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1. If the cost function f(x) is continuous on a closed and 
bounded feasible set, then Weierstrauss Theorem 

guarantees the existence of a global minimum. Therefore, if 
we calculate all the local minimum points, then the point 
that gives the least value to the cost function can be 

selected as a global minimum for the function. This is called 

exhaustive search. 
2. If the optimization problem can be shown to be convex, 

then any local minimum is also a global minimum; also the 

KKT necessary conditions are sufficient for the minimum 

point. 

Where can we have global optimum? 

3.5 or 4.6 Global Optimality & Convex 

Programming Problems 
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Global Optimality 

It is difficult to investigate global optimal conditions, 
except for: 

�  The convex problems to be discussed next.  

�  By using stochastic optimization methods such 
as simulated annealing or genetic algorithms if 
you are lucky (These methods are likely to give 
global optimum). 

In general, additional conditions must be imposed 
upon the model, called convexity conditions. These 
conditions must be satisfied to guarantee that a 
local constrained optimum (minimum) is also global. 
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Convex Sets  

 

x1 

x2 

A B 

A: Convex   

B: Not convex 

A set is convex if a line connecting any two points in the feasible space 
always lies in the feasible region of the design space.   

The feasible region of a 
linear program is convex. 

W 

P 

2 4 6 8 10 12 14 

2
 

4
 

6
 

8
 

1
0

 
1

2
 

1
4

 

x 

y 

3/68 ����� � �	�
��
 :��������� ��������  

On Convex Feasible Regions 

� If all constraints are linear, the feasible region is convex. 

 

� The intersection of convex regions is convex. 
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Which one is convex? 

C B 

B  ∪  C B  ⊕  C  B  ∩  C 

D A 
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Convex Function 

�Convex Functions: 

 

 

 

 

Mathematical Def.: If X is a convex set in Rn.  f(x): X → R is 
a convex function, if:  

 

x 

f(x) 
A B A: Not convex   

B: Convex 

x1, x2 any two points on the curve f(x) 

2 1 2 1( (1 ) ) ( ) (1 ) ( ) for 0 1f x x f x f xα α α α α+ − ≤ + − ≤ ≤
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Convex Functions 

Example:  α = 1/2 ;   f(y/2 + z/2) ≤ f(y)/2 + f(z)/2 

Line joining any points  

is above the curve f(x) 

x 
y z 

f(y) 

f(z) 

(y+z)/2 

f(y)/2 + 

f(z)/2 

We say “strict” convexity if sign is  “<” for 0< α <1.  

7/68 

f(y/2 +z/2) 

����� � �	�
��
 :��������� ��������  

Convex Function 

Theorem 4.8 Check for Convexity of a Function  

A function of n variables                      defined on a convex 

set S is convex if and only if the Hessian matrix of the function 

is positive semidefinite or positive definite at all points in the 

set S.  
If the Hessian matrix is positive definite for all points in the 

feasible set, then f is called a strictly convex function. 

(Note that the converse of this is not true, i.e., a strictly 

convex function may have only positive semidefinite Hessian 

at some points; e.g.,                 is a strictly convex (e.g. from its 

graph) function but its second derivative is zero at x=0.) 

1 2( , , , )nf x x x⋯

4( )f x x=
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EXAMPLE 4.37 Check for Convexity of a Function 
 

 
 

Solution. The domain for the function (which is all values of x1 and x2) is 

convex. The gradient and Hessian of the function are given as 

 

 

 

 

By either of the tests given in Theorems 4.2 and 4.3 (M1=2, M2=4, λ1=2, 

λ2=2), we see that H is positive definite everywhere. Therefore, f is a 

strictly convex function. 

2 2

1 2( ) 1f X x x= + −

1

2

2 2 0
,

2 0 2

x
f H

x

   
∇ = =   

  
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EXAMPLE 4.38 Check for Convexity of a Function 

 

 

Solution. The second derivative of the function is d2f/dx2=4-6x. For the 

function to be convex, d2f/dx2≥0. Thus, the function is convex only if 4-

6x≥0 or x≤2/3.  

