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Chapter 6  

(10 and 11 of 2nd ed.) 

Numerical Methods for 

Constrained 

Optimum Design 

© M.H. Abolbashari, Ferdowsi University of Mashhad 

Basic Concepts Related to Algorithms 

for Constrained Problems 

All numerical methods discussed in this chapter 
are based on the following iterative prescription 
as also given in Eqs. (8.1) and (8.2) for 
unconstrained problems: 
 
                                                                    (10.2) 
                                                                     

(10.3) 

Vector form 

Component form 

x(k+1)=x(k)+∆x(k), k=0,1,2,… 

xi
(k+1)=xi

(k)+∆xi
(k), i=1 to n;      k=0,1, 2,… 

∆x(k)=αk d(k) 
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The starting design can be feasible or infeasible. If it is inside the 
feasible set as Point A, then there are two possibilities:  
1. The gradient of the cost function vanishes at the point so it is 
an unconstrained stationary point. We need to check the 
sufficient condition for optimality of the point. 
2. If the current point is not stationary, then we can reduce the 
cost function by moving along a descent direction, say, the 
steepest descent direction (-c) as shown in Fig. We continue 
such iterations until either a constraint is encountered or an 
unconstrained minimum point is reached. 

3/28 

When the starting point is infeasible, as Point A, then one 
strategy is to correct constraints to reach the constraint boundary 
at Point B. From there, the strategies described in the preceding 
paragraph can be followed to reach the optimum point. This is 
shown in Path 1 in Fig.  
The second strategy is to iterate through the infeasible region by 
computing directions that take successive design points closer to 
the optimum point, shown as Path 2 in Fig. 
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Most of the algorithms based on these strategies have 
the following four basic steps: 
 
1. Linearization of cost and constraint functions about 
the current design point. 
 
2. Definition of a search direction determination 
subproblem using the linearized functions. 
 
3. Solution of the subproblem that gives a search 
direction in the design space. 
 
4. Calculation of a step size to minimize a descent 
function in the search direction. 
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Active Constraint  
An inequality constraint gi(x) ≤0 
is said to be active (or tight) at a 
design point x(k) if it is satisfied 
as an equality at that point, i.e., 
gi(x(k)) =0. 

10.1.2 Constraint Status at a Design Point 
An inequality constraint can be either active, ε-active, violated, or 
inactive at a design point. On the other hand, an equality 
constraint is either active or violated at a design point. The precise 
definitions of the status of a constraint at a design point are 
needed in the development and discussion of numerical methods. 

Inactive Constraint  
An inequality constraint gi(x) ≤0 is said to be inactive at a design 
point x(k) if it has negative value at that point, i.e., gi(x(k)) <0. 

At  C- active 

At  A- inactive 

active 

inactive 
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Violated Constraint  
An inequality constraint gi(x) ≤0 is said to be violated at a 
designpoint x(k) if it has positive value there, i.e., gi(x(k)) >0. An 
equality constraint hi(x(k)) =0 is violated at a design point x(k) if it 
has nonzero value there, i.e., hi(x(k)) ≠0. Note that by these 
definitions, an equality constraint is always either active or 
violated for any design point. 

ε-Active Constraint  
Any inequality constraint gi(x) ≤0 is said to be ε-active at the 
point x(k) if gi(x) <0 but gi(x(k))+ε ≥0, where ε >0 is a small 
number. This means that the point is close to the constraint 
boundary on the feasible side (within an ε-band as shown in 
Fig.). 

