
MPa.
The other constraint in Eq. (10.6) involves deflections of the
structure, which may be only a few centimeters. For example,
allowable deflection &, may be only 2 cm.
Thus, the values of the two constraints are of widely differing
orders of magnitude. If the constraints are violated, it is difficult to
judge the severity of their violation. We can, however, normalize
the constraints by dividing them by their respective allowable
values to obtain the normalized constraint as

R-1.0<0 (10.7)
where R=o0/0, for the stress constraint and R=6/5, for the
deflection constraint. Here, both o, and J, are assumed to be
positive; otherwise, the sense of the inequality changes. For
normalized constraints, it is easy to check for &active constraint
using the same value of & for both of them.

10/28




There are other constraints that must be written in the
form

1.0-R<0 (10.8)
when normalized with respect to their nominal value.

Example: The fundamental vibration frequency @ of a
structure or a structural element must be above a given
threshold value of w_,

020, /w120 R=o/w, 1.0-R<0

In subsequent discussions, it is assumed that all equality
as well as inequality constraints have been converted to
the normalized form.
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EXAMPLE 10.1 Constraint Normalization

and Status at a Point
Consider the two constraints:

}7=x12+%x2=18 (a)
g =500x,-30000x,<0 (b)

At the design points (1,1) and (-4.5, -4.5), investigate whether the
constraints are active, violated, &active, or inactive. Use &0.1 to
check &active constraints.
Solution. Let us normalize the constraint and express it in the
standard form as | ]

h=—x’+—x,-1.0=0 (c)

187" 36°°
h(1,1)=-0.9166, violated at (1,1)
h(-4.5,-4.5)=0., active at (-4.5,-4.5).
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The inequality constraint & cannot be normalized by dividing it by
500x, or 30,000x, because x, and x, can have negative values
which will change the sense of the inequality. We must normalize
the constraint functions using only positive constants or positive
variables.

To treat this situation, we may divide the cons)’ctralnt by 30,000]| x|
and obtain a normalized constraint as o[, " |,,| ‘ . This type of
normalization is, however, not desirable since it changes the
nature of the constraint from linear to nonlinear. Linear constraints
are more efficient to treat than the nonlinear constraints in

numerical calculations.

Therefore, care and judgment needs to be exercised while
normalizing constraints. If a normalization procedure does not
work, another procedure should be tried. In some cases, it may be
better to use the constraints in their original form, especially the
inequality constraints.

Correct the book 13/28

Thus, in numerical calculations, some experimentation
with normalization of constraints may be needed for
some forms of the constraints. For the present
constraint, we normalize it with respect to the constant
500 and then divide by 100 to obtain it in the percent
form as

=ﬁ(x —60x )<0 (d)

At (1,1), g=-0.59<0 (so, inactive)

At (-4.5,-4.5), g—2 655>0 (so, violated).
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11.1 Potential Constraint Strategy

Numerical methods for constrained optimization
]
Search direction determination subproblem

Gradients of all the constraints needed
potential
A subset of them are required —— constraint
strategy

To implement this strategy, a potential constraint index set needs
to be defined, which is composed of active, &active, and violated
constraints at the current iteration. At the 4th iteration, we define a
potential constraint index set /, as follows:

7, =[{j| j=1 to p for equalities} and {i| g, (x N +e>0,i=1tom}](11.1)

(all active, sactive and violated inequalities and all equality constraints)
Only inactive constraint are excluded.
il i desme soalas 5 (5 5510,5 15/28

Convergence of an Algorithm

An algorithm is said to be convergent if it reaches a minimum
point starting from an arbitrary point. An algorithm that has

been proven to converge starting from an arbitrary point is
called a robust (powerful) method.

In practical applications of optimization, such reliable
algorithms are highly desirable. Many engineering design
problems require considerable numerical effort to evaluate
functions and their gradients. Failure of the algorithm can

have disastrous effects with respect to wastage of valuable
resources as well as morale (confidence) of designers.

Thus, it is extremely important to develop convergent
algorithms for practical applications. It is equally important to
enforce convergence in numerical implementation of
algorithms in general purpose design optimization software.
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A convergent algorithm satisfies the

following two requirements:
1. There is a descent function for the algorithm. The idea
is that the descent function must decrease at each
iteration. This way, progress towards the minimum point
can be monitored.
2. The direction of design change d® is a continuous
function of the design variables.
This is also an important requirement. It implies that a
proper direction can be found such that descent toward
the minimum point can be maintained. This requirement
also avoids “oscillations,” or “zigzagging” in the descent
function.