2 3( ) 10 4 2f X x x x= − + −

The convexity check actually 

defines a domain for the 

function over which it is 

convex. It can be seen in Fig. 4-

30 that the function is convex 

for x≤2/3 and concave for 

x≥2/3 [a function f(x) is called 

concave if -f(x) is convex]. 
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Theorem 4.9 Convex Functions and Convex Sets 

{ }( ) 0; 1to , ( ) 0; 1toj iS x h x j p g x i m= = = ≤ =
Then S is a convex set if functions gi are convex and hj are 

linear. 

It is important to note that Theorem 4.9 does not say that the 

feasible set S cannot be convex if a constraint function gi(x) 

fails the convexity check, i.e., it is not an “if and only if” 

theorem. There are some problems having inequality 

constraint functions that fail the convexity check, but the 

feasible set is still convex. Thus, the condition that gi (x) be 

convex for the region gi (x)≤ 0 to be convex are only sufficient 

but not necessary. 

Let a set S be defined with constraints of the general 

optimization problem in Eqs (4.37) to (4.39) as 

11/68 

Important notes: 
• The theorem does not say that x* cannot be a global minimum point 

if functions of the problem fail the convexity test.  

The point may indeed be a global minimum; however, we cannot claim 

global optimality using Theorem 4.10. We will have to use some other 

procedure, such as exhaustive search. 

  

• The theorem does not say that the global minimum is unique; i.e., 

there can be multiple minimum points in the feasible set, all having the 

same cost function value. 

Theorem 4.10 Global Minimum  

If f(x*) is a local minimum for a convex function f(x) defined 

on a convex feasible set S, then it is also a global minimum. 
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This domain is convex. 

The Hessian is positive 

semidefinite or positive 

definite over the domain 

defined by the constraints  
 (x1≥0, x2≤0). Therefore, the 

cost function is convex and 

the problem is convex. 

EXAMPLE 4.39 Check for Convexity of a Problem 
 

Minimize f(x1,x2)=x1
3–x2

3 subject to the constraints x1≥0, x2≤0. 

1

2

6 0

0 6

x
H

x

 
=  − 
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Since all the constraint functions are linear in the variables xl  and x2 , the 

feasible set for the problem is convex. If the cost function f is also convex, then 

the problem is convex. The Hessian of the cost function is 

The eigenvalues of H are -6x1 

and -4. Since the first eigenvalue 

is nonpositive for x1≥0, and the 

second eigenvalue is negative, 

the function is not convex 

(Theorem 4.8), so the problem 

cannot be classified as a convex 

programming problem. 

EXAMPLE 4.40 Check for Convexity of a Problem 
Minimize f(x1,x2)=2x1+3x2-x1

3-2x2
2 subject to the constraints 

x1+3x2≤6, 5x1+2x2≤10, x1,x2≥0 

16 0

0 4

x
H

− 
=  − 
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4.6.4 Transformation of a Constraint 
Transformation of a constraint function (the constraint boundary and 

the feasible set for the problem do not change ), however, may affect its 

convexity check, i.e., transformed constraint function may fail the 

convexity check. 

 

Convexity of the feasible set is, however, not affected by the 

transformation.  

Example: 

             (a) 

 

with x1>0, x2>0, and a and b as the given positive constants.  

To check convexity: 

   

 

                                                                                                     (b) 

1

1 2

0
a

g b
x x

= − ≤

2

12

1 2 2
21 2

1

0.5
2

0.5

x

xa
g

xx x

x

 
 
 ∇ =
 
 
 
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Both eigenvalues as well as the two leading principal minors of the 

preceding matrix are strictly positive, so the matrix is positive definite 

and the constraint function g1 is convex. The feasible set for g1 is convex. 

Now: Transform the constraint by multiplying by x1x2  

(since x1>0, x2>0, the sense of the inequality is not changed) 

 

                                                                                                      (c) 

The constraints g1 and g2 are equivalent and will give the same optimum 

solution for the problem. 

 

                                                                                                      (d) 

 

The eigenvalues of the preceding matrix are: λ1=-b and λ2=b.  

 

The matrix is indefinite by Theorem 4.2, and by Theorem 4.8, the 

constraint function g2 is not convex. 

2

2

0

0

b
g

b

− 
∇ =  − 

2 1 2 0g a bx x= − ≤
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Thus, we lose convexity of the constraint 

function and we cannot claim convexity of the 

feasible set by Theorem 4.9.  