At  B- 

At  D-  violated 

ε-active 

 violated 

ε-active 
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10.1.3 Constraint Normalization 
In numerical calculations, it is desirable to normalize all the 
constraint functions. As noted earlier, active and violated 
constraints are used in computing a desirable direction of design 
change.  
Usually one value for ε (say 0.10) is used for all constraints. 
Since different constraints involve different orders of magnitude, it 
is not proper to use the same ε for all the constraints unless they 
are normalized. For example, consider a stress constraint as 

                          σ ≤ σa    or     σ-σa ≤0                        (10.5) 
and a displacement constraint as 

          δ ≤δa      or     δ-δa ≤0             (10.6) 
where 
σ  = calculated stress at a point 
σa  = an allowable stress 
δ = calculated deflection at a point 
δa = an allowable deflection 

9/28 

Note that the units for the two constraints are different.  
Constraint of Eq. (10.5) involves stress, which has units of 
Pascals (Pa, N/m2). For example, allowable stress for steel is 250 
MPa.  
The other constraint in Eq. (10.6) involves deflections of the 
structure, which may be only a few centimeters. For example, 
allowable deflection δa may be only 2 cm.  
Thus, the values of the two constraints are of widely differing 
orders of magnitude. If the constraints are violated, it is difficult to 
judge the severity of their violation. We can, however, normalize 
the constraints by dividing them by their respective allowable 
values to obtain the normalized constraint as  
          R -1.0<0             (10.7) 
where R=σ/σa for the stress constraint and R=δ/δa for the 
deflection constraint. Here, both σa and δa are assumed to be 
positive; otherwise, the sense of the inequality changes. For 
normalized constraints, it is easy to check for ε-active constraint 
using the same value of ε for both of them. 
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There are other constraints that must be written in the 
form 
          1.0-R ≤0                     (10.8) 
when normalized with respect to their nominal value.  
 
Example: The fundamental vibration frequency ω of a 
structure or a structural element must be above a given 
threshold value of ωa, 
 ω ≥ωa   ω/ωa-1≥0  R=ω/ωa   1.0-R ≤0 
 
In subsequent discussions, it is assumed that all equality 
as well as inequality constraints have been converted to 
the normalized form. 
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EXAMPLE 10.1 Constraint Normalization 

and Status at a Point 
Consider the two constraints: 
                                                                                                    

                                                                                                      (a) 
 

                                                                                                      (b) 
At the design points (1,1) and (-4.5, -4.5), investigate whether the 
constraints are active, violated, ε-active, or inactive. Use ε=0.1 to 
check ε-active constraints. 

Solution. Let us normalize the constraint and express it in the 
standard form as 
                                                                                                      (c) 
 
   h(1,1)=-0.9166, violated at (1,1)  
   h(-4.5,-4.5)=0., active at (-4.5,-4.5). 

2
1 2

1
18

2
h x x= + =

1 2500 30000 0g x x= − ≤

2
1 2

1 1
1.0 0

18 36
h x x= + − =
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The inequality constraint      cannot be normalized by dividing it by 
500x1 or 30,000x2 because x1 and x2 can have negative values 
which will change the sense of the inequality. We must normalize 
the constraint functions using only positive constants or positive 
variables.  
To treat this situation, we may divide the constraint by 30,000|x2| 

and obtain a normalized constraint as                . This type of 

normalization is, however, not desirable since it changes the 

nature of the constraint from linear to nonlinear. Linear constraints 

are more efficient to treat than the nonlinear constraints in 

numerical calculations.  
Therefore, care and judgment needs to be exercised while 
normalizing constraints. If a normalization procedure does not 
work, another procedure should be tried. In some cases, it may be 
better to use the constraints in their original form, especially the 
inequality constraints.  

g

13/28 Correct the book 

1 2

2 2

0
60

x x

x x
− ≤

Thus, in numerical calculations, some experimentation 
with normalization of constraints may be needed for 
some forms of the constraints. For the present 
constraint, we normalize it with respect to the constant 
500 and then divide by 100 to obtain it in the percent 
form as                                                                                                                     
                                                                                      (d) 
 
At (1,1), g=-0.59<0 (so, inactive) 
At (-4.5,-4.5), g=2.655>0 (so, violated). 

