Where can we have global optimum?

1. If the cost function f(x) is continuous on a closed and
bounded feasible set, then Weierstrauss Theorem

guarantees the existence of a global minimum. Therefore, if
we calculate all the local minimum points, then the point
that gives the least value to the cost function can be
selected as a global minimum for the function. This is called
exhaustive search.

2. If the optimization problem can be shown to be convex,
then any local minimum is also a global minimum; also the
KKT necessary conditions are sufficient for the minimum

pol nt. © M.H. Abolbashari, Ferdowsi University of Mashhad 1/68

It is difficult to investigate global optimal conditions,
except for:

v' The convex problems to be discussed next.

v’ By using stochastic optimization methods such
as simulated annealing or genetic algorithms if
you are lucky (These methods are likely to give
global optimum).

In general, additional conditions must be imposed
upon the model, called convexity conditions. These
conditions must be satisfied to guarantee that a
local constrained optimum (minimum) is also global.

S il oz 0S5 (55105 2/68
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Convex Sets

A set is convex if a line connecting any two points in the feasible space
always lies in the feasible region of the design space.
The feasible region of a

P
X2
i v |
linear program is convex.
L —> X1

A: Convex
B: Not convex @
X
D
N
W
2 4 6 8 10 12 14

Sl e 55 5 553105 3/68
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01

8

[4

On Convex Feasible Regions

+¢ If all constraints are linear, the feasible region is convex.

¢ The intersection of convex regions is convex.

I
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> Convex Functions:

f(x)

A: Not convex

A B
\/\/ \-/ B: Convex
X

Mathematical Def.: If X is a convex set in R". f(x): X > Ris
a convex function, if:

flax,+(Q-a)x)<af (x,)+(1-a) (x,) for 0<a<l

il oo iela 5 5 p5lo 8 6/68




Example: a=1/2; f(y/2 + z/2) <1(y)/2 + f(z)/2

We say “strict” convexity if sign is “<” for 0< o <1.

Line joining any points
\Q‘) is above the curve /
f(z)
fy)2 + \
f(z)/2 \ ?

f(y)
f(y/2 +2/2)

y (y+2)/2 z

6 ridlgl e 1S g 5,915 7/68

Theorem 4.8 Check for Convexity of a Function

A function of n variables f (x,,x,,---,x,) defined on a convex
set S is convex if and only if the Hessian matrix of the function
is positive semidefinite or positive definite at all points in the
set S.

If the Hessian matrix is positive definite for all points in the
feasible set, then fis called a strictly convex function.

(Note that the converse of this is not true, i.e., a strictly
convex function may have only positive semidefinite Hessian
at some points; e.g., f (x)=x" is a strictly convex (e.g. from its
graph) function but its second derivative is zero at x=0.)

S ridlgl e 1S g 5,915 8/68




s ol 5l pndana alaii 5 g5l R

EXAMPLE 4.37 Check for Convexity of a Function
2 2
fX)=x+x,-1

Solution. The domain for the function (which is all values of x; and x,) is
convex. The gradient and Hessian of the function are given as

2x, 2 0
Vf = 5 , H =
X, 0 2

By either of the tests given in Theorems 4.2 and 4.3 (M;=2, M,=4, 1,=2,
A,=2), we see that H is positive definite everywhere. Therefore, f is a
strictly convex function.

S ridlgl e 1S g 5,915 9/68

EXAMPLE 4.38 Check for Convexity of a Function
fF(X)=10—4x +2x° —x°

Solution. The second derivative of the function is d?f/dx?=4-6x. For the
function to be convex, d?f/dx2=0. Thus, the function is convex only if 4-
6x=0 or x<2/3.

f(x)

The convexity check actually ‘ o)
defines a domain for the ‘ 1204
. . . . 100 .