Since the problem cannot be shown to be 

convex, we cannot use results related to convex 

programming problems. 

17/68 ����� � �	�
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4.6.5 Sufficient Conditions for Convex 

Programming Problems 

Theorem 4.11 Sufficient Condition for Convex 

Programming Problem  

If f (x) is a convex cost function defined on a 

convex feasible set, then the first-order KKT 

conditions are necessary as well as sufficient 

for a global minimum. 
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TABLE 4-3 Convex Programming Problem-Summary of 

Results 

The problem must be written in the standard form: Minimize f 

(x) subject to 

1. Convex set. The geometrical condition that a line joining 
two points in the set is to be in the set, is an “if and only 

if” condition for convexity of the set. 

2. Convexity of feasible set S. All the constraint functions 
should be convex. This condition is only sufficient but not 

necessary; i.e., functions failing the convexity check may 
also define convex sets. 

    • nonlinear equality constraints always give nonconvex sets 

    • linear equalities or inequalities always give convex sets 

( ) 0, 0i jh x g= ≤

19/68 ����� � �	�
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3. Convex functions. A function is convex if and only if its Hessian is 

at least positive semidefinite everywhere. 

A function is strictly convex if its Hessian is positive definite 

everywhere.  

The converse is not true: 

A strictly convex function may not have a positive definite 

Hessian everywhere. 

Thus this condition is only sufficient but not necessary. 

4. Form of constraint function. Changing the form of a constraint 

function can result in failure of the convexity check for the new 

constraint or vice versa. 

5. Convex programming problem. f(x) is convex over the convex 

feasible set S. 

• KKT first order conditions are necessary as well as sufficient for 

global minimum 

•  Any local minimum point is also a global minimum point 
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Nonconvex programming problem: 

If a problem fails convexity checks, it does not imply 

that there is no global minimum for the problem. It 

could also have only one local minimum in the 

feasible set S which would then be a global 

minimum as well. 

21/68 ����� � �	�
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Design of a Wall Bracket 

The wall bracket is to be designed to 
support a load of W=1.2 MN. The material 

for the bracket should not fail under the 

action of forces in the bars. These are 

expressed as the following stress 

constraints: 

σa= allowable stress for the material (16,000 N/cm2) 

σ1 = stress in Bar 1 which is given as F1/A1, N/cm2 

σ2 = stress in Bar 2 which is given as F2/A2, N/cm2 

A1 = cross-sectional area of Bar 1 (cm2) 

A2 = cross-sectional area of Bar 2 (cm2) 

F1 = force due to load W in Bar 1 (N) 

F2 = force due to load W in Bar 2 (N) 

Bar 1: σ1 ≤σa 

Bar 2: σ2 ≤σa 
 h=30 cm, s=40 cm 

Total volume of the bracket 

is to be minimized. 

22/68 
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Design variables: 

Forces on bar 1 and bar 2 are: 

 Objective function:  

 Stress constraints:   

1 2andA A

3

1 2 1 1 2 2( , ) , cmf A A l A l A= +

1

1

2

2

3 1 4 2

(2.0 06)
16000 0

(1.6 06)
16000 0

0, 0,

E
g

A

E
g

A

g A g A

+
= − ≤

+
= − ≤

≡ − < ≡ − <

1 2(2.0 06) N, (1.6 06) NF E F E= + = +

l1= =50 cm and l2 = 40 cm 

(a) 

(b) 

(c) 

(d) 
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Convexity 
Since the cost function is linear in terms of design variables, it is convex. 

For constraints: 

which is a positive semidefinite matrix for A1>0, so g1 is convex. 

Similarly, g2 is convex, and since g3 and g4 are linear, they are convex. 

Thus the problem is convex, and KKT necessary conditions are also 

sufficient and any design satisfying the KKT conditions is a global 

minimum. 