1 2

1
( 60 ) 0

100
g x x= − ≤
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11.1 Potential Constraint Strategy 
 
 
 
 
 
 
                                                               

 
To implement this strategy, a potential constraint index set needs 
to be defined, which is composed of active, ε-active, and violated 
constraints at the current iteration. At the kth iteration, we define a 
potential constraint index set Ik as follows: 
 

                                                                                                 (11.1) 
 

(all active, ε-active and violated inequalities and all equality constraints) 
Only inactive constraint are excluded. 

( )[{ j=1 to for equalities} and { ( ) 0, i=1 to }]k

k iI j p i g x mε= + ≥

15/28 

Numerical methods for constrained optimization 

Search direction determination subproblem 

Gradients of all the constraints needed  

A subset of them are required  

potential 
constraint 
strategy 
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Convergence of an Algorithm 
An algorithm is said to be convergent if it reaches a minimum 
point starting from an arbitrary point. An algorithm that has 
been proven to converge starting from an arbitrary point is 
called a robust  (powerful) method.  

In practical applications of optimization, such reliable 
algorithms are highly desirable. Many engineering design 
problems require considerable numerical effort to evaluate 
functions and their gradients. Failure of the algorithm can 
have disastrous effects with respect to wastage of valuable 
resources as well as morale (confidence) of designers.  

Thus, it is extremely important to develop convergent 
algorithms for practical applications. It is equally important to 
enforce convergence in numerical implementation of 
algorithms in general purpose design optimization software. 
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A convergent algorithm satisfies the 

following two requirements: 
1. There is a descent function for the algorithm. The idea 
is that the descent function must decrease at each 
iteration. This way, progress towards the minimum point 
can be monitored. 
2. The direction of design change d(k) is a continuous 
function of the design variables. 
This is also an important requirement. It implies that a 
proper direction can be found such that descent toward 
the minimum point can be maintained. This requirement 
also avoids “oscillations,” or “zigzagging” in the descent 
function. 
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Let x(k) be the design estimate at the kth iteration and ∆x(k) be the 
change in design. Writing Taylor’s expansion of the cost and 
constraint functions about the point x(k), we obtain the linearized 
subproblem as 
                                                                                                (10-9) 
subject to the linearized equality constraints 
 

               (10-10) 
 

and the linearized inequality constraints 
 

               (10-11) 
 

Simplified notations for the current design x(k) 

 
 
 

                          (10-12 to 18) 

10.2 Linearization of Constrained 

Problem 

( ) ( ) ( ) ( ) ( )min ( ) ( ) ( )k k k T k kf x x f x f x x+ ∆ ≅ +∇ ∆

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) 0; 1tok k k T k k

j j jh x x h x h x x j p+ ∆ ≅ + ∇ ∆ = =

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) 0; 1tok k k T k k

j j jg x x g x g x x j m+ ∆ ≅ +∇ ∆ ≤ =

18/28 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ); ( ); ( ); ( ) / ;

( ) / ; ( ) / ,

k k k k

k j j j j i i

k k k

ij j i ij j i i i

f f x e h x b g x c f x x

n h x x a g x x d x

= = − = − = ∂ ∂

= ∂ ∂ = ∂ ∂ = ∆
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Note also that the linearization of the problem is done at any 
design iteration, so the argument x(k) as well as the superscript k 
indicating the iteration number shall be omitted for some 
quantities.  
Using these notations, the approximate subproblem given in Eqs. 
(10.9) to (10.11) gets defined as follows: 
 
            (10-19) 
subject to the linearized equality constraints: 
 
            (10-20) 
and the linearized inequality constraints: 
 

            (10-21) 
 

Note that since fk is a constant that does not affect solution of the 
linearized subproblem, it is dropped  from  Eq. (10.19).  Therefore, 
     represents the linearized change in the original cost function. 