function over which it s 8

convex. It can be seen in Fig. 4- o

30 that the function is convex \_20_-»_[

for x<2/3 and concave for T N L NE

x22/3 [a function f(x) is called 40 \

. . -804 Function is

concave if -f(x) is convex]. | lcomexforxsanm Y\
-100-
-120 \
-140 \
—1604

FIGURE 4-30 Graph of the function fix) = 10 — 4x + 2x’ — x’ of Example 4.38.
il G sazme ipalaS 5 3108 10/68
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Theorem 4.9 Convex Functions and Convex Sets

Let a set S be defined with constraints of the general
optimization problem in Egs (4.37) to (4.39) as

Sz{x‘hj(x)zo;j =ltop, g (x)<0;1 =1t0m}

Then S is a convex set if functions g; are convex and h; are
linear.

It is important to note that Theorem 4.9 does not say that the
feasible set S cannot be convex if a constraint function g;(x)
fails the convexity check, i.e., it is not an “if and only if”
theorem. There are some problems having inequality
constraint functions that fail the convexity check, but the
feasible set is still convex. Thus, the condition that g; (x) be
convex for the region g;(x)< O to be convex are only sufficient
but not necessary. 11/68

Theorem 4.10 Global Minimum

If f(x*) is a local minimum for a convex function f(x) defined
on a convex feasible set S, then it is also

Important notes:

The point may indeed be a global minimum; however, we cannot claim
global optimality using Theorem 4.10. We will have to use some other
procedure, such as exhaustive search.

* The theorem does not say that the global minimum is unique; i.e.,
there can be multiple minimum points in the feasible set, all having the
same cost function value.

S ridlgl e 1S g 5,915 12/68
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EXAMPLE 4.39 Check for Convexity of a Problem

Minimize f(x;,x,)=x,3=x,3 subject to the constraints x,20, x,<0.

This domain is

- 6x, 0
|10 —6x,

The Hessian is positive
semidefinite or positive
definite over the domain
defined by the constraints
(x,20, x,<0). Therefore, the
cost function is and
the problem is

(S gl ez iS5 5 (50,5

X-

. ,‘U

L

= [ R |
- _/// / /]
ol A
5 1 (]
0 {1 | | |
PP IP77P:

|
|

4||

\
o \‘\-4
N

¥~ Cost function contours

L —— // 70 90

—

- jﬁ;g: - e Feasible region
54

13/68

EXAMPLE 4.40 Check for Convexity of a Problem

Minimize f(x;,X,)=2X,+3X,-X,3-2x,?

subject to the constraints

X1+3X,<6, 5X;+2X,<10, x,X,20

Since all the constraint functions are linear in the variables x; and x,, the

feasible set for the problem is
the problem is

H_—6x1 0
10 -4

The eigenvalues of H are -6x,
and -4. Since the first eigenvalue
is nonpositive for x,20, and the
second eigenvalue is negative,

so the problem
cannot be classified as a

8 el (oo 1SS 5 (505

If the cost function fis also

The Hessian of the cost function is

then

4/
Cost function
contours

14/68

12/6/2025



4.6.4 Transformation of a Constraint

(the constraint boundary and
the feasible set for the problem do not change ),

Convexity of the feasible set is, however, not affected by the
transformation.
Example: a

-b<0 (a)

XX,

with x,>0, x,>0, and a and b as the given positive constants.
To check convexity:

X

=z 05
2a | X
2 1

\% 8§15 > (b)
YiXalgs X2
Xy
S ridlgl e 1S g 5,915 15/68

Both eigenvalues as well as the two leading principal minors of the
preceding matrix are strictly positive, so the matrix is positive definite
and the constraint function g, is convex. The feasible set for g, is convex.
Now: Transform the constraint by multiplying by x,x,

(since x,>0, x,>0, the sense of the inequality is not changed)

g,=a—-bxx,<0 (c)
The constraints g, and g, are equivalent and will give the same optimum
solution for the problem.

Vi - 0 -b
8,7 b 0 (d)
The eigenvalues of the preceding matrix are: 4,=-b and 4,=b.