KKT Necessary Conditions 

6

2 3
1 1

(4.0 10 )
0

0 0

g A

 ×
 ∇ =  
  

2

1 1 2 2 1 1

1

2 2 2

2 2 3 1 3 4 2 4

2

(2.0 06)
( ) 16000

(1.6 06)
16000 ( ) ( )

E
L l A l A u s

A

E
u s u A s u A s

A

 +
= + + − + 

 

 +
+ − + + − + + − + 

 

(e) 

24/68 



�������� ا��ا�����: 
�د
ور� و �����  12/6/2025 

13 

1 1 32

1 1

2 2 42

2 1

(2.0 06)
0

(1.6 06)
0

L E
l u u

A A

L E
l u u

A A

∂ +
= − − =

∂

∂ +
= − − =

∂
2 20, 0, 0, 0; 1to 4i i i i i iu s u g s s i= ≥ + = ≥ =

(f) 

(g) 

(h) 

25/68 

Note that any case that requires s3=0 (i.e., g3=0) makes the 

area A1=0. For such a case the constraint g1 of Eq. (b) is 

violated, so it does not give a candidate solution.  

 

Similarly, s4=0 makes A2=0, which violates the constraint of 

Eq. (c).  

 

In addition, A1 and A2 cannot be negative because the 

corresponding solution has no physical meaning.  

 

Therefore, all the cases requiring either s3=0 and/or s4=0 do 

not give any candidate solution. 

 

This leaves only cases 1 to 3 and 6 for further consideration. 
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Case 1: u1=0, u2=0, u3=0, u4=0. This case gives l1=0 and l2=0 in Eqs. (f) 

and (g) which is not acceptable. 

 

Case 2: s1=0, u2=0, u3=0, u4=0. This gives l2=0 in Eq. (g ) which is not 

acceptable. 

 

Case 3: u1=0, s2=0, u3=0, u4=0. This gives l1=0 in Eq. (f) which is not 

acceptable. 

Case 6: s1=0, s2=0, u3=0, u4=0.  

From Equations (b) and (c):  A1*=125 cm2, A2*=100 cm2.  

From Equations (f) and (g): u1=0.391>0 and u2=0.25>0,  

Therefore, all the KKT conditions are satisfied; and A1*=125 cm2, 

A2*=100 cm2   is a global minimum. 

The cost function at optimum: f*=50(125)+40(100) or f*=10,250 cm3.  

The gradients of active constraints: (-(2.0106٭)/A1
2, 0) and (0, -

(1.0*106)/A2
2). These vectors are linearly independent, and so the 

minimum point is a regular point of the feasible set. 

27/68 ����� � �	�
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3) 61, 69 
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In the  constrained case,  we 

must   also   consider   active  

constraints at x* to determine 

feasible  changes d.  We will  

consider    only    the   points 

x=x*+d in the neighborhood of x* that satisfy the active constraint 

equations. Any           satisfying active constraints to the first order 

must be in the constraint tangent hyperplane. Such d’s are then 

orthogonal to the gradients of the active constraints since 

constraint gradients are normal to the constraint tangent 

hyperplane. 

Therefore,  

0d ≠

Second Order Conditions for General Constrained 

Problems 

* *( ) ( ) ( )Tg x g x g x d= +∇ +…

0 and 0.T T

i ih d g d∇ = ∇ =

29/68 ����� � �	�
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Second Order Necessary Conditions for General 

Constrained Problems 

Let x* satisfy the first order K-T necessary conditions. Define 
Hessian of the Lagrange function L at x* as: 
 
 

Let there be nonzero feasible directions         satisfying the 
following linear systems at the point x*: 
                                                     
                  (for all active inequalities (i.e. for those i with gi(x*)=0) 
Then if x* is a local minimum point, then it must be true that: 
                   where 

2 2 * 2 * 2

1 1

p m

i i i i

i i

L f v h u g
= =

∇ = ∇ + ∇ + ∇∑ ∑
( 0)d ≠

0Q ≥ 2 *( )TQ L x= ∇d d

Theorem 3.11 or Theorem 5.1.  
Second-order necessary condition for general constrained problem.  

Note that any point that does not satisfy the second-order 

necessary conditions cannot be a local minimum point.  

0; 1 to p

0

T

i

T

i

h i

g

∇ = =

∇ =

d

d
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Theorem 3.12 or Theorem 5.2.  