1

min ( )
n

T

i i

i

f c d f c d
=

= =∑
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1

; 1to ( )
n

T

ij i j

i

n d e j p N d e
=

= = =∑

1

; 1to ( )
n

T

ij i j

i

a d b j m A d b
=

≤ = ≤∑

f
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EXAMPLE 10.2 Definition of Linearized Subproblem 
Consider the optimization problem of Example 4.31, 
                                                                                                     (a) 
subject to the constraints 
 

                                                                                                     (b) 
 
Linearize the cost and constraint functions about the point 
x(0)=(1,1) and write the approximate problem given by Eqs

2 2
1 2 1 2min ( ) 3f x x x x x= + −

2 2
1 1 2 2 1 3 2

1 1
1 0, 0, 0

6 6
g x x g x g x= + − ≤ = − ≤ = − ≤

Solution.  
The graphical solution for the 
problem is shown in Fig. 10-4.  
(x1,x2)=(√3,√3) 
f = - 3. 
The given point (1,1) is inside 
the feasible region. 
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The gradients of cost and constraint functions are 
  
                                                                                                     (c) 1 2 2 1 1 1 2

2 3

2 2
(2 3 ,2 3 ), ( , ),

6 6
( (0, 1), ,1 0)

f x x x x g x x

g g−

∇ = − − ∇ =

∇ = −= ∇

Evaluating the cost and constraint functions and their gradients at 
the point (1, 1), we get 
 
                                                                                                     (d) 
 
 
 
 
Note that the given design point (1,1) is in the feasible set since all 
the constraints are satisfied. The matrix A and vector b of Eq. 
(10.21) are defined as 
                                                                                                    (e) 0

1

1

0

2 / 3

, 1

1

1 / 3

1 / 3
A b

 
   = = −   

 

−

 

(0) (0) (0)
1 1 2 2

(0) (0) (0)
3 3

1

2
( ) 1.0, ( ) , ( )

1 1

1,
3

( ) 1, ( ) ( 1, 1

( ,
3

,

3

)

)

f x b g x b g x

b g x f x c

g

= − = − = = − =

= − = ∇ = = − −

∇ =
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Now the linearized subproblem of Eqs. can be 
written as, minimize 
 
                                                                                                       (f) 
subject to 
 
                                                                                                     (g) 
 
 
Or, in the expanded notation, we get                               subject to 
 
                                                                                                      (h) 
 
The last two constraints in the subproblem ensure nonnegativity of 
the design variables required in the problem definition. Note that 
unless we enforce limits on the design changes di, the 
subproblem may be unbounded. 

1 2min f d d= − −

1

2

1 / 3 1 / 3 2 / 3

1 0 1

0 1 1

d

d

   
    − ≤     −      

[ ] 1

2

1 1
d

f
d

 
= − −  

 

1 2 1 2

1 1 2
, 1, 1

3 3 3
d d d d+ ≤ − ≤ − ≤
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Note also that the linearized subproblem is in terms of 
the design changes d1 and d2. We may also write the 
subproblem in terms of the original variables x1 and x2. 
To do this we replace d with x-x(0) in all the foregoing 
expressions or in the linear Taylor’s expansion and 
obtain: 
 
 [ ] 1(0) (0)

1 2 1 2
2

( 1)
( , ) ( ) ( ) 1 1 1 1 ( )

( 1)

x
f x x f x f x x x x i

x

− 
= + ∇ − = − + − − = − − + − 

1(0) (0)
1 1 2 1 1 1 2

2

( 1)2 1 1 1
( , ) ( ) ( ) ( 4) 0 ( )

( 1)3 3 3 3

x
g x x g x g x x x x j

x

−  = + ∇ − = − + = + − ≤   −   

2 1 3 20; 0 ( )g x g x k= − ≤ = − ≤
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In the foregoing expressions, “overbar” for a function indicates 
linearized approximation. The feasible regions for the linearized 
problem at the point (1,1) and the original problem are shown in 
Fig. 10-5.  
Since the linearized cost function is parallel to the linearized first 
constraint    , the optimum solution for the linearized problem is 
any point on the line D–E in Fig. 10-5. 
 