The matrix is indefinite by Theorem 4.2, and by Theorem 4.8, the
constraint function g, is not convex.

S ridlgl e 1S g 5,915 16/68
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Thus, we lose convexity of the constraint
function and we cannot claim convexity of the
feasible set by Theorem 4.9.

Since the problem cannot be shown to be
convex, we cannot use results related to convex
programming problems.

S ridlgl e 1S g 54915 17/68

4.6.5 Sufficient Conditions for Convex
Programming Problems

Theorem 4.11 Sufficient Condition for Convex
Programming Problem

If f (x) is a convex cost function defined on a
convex feasible set, then the first-order KKT
conditions are necessary as well as sufficient
for a global minimum.

S ridlgl e 1S g 5,915 18/68
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TABLE 4-3 Convex Programming Problem-Summary of

Results
The problem must be written in the standard form: Minimize f
(x) subject to h(x)=0,g, <0

The geometrical condition that a line joining
two points in the set is to be in the set, is an “if and only
if” condition for convexity of the set.

All the constraint functions
should be convex. This condition is only sufficient but not
necessary; i.e., functions failing the convexity check may
also define convex sets.

* nonlinear equality constraints always give nonconvex sets

e linear equalities or inequalities always give convex sets

S ridlgl e 1S g 5,915 19/68

A function is convex if and only if its Hessian is
at least positive semidefinite everywhere.
A function is strictly convex if its Hessian is positive definite
everywhere.

A strictly convex function may not have a positive definite
Hessian everywhere.
Thus this condition is only sufficient but not necessary.
Changing the form of a constraint
function can result in failure of the convexity check for the new
constraint or vice versa.
f(x) is convex over the convex
feasible set S.
e KKT first order conditions are necessary as well as sufficient for
global minimum
® Any local minimum point is also a global minimum point

6 ridlgl e 1S g 5,915 20/68
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Nonconvex programming problem:

minimum as well.

Sl (rmdazme 1l 5 (55105

If a problem fails convexity checks, it does not imply
that there is no global minimum for the problem. It
could also have only one local minimum in the
feasible set S which would then be a global

21/68

Design of a Wall Bracket

The wall bracket is to be designed to

support a load of W=1.2 MN. The material —5—
for the bracket should not fail under the 7 1
action of forces in the bars. These are
expressed as the following stress J Z

7

constraints: 7

Bar 1: 0, <o,
Bar 2: 0, <o, h=30 cm, s=40 cm

o,= allowable stress for the material (16,000 N/cm?)
0, = stress in Bar 1 which is given as F,/A;, N/cm?

0, = stress in Bar 2 which is given as F,/A,, N/cm?

A, = cross-sectional area of Bar 1 (cm?)

A, = cross-sectional area of Bar 2 (cm?)

F, = force due to load W in Bar 1 (N)

F, = force due to load W in Bar 2 (N)

22/68

11
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Design variables: 4, and A4,

Objective function: f (4,,4,)=1,A4,+1,4,, cm’ (a)

l,==50cm and |, =40 cm
Forces on bar 1 and bar 2 are:

F,=(2.0E +06) N, F, =(1.6E +06) N

2.0E +06
g, _(20E+00) _16000<0 (b)
. 4,
Stress constraints:
1.6E +06
gzz(—)—l6000§0 (c)
AZ
g,=-4,<0, g,=-4,<0, (d)
(8 il oo waldS 5 55919, 23/68
Convexity
Since the is linear in terms of design variables, it is
For constraints: s
(4.0x10%) 0
v2g1 = A13
0 0
which is a positive semidefinite matrix for A,>0, so is
Similarly, is and since ¢. and ¢, are linear, they are
Thus the problem is and KKT necessary conditions are also
sufficient and any design satisfying the KKT conditions is a global
minimum.
KKT Necessary Conditions
2.0FE +06
L=(A, +12A2)+u1{(—)—16000+sf}
1
(1.6E +06) ) ) e
+u, | ——=—16000+s; |+u, (=4, +s;)+u, (=4, +s;)
2 24/68