Sufficient Conditions for General Constrained 

Problems 

Let x* satisfy the first-order K-T necessary conditions for the general 
optimum design problem. Define Hessian of the Lagrange function L at 
x* as: 

 
 

Define nonzero feasible conditions              as solutions of the linear 
systems: 

 

                (for active inequalities with ui>0) 

Also let                   for those constraints with ui=0.  

If           where                           then  

x* is an isolated local minimum point (it means that there are no other 
local minimum points in the neighborhood of x*)  

 

2 2 * 2 * 2

1 1

p m

i i i i

i i

L f v h u g
= =

∇ = ∇ + ∇ + ∇∑ ∑

( 0)d ≠

0; 1 to p

0

T

i

T

i

h i

g

∇ = =

∇ =

d

d

0T

ig∇ ≤d

0Q > 2 *( )TQ L x= ∇d d

(5.10) 

(5.11) 

(5.12) 
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Strong Sufficient Condition 

Let x* satisfy the first-order K-T necessary 
conditions for the general optimum design 
problem. Define Hessian ∇2L(x*) for the Lagrange 
function at x* as: 

 

 

Then if ∇2L(x*) is positive definite, x* is an isolated 
minimum point. 

2 2 * 2 * 2

1 1

p m

i i i i

i i

L f v h u g
= =

∇ =∇ + ∇ + ∇∑ ∑

Theorem 3.13 or  Theorem 5.3.  
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A Special Case 
At the candidate minimum point x* : 

The total number of active constraints (with at least one 

inequality) =  

              The number of independent design variables  

That is, there are no design degrees of freedom.  
 
Since x* satisfies KKT conditions, gradients of all the active 

constraints are linearly independent. Thus, the only solution 

for the system of Eqs.(5.10)(                                 ) 

and (5.11) (             ) is d=0 and Theorem 5.2 cannot be used. 

However, since d=0 is the only solution, there are no feasible 

directions in the neighborhood that can reduce the cost 

function any further. Thus, the point x* is indeed a local 

minimum for the cost function (see the next example) 

0; 1 to pT

ih i∇ = =d

0T

ig∇ =d

33/68 
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Check for Sufficient Conditions 

EXAMPLE 5.4 

FIGURE 4-20 Graphical 

representation.  

Point A, constrained local 

minimum;  

B, unconstrained local 

maximum;  

C, unconstrained local 

minimum;  

D, constrained local 

maximum. 

3 2

0

1 1
minimize ( ) ( )

3 2
f x x b c x bcx f= − + + +

0subject to where 0<a<b<c<d and f are specified constantsa x d≤ ≤

1 2- 0; d 0g a x g x= ≤ = − ≤
3 2 2 2

0 1 1 2 2

1 1
( ) ( ) ( )

3 2
L x b c x bcx f u a x s u x d s= − + + + + − + + − +

34/68 
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a local minimum point 

4 normal cases: 

Both points are candidate of 

minimum points (unconstrained) 

a local maximum point 

2

1 2( ) 0 ( )
L

x b c x bc u u c
x

∂
= − + + − + =

∂
2 2 2 2

1 1 2 2( ) 0, 0; ( ) 0, 0 ( )a x s s x d s s d− + = ≥ − + = ≥

1 1 2 20, 0 ( )u s u s e= =

1 20, 0 ( )u u f≥ ≥

Case 1: u1=0, u2=0. (no constraint is active) 

Eq. (c) gives two solutions as x=b and x=c. 

for  x=b: s1
2=b-a>0 ; s2

2=d-b>0    (g) 

for  x=c: s1
2=c-a>0 ; s2

2=d-c>0     (h) 

Check for sufficient conditions: 

 2

2
; 2 ( ) 0

d f
x b x b c b c

dx
= = − + = − <

2

2
; 0

d f
x c c b

dx
= = − >

35/68 

x=a is a candidate minimum point. g1 is active 

does not give any valid solution 

since x cannot be simultaneously 

equal to a and d. 

The KKT necessary condition is violated 

from (d) x d→ =
Case 2: u1=0, s2=0. 

Case 3: s1=0, u2=0. 

Case 4: s1=0, s2=0. 