& ridlgl i dazme ealiti g (5 5510,5 17/28

10.2 Linearization of Constrained

Problem
Let x® be the design estimate at the Ath iteration and Ax™* be the
change in design. Writing Taylor’'s expansion of the cost and
constraint functions about the point x*), we obtain the linearized
subproblem as

minf (x © + Ax )= (x )+ VFT (x F)Aax ® (10-9)
subject to the linearized equality constraints
h,(x ) +Ax(k))5hj(x(k))+thT(x NAx ) =0; j=1top (10-10)
and the linearized inequality constraints
g;(x ® 4 Ax ) =g, (x (k))+ngT(x NAx P <0; j=1tom (10-11)
Simplified notations for the current design x*
fo=f GO)e, == x®)b, =—g,(xW)ic, =0f (x D)/ ox
n; =0h,(x")/ox ;a; =0g,(x ")/ ox, d, =Ax [ (10-1210 18)
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Note also that the linearization of the problem is done at any
design iteration, so the argument x*'as well as the superscript &
indicating the iteration number shall be omitted for some
quantities.

Using these notations, the approximate subproblem given in Egs.
(10.9) to (10.11) gets defined as follows:

minf_=zcl-d,- (f =c’d) (10-19)
subject to the linearized ’ezlquality constraints:
Znijdi =e,; j=ltop (N'd=e) (10-20)
and the linearized inequality constraints:
Sad, <b;  j=ltom (4’d <b) (10-21)

Note that sincei:/lj( is a constant that does not affect solution of the
linearized subproblem, it is dropped from Eq. (10.19). Therefore,
f represents the linearized change in the original cost function.
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EXAMPLE 10.2 Definition of Linearized Subproblem
Consider the optimization problem of Example 4.31,
min £ (x)=x+x; —3x x, (a)
subject to the constraints
1
g =gx12+gx22—1SO, g,=—x,<0, g;=—x,<0 (b)

Linearize the cost and constraint functions about the point
x(0=(1,1) and write the approximate problem given by Egs. (10.19)

to (10.21).

Solution.

The graphical solution for the
problem is shown in Fig. 10-4.
(X5 X2)=(V3,¥3)

f=-3.

The given point (1,1) is inside
the feasible region.

20/28
S ridlg mdazs (0adaiS 5 (5550 ,5 FIGURE 104 Graphical representation of the cost and constraints for Example 10.2.
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The gradients of cost and constraint functions are
2 2
Vi =(2x,-3x,,2x, -3x)), Vglz(gxlsg)CZ)s (c)
Vg, =(-10), Vg, =(0,-1)

Evaluating the cost and constraint functions and their gradients at
the point (1, 1), we get )

f(x (0)) =-1.0, b =-g,(x (0)) = 3’ b,=-g,(x (0)) =1,

by=—gs(x™)=1. Vf(x")=c" =(-1-1),

11
Vg, =(—,—
&1 (3 3)

(d)

Note that the given design point (1,1) is in the feasible set since all
the constraints are satisfied. The matrix A and vector 6 of Eq.

(10.21) are defined as 2/3
1/3 =1 0
A= . b=| 1 (e)
1/3 0 -1
& ridlgl i dazme ealiti g (5 5510,5 1 21/28

Now the linearized subproblem of Egs. (10.19) to (10.21) can be
written as, minimize

G

subject to
1/3 1/3 y 2/3
-1 0| <] 1 (9)
dZ
0o -1 1
Or, in the expanded notation, we get minf_z—a’l—d2 subject to
%d1+%d23§, -d, <1,-d, <1 (h)

The last two constraints in the subproblem ensure nonnegativity of
the design variables required in the problem definition. Note that
unless we enforce limits on the design changes d, the
subproblem may be unbounded.
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Note also that the linearized subproblem is in terms of
the design changes d, and d, We may also write the
subproblem in terms of the original variables x, and x..
To do this we replace d with x-x@ in all the foregoing
expressions or in the linear Taylor's expansion and
obtain:

(x, 1)

(Xz—l):|:_XI —-x,+1 (i)

f_(xl,xz)zf x M+ Vf (x —x(o))=—1+[—1 —1]{

_ 2 [1 1] =D] 1
x,) = Y4 Ve (x —x V) =-Z4|= || ! =—(x,+x,-4)<0 (j
gi(x,xy)=g,(x") g (x —x™) 3 |:3 3j||:(x2_1) 3()61 x,—4) ()
g, =—x,<0; g;=—x,<0 (k)
6 ridla] redazme 1o a 5 (55005 23/28

In the foregoing expressions, “overbar” for a function indicates
linearized approximation. The feasible regions for the linearized
problem at the point (1,1) and the original problem are shown in
Fig. 10-5.