12
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oL 2.0E+06
@, C0En_ "
o4, 4,
oL 1.6E+06
Oy, LOEFO (9)
o4, 4,
— 2 _ 2 o=
us, =0,u, 20,g, +s,=0,s7>0; i =1to4 (h)
TABLE 4-4 Definition of Karush-Kuhn-Tucker Cases with Four Inequalities
No. Case Active Constraints
1 0=0=0,u=0,u=0 No inequality active
V) (5,=0)iw,=0.1;=0,u,=0 (One inequality active at a time |
3 =0\5=0p=0,us=0
4
5
6 [T\\'o inequalities active at a time]
7
8
9 5= 0, = 3 =
10 57=0Ju=0[s:=0)us =0
11 =05 = 0Ju; = 0[5, =0

12 $1=0,$6=0,5=0uu=0 Three mequalities active at a tume
13 4h=0%5=0,5=01s5=0
14 $=0,u4,=0,5=0.5,=0
15 $1=0,5=0,5=0,54=0
16 $1=0,5=0,5=0,5=0 Four mequalities active at a tume

25/68

Note that any case that requires s;=0 (i.e., g;=0) makes the
area A,=0. For such a case the constraint g, of Eq. (b) is
violated, so it does not give a candidate solution.

Similarly, s,=0 makes A,=0, which violates the constraint of
Eq. (c).

Therefore, all the cases requiring either s,=0 and/or s,=0 do
not give any candidate solution.

S il oz 0S5 (55105 26/68
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Case 1: u;=0, u,=0, u;=0;"t=0. This case gi ;=0 and /,=0 in Egs. (f)
and (g) which is not acceptable.

Case 2: 5,=0, u,=0, u;=0, U;=8._This gi 5=0 in Eq. (g ) which is not
acceptable.

Case 3: u;=0, 5,=0, UW"\ Eq. (f) which is not
acceptable.

Case 6:5,=0, 5,=0, u;=0, u,=0.
From Equations (b) and (c): A;*=125cm?, A,*=100 cm?.
From Equations (f) and (g): u;,=0.391>0 and u,=0.25>0,

A,*=125 cm?,
A,*=100 cm?
The cost function at optimum: f¥=50(125)+40(100) or f*=10,250 cm?3.
The gradients of active constraints: (-(2.0*108)/A,2, 0) and (O, -
(1.0*10°)/A,%). These vectors are linearly independent, and so the
minimum point is a of the feasible set.

S ridlgl e 1S g 5,915 27/68

asle,d bomd oo aan g0 U god,S Jo 1) 3 Pluwe

3) 61, 69
3) 1,8,16,17, ok sl s

12/6/2025
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. Vgi(x)
In the constrained case, we e
must also consider active } s e
constraints at x* to determine d a \

feasible changesd. We will / q “I\\Q%
consider only the points gx)=0

x=x*+d in the neighborhood of x* that satisfy the active constraint
equations. Any d # ( satisfying active constraints to the first order
must be in the constraint tangent hyperplane. Such d’s are then
orthogonal to the gradients of the active consgfaints since
constraint gradients are normal to the constraint tangent

hyperplane. g(x)=g(x)+Vg" (x")d +...
Therefore,

Vh'd =0 and Vg," d =0.

Sl G dame 10 a5 5 (5l ,5 29/68

Theorem 3.11 or Theorem 5.1.
Second-order necessary condition for general constrained problem.