2

1 ( ) ( )( ) 0u a b c a bc a b a c= − + + = − − >

2

2 [ ( ) ] ( )( )u d b c d bc d c d b= − − + + = − − −

2Since , is 0d c b u> > <
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Solution. There is only one constrained candidate local minimum point, 

x=a. Since there is only one design variable and one active constraint, 

the condition                  of Eq. (5.11) gives           as the only solution (note 

that    is used as a direction for sufficiency check since d is used as a 

constant in the example). Therefore, Theorem 5.2 cannot be used for a 

sufficiency check.  

Also note that at x=a,                                     which can be positive, 

negative, or zero depending on the values of a, b, and c. So, we cannot 

use curvature of Hessian to check the sufficiency condition (Strong 

Sufficient).  

However, from Fig. 4-20 we observe that x=a is indeed an isolated local 

minimum point.  

 

From this example we can conclude that if the number of active 

inequality constraints is equal to the number of independent design 

variables and all other KKT conditions are satisfied, then the candidate 

point is indeed a local minimum design. 

d

0d =1 0g d∇ =

2 2/ 2d L dx a b c= − −

37/68 ����� � �	�
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Case 1: u=0. 

Case 2: s=0. 

3 possible cases: 

candidate minimum point 

minimize     f(x)=x1
2+x2

2-3x1x2  

subject to    g=x1
2+x2

2-6≤0. 

L=x1
2+x2

2-3x1x2 +u(x1
2+x2

2-6+s2) 

 x1
2+x2

2-6+s2 =0, s2 ≥0, u ≥0 

1 2 1

1

2 1 2

2

2 3 2 0

2 3 2 0

L
x x ux

x

L
x x ux

x

∂
= − + =

∂

∂
= − + =

∂

us=0  

1 2 2 12 3 0; 2 3 0x x x x− = − =

1 2* 0, * 0; (0,0) 0x x f= = =  s2 =6 

1 2

1
3,

2
x x u= = = 1 2

1
3,

2
x x u= = − =

1 2

5
3,

2
x x u= − = = − 1 2

5
3,

2
x x u= − = − = −

Check for Sufficient Conditions 
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Case 3: u=0, s=0. 

KKT conditions cannot be satisfied  s2 =6≠0 

*
1 2

*

1 2

*

1 2

1. * 0, * 0, 0, (0,0) 0,

1
2. * * 3, , (

Point Oin Fig. 4-21

Point Ain 3, 3) 3,
2

1
3. *

Fig. 4-21

Point Bin Fig. 4* 3, , ( 3, 3) 3, 21
2

-

x x u f

x x u f

x x u f

= = = =

= = = = −

= = − = − − = −
39/68 ����� � �	�
��
 :��������� ��������  

Check for Sufficient Conditions 

function g is convex 

f  is not convex 

Therefore, it cannot be classified as a convex programming problem 

* ** 1
( )

1
( ) * (0,0), 0, ( ) * ( 3, 3),* ( 3, 3), ,

2
( )

2
ii x ui x u iii x u a== = = == − −

2
2 0

0 2
g

 
∇ =  

 

2
2 3

3 2
f

− 
∇ =  − 

2
1 2eigenvalues of are 2and 2g λ λ∇ = =

2since eigenvalues of are 1and5f∇ −

2 2 2
2 2 3

3 2 2

u
L f u g

u

+ − 
∇ = ∇ + ∇ =  − + 
For the first point x* = (0,0), u*=0,         becomes         (the constraint g(x)≤0 is 
inactive). In this case the problem is unconstrained and the local sufficiency requires  
                                for all d. Or,        should be positive definite at x*. Since both 

eigenvalues of     are not positive, we conclude that the above condition is not 

satisfied. 

Therefore, x*=(0,0) does not satisfy the second-order sufficiency condition. 

2L∇ 2f∇

2f∇
2 *( ) 0Td f x d∇ >

2f∇

40/68 
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Therefore, the point x*=(0,0) violates the second-

order necessary condition of Theorem 4.4 
(��3��4 ����� )*�� ������ ���� )��& � <'. =�:)  

requiring       to be positive semidefinite or definite at 

the candidate local minimum point. Thus, x*=(0,0) 

cannot be a local minimum point. 