 
 
 
 
 
 
 
 

It is important to note that the linear approximations for the functions of the 
problem change from point to point. Therefore, the feasible region for the 
linearized subproblem will change with the point at which the linearization is 
performed. 24/28 

5f = −

1 25 1f x x= − = − − −

1 24 0x x− − =

1 2 14 0x x g− = ≡+

1g

6f = −
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EXAMPLE 10.3 Linearization of Rectangular Beam 

Design Problem 
Linearize the rectangular beam design problem formulated in 
Section 3.8 at the point (50,200)mm. 
 

Solution. The problem, after normalization, is defined as follows: 
Find width b and depth d to minimize f(b,d)=bd  
subject to 
             (a) 
 
             (b) 
 
             (c) 
 
             (d) 
 

1 2

2

3

4 5

(2.40 07)
1 0

(1.125 05)
1 0

1.0 0
2

0; 0

E
g

bd

E
g

bd

d
g

b

g b g d

+
= − ≤

+
= − ≤

= − ≤

= − ≤ = − ≤
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At the given point the problem functions are evaluated as 
 
 
 
             (e) 
 
 
In the following calculations, we shall ignore constraints g4 and g5 
assuming that they will remain satisfied, that is, the design will 
remain in the first quadrant. The gradients of the functions are 
evaluated as 
 
 
 
         
 
              (f) 
 
 

1

2

3

4

5

(50,200) 10,000

(50,200) 11.00 0 (violation)

(50,200) 10.25 0 (violation)

(50,200) 1.00 0 (violation)

(50,200) 50 0 (inactive)

(50,200) 200 0 (inactive)

f

g

g

g

g

g

=

= >

= >

= >

= − <

= − <

1 2 2 3

2 2 2

3 2

(50,200) ( , ) (200,50)

1 2
(50,200) (2.40 07)( , ) ( 0.24, 0.12)

1 1
(50,200) (1.125 05)( , ) ( 0.225, 0.05625)

1 1 1
(50,200) ( , ) ( 0.04,0.01)

2

f d b

g E
b d bd

g E
b d bd

g d
b b

∇ = =

− −
∇ = + = − −

− −
∇ = + = − −

−
∇ = = −
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Using the function values and their gradients, the linear Taylor’s 
expansions give the linearized subproblem at the point (50,200) in 
terms of the original variables as 
 
 
             (g) 
 
 
 

2

1

3

50
( , ) (50,200) [200 50] 200 50 10,000

200

0.24 0.12 47.00 0

0

( ,

.225 0.05625 32.75 0

0.04 0.01 1.00 0)

, )

,

(

( )

b
f b d f b d

d

b d

bg b

g

g b

d

d

d

d

b bd

− 
= + = + − − 
= − − + ≤

= − − + ≤

= − + + ≤

27/28 

The linearized constraint functions are plotted in Fig. 10-6 and 
their feasible region is identified.  
The feasible region for the original constraints is also identified.  
It can be observed that the two regions are quite different. Since 
the linearized cost function is parallel to constraint     , the 
optimum solution lies on the line I–J. If point I is selected as the 
solution for the linearized subproblem, then the new point is given 
as 
 b=95.28 mm,  d=201.10 mm,                 (h) 

2g

219,111mmf =

For any point on line I–J all the original constraints are still 
violated. Apparently, for nonlinear constraints, iterations may be 
needed to correct constraint violations and reach the feasible set. 
One interesting observation concerns the third constraint; the 
original constraint d-2b≤0 is normalized as d/2b-1≤0. The 
normalization does not change the constraint boundary; thus the 
graphical representation for the problem remains the same, as 
may be verified in Fig. 10-6.  
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However, the normalization changes the form of the constraint 
function that affects its linearization. If the constraint is not 
normalized, its linearization will give the same functional form as 
the original constraint for all design points, i.e., d-2b≤0. This is 
shown as line 0–K in The linearized form of the 
normalized constraint changes; it gives the line G–H for the point 
(50,200). 
This is quite different from the original constraint. The iterative 
process with and without the normalized constraint can lead to 
different paths to the optimum point.  
 
In conclusion, we must be careful while normalizing the 
constraints so as not to change the functional form for the 
constraints as far as possible. 
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