Let x satisfy the first order K-T necessary conditions. Define
Hessian of the Lagrange functlon L at x" as:

VL = Vf+2vVh +Zqu,

Let there be nonzero feasible directions (d #0) satisfying the
following linear systems at the point x*:

Vh!d=0;i =1top

Vg!'d =0 (for all active inequalities (i.e. for those i with g,(x*)=0)
Then if x* is a local minimum point, then it must be true that:

0 >0 where Q =d" V’L(x ")d

cannot local minimum

30/68

12/6/2025
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Theorem 3.12 or

Let X" satisfy the first-order K-T necessary conditions for the general
optimum design problem. Define Hessian of the Lagrange function L at
X as: , N
VAL =Vf +) v Vh + Y u Vg,
i=l i=l

Define nonzero feasible conditions(d # 0) as solutions of the linear

systems:
Vh!d=0;i =1top (5.10)
Vg!d =0 (for active inequalities with u>0) (5.11)

Alsoletvg'd <0 for those constraints with u;=0. (5.12)
If 0>0 where Q =d"V’L(x")d then

X" is an isolated local minimum point (it means that there are no other

local minimum points in the neighborhood of x"
(8 yllyl oo a5 5 55919, 31/68

Theorem 3.13 or

Let x* satisfy the first-order K-T necessary
conditions for the general optimum design
problem. Define Hessian V2L(x") for the Lagrange
function at x* as:

p m
VL =V +Y viVih +> u Vg,
i=l i=1

Then if V2L(x") is positive definite, x* is an isolated
minimum point.

S ridlgl e 1S g 5,915 32/68
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A Special Case

The total number of active constraints (with at least one
inequality) =
The number of independent design variables

aols dalgs Olgx G adads o]y Jlad 548 SV olae oKiws >
Since x* satisfies KKT conditions, gradients of all the active
constraints are linearly independent. Thus, the only solution
for the system of Egs.(5.10)( VA/d=0;i =1top )
and (5.11) (V&/d=0) is d=0 and Theorem 5.2 cannot be used.
However, since d=0 is the only solution, there are no feasible
directions in the neighborhood that can reduce the cost
function any further. Thus, the point x* is indeed a local
minimum for the cost function (see the next example) 33/68

Check for Sufficient Conditions
EXAMPLE 5.4

minimize f (x) zéx } —%(b +c)x +bex +f,
subject to a <x <d where 0<a<b<c<dandf, are specified constants

f(x) FIGURE 4-20 Graphical
J representation.

Point A, constrained local
minimum;

B, unconstrained local
maximum;

C, unconstrained local
(r3 minimum;

i

C

Sh
>
7 ’
/
o

i D, constrained local

1
d maximum.

U} I
l--=

g, =a-x £0; g,=x-d<0
1 1
L =§x3 _E(b +e)x 2 +bex +f, +u(a—x +5)+u,(x —d +573)

34/68

12/6/2025
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gzxz—(b +c)x +bc—u,+u, =0 (c)
(a—x)+s; =0, s7>0; (x —-d)+s; =0, s:>0 (d)
us, =0, u,s,=0 (e)
u, 20, u, 20 )

4 normal cases:

Case 1: u,=0, u,=0. (no constraint is active)

Eg. (c) gives two solutions as x=b and x=c.

for x=b: s,°=b-a>0; s,>=d-b>0 (g) Both points are candidate of
for x=c:s,?=c-a>0; s,2=d-c>0 (h) minimum points (unconstrained)
Check for sufficient conditions:

2
x =b; dj; =2x —(b +C)=b —c <0  alocal maximum point
X

d’f
X =cC, 5 =C -b>0 a local minimum point
dx 35/68

u, =—d* - bel=—(d —c)(d —b)

The KKT necessary condition is violated

Case 3:5,=0, u,=0.

|

x=a is a candidate minimum point. g, is active

u, =a’—(b+c)a+bc=(@-b)a—-c)>0

does not gi alid solution
since x can imultaneously

S ridlgl e 1S g 5,915 36/68
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Solution. There is only one constrained candidate local minimum point,
x=a. Since there is only one design variable and one active constraint,
the condition Vg d =0 of Eq. (5.11) gives 4 = 0as the only solution (note
that d is used as a direction for sufficiency check since d is used as a
constant in the example). Therefore, Theorem 5.2 cannot be used for a
sufficiency check.