2 *

1 2Note that since 1 and 5, the matrix is indefinite atf xλ λ= − = ∇

2f∇

41/68 ����� � �	�
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2

1 2

(3 ) 9 0

0, 6

Semidefinite

λ
λ λ
− − =

= =

∴

* *1 1
At points * ( 3, 3), and *( 3, 3),

2 2
x u x u= − − =

2 2 2
2 2 3 3 3

3 2 2 3 3

u
L f u g

u

+ − −   
∇ = ∇ + ∇ = =   − + −   

It may be checked that       is not positive definite at either of the two 

points. Therefore, we cannot use Theorem 5.3 to conclude that x* is a 

minimum point. We must find d satisfying Eqs. (5.10) and (5.11). If we 

let d=(d1,d2), then                     gives 

Thus, d1=-d2=c, where c≠0 is an arbitrary constant, and a d≠0 satisfying 

                is given as d=c(1,-1). The sufficiency condition of Eq. (5.12) 

gives 

(2 3,2 3) 2 3(1,1)g∇ = ± = ±
2L∇

0Tg d∇ =

1

1 2

2

2 3(1,1) 0; or 0
d

d d
d

 
± = + = 

 

[ ]2 2
3 3 1

( ) 1, 1 12 0 for 0
3 3 1

TQ d L d c c c c
−   

= ∇ = − = > ≠   − −   

0Tg d∇ =

Eigenvalues: 
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Note that since f is continuous and the feasible set is closed 

and bounded, we are guaranteed the existence of a global 

minimum by the Weierstrass Theorem 4.1.  

 

Also we have examined every possible point satisfying 

necessary conditions. Therefore, we must conclude by 

elimination that                      and                       are global 

minimum points. The value of the cost function for both 

points is f(x*)=-3. 

* ( 3, 3)x = * ( 3, 3)x = − −

The points                and                  satisfy the sufficiency 

conditions. They are therefore isolated local minimum points 

as was observed graphically in Example 4.31 and Fig. 4-21. We 

see for this example that      is not positive definite, but x* is 

still an isolated minimum point. 

 * ( 3, 3)x =

2L∇

* ( 3, 3)x = − −

43/68 ����� � �	�
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The KKT necessary conditions are 

satisfied for the point 

Check for Sufficient Conditions 

minimize     f(x1,x2)=x1
2+x2

2-2x1-2x2+2  

subject to    g1=-2x1-x2+4≤0. 

                    g2=-x1-2x2+4≤0. 
* * * *

1 2 1 2

4 4 2 2
, , , ,

3 3 9 9
x x u u= = = =

44/68 
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We have already 

recognized the 

Geometrical 

sufficient condition 

It can be observed in Fig. 4-22 that the vector          can be expressed as a linear 

combination of the vectors        and        at point A. This satisfies the necessary 

condition of Eq. (4.52). It can also be seen from the figure that point A is indeed a local 

minimum because any further reduction in the cost function is possible only if we go 

into the infeasible region. Any feasible move from point A results in an increase in the 

cost function. 

1g∇ 2g∇
f−∇

45/68 

This is a homogeneous system of equations with a nonsingular 

coefficient matrix. Therefore, its only solution is d1=d2=0. Thus, we 

cannot find a          for use in the condition of (        ), and Theorem 5.2 

cannot be used. However, we have seen in the foregoing and in Fig. 4-22 

that the point is actually an isolated global minimum point. Since it is a 

two-variable problem and two inequality constraints are active at the 

KKT point, the condition for local minimum is satisfied. 

Since all the constraint functions are linear, the feasible set S is convex. 

The Hessian of the cost function is positive definite. Therefore, it is also 

convex and the problem is convex. By Theorem 4.11,                  satisfies 

sufficiency conditions for a global minimum with the cost function as      

0d ≠

2
( *)

9
f x =

Note that local sufficiency cannot be shown by the method of Theorem 

5.2. The reason is that the conditions of (                )  give two equations 

in two unknowns: 

                                  -2d1-d2=0, -d1-2d2=0                                  (b) 

0T

ig∇ =d

0Q >

* *
1 2

4 4
,

3 3
x x= =
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1. Global optimum solutions can be obtained for 

problems that cannot be classified as convex 

programming problems. We cannot show global 

optimality unless we find all the local optimum 

solutions in the closed and bounded set (Weierstrass 

Theorem 4.1). 