Since the linearized cost function is parallel to the linearized first
constraint &, the optimum solution for the linearized problem is
any point on the line D-E in Fig. 10-5. x

f_=—5=—1—x1—x2
4-x,-x,=0

Linearized constraint g;(x) = Xy + X2 -4 =0
at the point (1, 1)

X, +x,-4=0=g, %=G,=0" —_5

'/ V- 7 x
A’} 12 384N\
9= 0

FIGURE 10-5 Graphical representation of the linearized feasible region for Example

It is important to note that théqii'near approximations for the functions of the
problem change from point to point. Therefore, the feasible region for the
linearized subproblem will change with the point at which the linearization is
performed. 24/28
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EXAMPLE 10.3 Linearization of Rectangular Beam

Design Problem

Linearize the rectangular beam design problem formulated in
Section 3.8 at the point (50,200)mm.

Solution. The problem, after normalization, is defined as follows:
Find width 6 and depth d to minimize 7(b,d)=bd

subject to
2.40F +07
g :(TZ)_IS 0 (a)
g =B 1 (b)
g3=2d—b—l.OSO ©)
g,=-b<0,g,=-d <0 (d)
6 ridla] redazme 1o a 5 (55005 25/28

At the given point the problem functions are evaluated as

£ (50,200) = 10,000

£,(50,200)=11.00 >0 (violation)

£,(50,200)=10.25>0 (violation)

2,(50,200)=1.00>0 (violation) (e)

2,(50,200) =-50<0 (inactive)

25(50,200) =-200< 0 (inactive)
In the following calculations, we shall ignore constraints g, and gs
assuming that they will remain satisfied, that is, the design will
remain in the first quadrant. The gradients of the functions are
evaluated as

VF (50,200) = (d ,b) = (200, 50)

Vg,(50,200) = (2.40E +07)(—— =2 ) 2 (2024.-0.12)

Zd 27 bd 3
Vg,(50,200) = (1.125E +05)(—om,-— 1) = (~0.225,-0.05625)
bd bd (f)
Vg, (50,200) = —(—Zld,l) — (=0.04,0.01)
Sl o 1o 3 5 15,5 207 b 26/28
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Using the function values and their gradients, the linear Taylor’'s
expansions give the linearized subproblem at the point (50,200) in
terms of the original variables as

_ b-50
F(b,d)= £(50,200)+[200 50][61 200}=200b+50d—10,000

5 .(b,d)=—0.24b—0.12d +47.00 < 0 ¢)
5.(h.d) = —0.225b—0.05625d +32.75< 0
2.(b.d) = —0.04b+0.01d +1.00< 0

Depth (mm}

Width (mm)

FIGURE 10-6 Feasible region for the original and the linearized constraints of the
rectangular beam design problem of Example 10.3. 27/28

The linearized constraint functions are plotted in Fig. 10-6 and
their feasible region is identified.
The feasible region for the original constraints is also identified.
It can be observed that the two regions are quite different. Since
the linearized cost function is parallel to constraint & , the
optimum solution lies on the line /—J. If point /is selected as the
solution for the linearized subproblem, then the new point is given
as

b=95.28 mm, =201.10 mm,  f =19,111mm* (h)

For any point on line /~J all the original constraints are still
violated. Apparently, for nonlinear constraints, iterations may be
needed to correct constraint violations and reach the feasible set.

One interesting observation concerns the third constraint; the
original constraint d-26<0 is normalized as d/2b-7<0. The
normalization does not change the constraint boundary; thus the
graphical representation for the problem remains the same, as
may be verified in Fig. 10-6.
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However, the normalization changes the form of the constraint
function that affects its linearization. If the constraint is not
normalized, its linearization will give the same functional form as
the original constraint for all design points, i.e., d-26<0. This is
shown as line 0-K in Fig. 10-6. The linearized form of the
normalized constraint changes; it gives the line G-H for the point
(50,200).

This is quite different from the original constraint. The iterative
process with and without the normalized constraint can lead to
different paths to the optimum point.

In conclusion, we must be careful while normalizing the
constraints so as not to change the functional form for the
constraints as far as possible.

el Jago5 ,%u atie 53 b 5 05,5 S |, 5 Sl
6) 3, 4

sldlss a5,y asb o ,sSN 2 Jgl B w0

S el i dozma ealats 5 (6591,8 29/28

12/6/2025

15