Also note that at x=a, d °L /dx > = 2a —b —c which can be positive,
negative, or zero depending on the values of a, b, and c. So, we cannot
use curvature of Hessian to check the sufficiency condition (Strong
Sufficient).

However, from Fig. 4-20 we observe that x=a is indeed an isolated local
minimum point.

From this example we can conclude that if the number of active
inequality constraints is equal to the number of independent design
variables and all other KKT conditions are satisfied, then the candidate
point is indeed a local minimum design.

S il oz 0S5 (55105 37/68

minimize  f(x)=x,2+X,2-3X,X, Check for Sufficient Conditions
subjectto g=x,2+x,2-6<0.
L=X,2+%,2-3%,X, +U(X;2+X,2-6+5?)
a—L:le =3x,+2ux, =0

Ox,

6—L=2x2—3x1+2ux2 =0

X, :
X, 24X%,2-6+52 =0, s2>0, u >0 vl
us=0 /

3 possible cases: =5

Case 1: u=0.

i
2X 1 - 3x 2 = 0; 2x 2 - 3x 1 = 0 FIGURE 4-21 Craphical solution for Example 4.31. Local minimum points, A and B.

x, *=0,x,%*=0;1(0,00=0 s2=6 candidate minimum point
Case 2: s=0.

1 1
x1=x2=\/§,u=f x1=xz=—\/§,u=f
2 2
5
X, ==X, = =——= X, =—X, = u=—-—
2
il G sazme ipalaS 5 53108 38/68
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<

FIGURE 4-21 Graphical solution for Example 4.31. Local minimum points, A and B

s2=6£0  KKT conditions cannot be satisfied
Lx*=0,x,*=0,u" =0, f(0,0)=0,Point Oin Fig. 4-21
2.x1*=x2*=\/§, u" =%, f(x/g,\/g)z—S,PointAin Fig. 4-21

3 F=x, k= 3,u" =1, 7 (—/3,3) = -3, Point Bin Fig. 4-21
Sl G dame 10 a5 5 (5l 8 39/68

Check for Sufficient Conditions

(i) x*=(0,0),u" =0, (ii)x*:(ﬁ,ﬁ),u*:l, (iii)x*:(—\/g,—\/g),u*:% (@)

2
Lo [2 -3 , [2 0
w33 el

since eigenvalues of V°f are—land5 f is not convex

eigenvaluesof Vg are 4, = 2and 4, =2 function g is convex

Therefore, it cannot be classified as a convex programming problem
2+2u -3
-3 2+2u

For the first point x* = (0,0), u*=0, V2L becomes V’f (the constraint g(x)<0 is
inactive). In this case the problem is unconstrained and the local sufficiency requires
d"V’f (x")d >0for all d. Or, V’f should be positive definite at x*. Since both
eigenvalues of V*f are not positive, we conclude that the above condition is not
satisfied.

Therefore, x*=(0,0) does not satisfy the second-order sufficiency condition. 40/68

VL :VZf +uV2g :[

12/6/2025
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Note that since 4, = —1 and A, = 5, thematrix V°f is indefinite atx °

Therefore, the point x*=(0,0) violates the second-
order necessary condition of Theorem 4.4

requiring V’f to be positive semidefinite or definite at
the candidate local minimum point. Thus, x*=(0,0)

S ridlgl e 1S g 5,915 41/68

‘ —

At points x *(\/g,ﬁ),u* :% and x *(—\/5,—\/5),11* =

W N

:| Eigenvalues:
—_—

V2L =Vf +uV2g=[2+2u - }{3 B (3-1)-9=0
-3 2+42u -3 3
A4,=0,4,=6
Vg = i(2\/3_,2\/§) =223(L1) .. Semidefinite
It may be checked that V2L is at either of the two

points. Therefore, we cannot use Theorem 5.3 to conclude that x* is a
minimum point. We must find d satisfying Eqgs. (5.10) and (5.11). If we
let d=(d,,d,), then Vg”d =0 gives

iZﬁ(l,l){;ll}:O; or d,+d,=0
2
Thus, d,;=-d,=c, where c#0 is an arbitrary constant, and a d#0 satisfying
Vg'd =0 is given as d=c(1,-1). The sufficiency condition of Eq. (5.12)
gives
oo 3 3 1 s
O=d (V'L :c[l,—l]{ 3 3 }c{ 1}:120 >0 for c#0

S ridlgl e 1S g 5,915 42/68
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The points x* = (+/3,4/3) andx * = (—/3,—/3)satisfy the sufficiency
conditions. They are therefore isolated local minimum points
as was observed graphically in Example 4.31 and Fig. 4-21. We
see for this example that V’Lis not positive definite, but x* is
still an isolated minimum point.

Note that since f is continuous and the feasible set is closed
and bounded, we are guaranteed the existence of a global
minimum by the Weierstrass Theorem 4.1.

Also we have examined every possible point satisfying
necessary conditions. Therefore, we must conclude by
elimination that x " =(~/3,4/3) andx * = (—/3,—/3) are global
minimum points. The value of the cost function for both
points is f(x*)=-3.
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Check for Sufficient Conditions

A

49 Minimum at Point A

—g1=0 x* = (413, 4/3)
f(x*)=2/9

%»%5 Feasible region
2 B
>< Ay N vf

A

\«— Cost function contours
\
\

064

132—1— 2 3 P
FIGURE 4-22 Graphical solution for Example 4.32.

minimize  f(Xy,X,)=X;24X,%-2X;-2X,+2
subjectto g;=-2x;-x,+4<0.
8,=-X1-2X,+4<0.
The KKT necessary conditions are .4 .4 .2 *
satisfied for the point 3 3 9
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Minimum at Point A
—g;=0 x* = (4/3, 4/3)
f(x*)=2/9

We have already
recognized the
Geometrical
sufficient condition

FIGURE 4-22 Graphical solution for Example 4.32.

It can be observed in Fig. 4-22 that the vector —vy can be expressed as a linear

combination of the vectors Vg, and Vg, at point A. This satisfies the necessary
condition of Eq. (4.52). It can also be seen from the figure that point A is indeed a local
minimum because any further reduction in the cost function is possible only if we go
into the infeasible region. Any feasible move from point A results in an increase in the
cost function. 45/68

Since all the constraint functions are linear, the feasible set
The of the cost function is positive definite. Therefore, it is also
4

and By Theorem 4.11,x|*:§. Xy =3

with the cost function as
2
f(x*)=§

Note that local sufficiency cannot be shown by the method of Theorem
5.2. The reason is that the conditions of (Vg/d=0) give two equations
in two unknowns:
-2d,-d,=0, -d;-2d,=0 (b)

This is a homogeneous system of equations with a nonsingular
coefficient matrix. Therefore, its only solution is d,=d,=0. Thus, we
cannot find a @ # 0 for use in the condition of (0 >0 ), and Theorem 5.2
cannot be used. However, we have seen in the foregoing and in Fig. 4-22
that the point is actually an isolated global minimum point. Since it is a
two-variable problem and two inequality constraints are active at the
KKT point, the condition for local minimum is satisfied.
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Two Points

1. Global optimum solutions can be obtained for
problems that cannot be classified as convex
programming problems. We cannot show global
optimality unless we find all the local optimum
solutions in the closed and bounded set (Weierstrass
Theorem 4.1).

2. If sufficiency conditions are not satisfied, the only
conclusion we can draw is that the candidate point
need not be an isolated minimum. It may have many
local optima in the neighborhood, and they may all be

actually global solutions. s
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4.5 Postoptimality Analysis: Physical Meaning of
Lagrange Multipliers
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Theorem 4.7 Constraint Variation Sensitivity Theorem
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