 

2. If sufficiency conditions are not satisfied, the only 

conclusion we can draw is that the candidate point 

need not be an isolated minimum. It may have many 

local optima in the neighborhood, and they may all be 

actually global solutions. 

Two Points 

47/68 

 !234 5� 	� 0�� !���� <'. =�: *x

���4 %�	�
�� )9��4 ������(  ��: %�	�
�� )�:�� ������ 9,� �@��( 

 9,� 9�A� ��/� 
)9,� ��� !� �B��� ������ !234(  

2L∇2L∇9��4 9�A� ��/� 

 ���/� �� ����� )���C ��$��D"� ���/�
9,� 0�/� ���+ 

 )         EF 9,� )*�� ������     � ( *x 0d =

  '�           !�,��� 0d ≠
0

0

T

T

g d

h d

∇ =

∇ =

0Q <
      ) ���' 9��4 )*�� ������ 

%�: G34 �� !���� <'. =�: ( 

*x

0Q ≥
 %�: %�	�
�� �� !���� <'. =�: 

0Q >
 )9,� ��� !� �B��� )*�� ������ !234 ( 

0Q =
)�:�� ������ 9,� �@�� !234 
 9��4 ��� !� �B��� )�� (  
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!234 5� 	� 0�� !���� <'. =�: 

 ��: %�	�
�� )�:�� ������ 9,� �@��( 

        9��4 9�A� ��/� 

     !�,���           '� 

%�: %�	�
�� �� !���� <'. =�: 

 

) 9,� �@�� !234
�:�� ������   )��

9��4 ��� !� �B���( 

) )*�� ������ !234
9,� ��� !� �B���  ( 

         )   ���' 9��4 )*�� ������
%�: G34 �� !���� <'. =�:(       

��$��D"� ���/� ����� )���C  9,� 0�/� ���+ ���/� �� 

)EF            �       9,� )*�� ������  (   

              9,� 9�A� ��/�)9,� ��� !� �B��� ������ !234( 

���4 %�	�
�� )9��4 ������( 

*
x

2L∇ 2
L∇

0d =

0Q ≥

0d ≠
0

0

T

T

g d

h d

∇ =

∇ =

0Q >0Q =

*
x

0Q <
*x
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������� ����� � �� !"#$ �� �� � %��& �� �	 ��' �(���:  

3) 84, 93  

3)  1,8,16,17, 29, 30, 46, 61, 69 )*�+ ��$ �����: 
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3.7  ��*�� ) ��J� EF)9�,��� ��*��( 

•!/��2� -����D� 6��7 ��J� 9��4 !� ���D� )K/� ��$�"��	�F  
��L!* !���� !� 1���M ��*�� EF ) ��J� �� ��*�� 9�,���  

!"8��: )� ��: !& )M�N�� �J� 	� !���' )���C ��J� 9,�. 

• -����D� 6��7 ��J� )O��� !��P$ � ��$��D"� )���C( 	� �Q�  
���D� ��$�"��	�F )#*"R� )� �4��� �	�� ),	�� 	��+ ���
 )��  

�� ��	 9�,��� O��� !��P$ 9��4 !� -����D� ���� ���+  
�S��& ��$��8 ��&. 

4.5 Postoptimality Analysis: Physical Meaning of 

Lagrange Multipliers 

51/68 ����� � �	�
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• 	� ��� ��*�� T�� ��$��8 ��& !& !*L�� ������ �'�, �� ���+:   

                                                                                      

 

))�/� �� ���� )*/� ���+ !& �#U�4( �� %�: �9,. )� ��$��8 ��4��� 
)"+� ���� ��+ '� �#U ���D� ���& !V )+�#�� ���� O��� !��P$ )� �"��. 

•W�� 9�,��� !� ���/� )@�P�� X��N Y4��
. �"8 )� ��: !& 	� 
��$���	�& )*�M )� �4��� 	���� ��#� :���. ���/� )@�P�� P�4 1��4 �$��8 

��� !& ��V X��N Y4��
. ���+ ”[�4   “  ���� )#���4 ��:��. 1�P�� �� ���  
X���N )� ��4��� ���� !/��2� X��/� ����� 1��& !���� +��� �� ����P� 

]�"�
 1
 �$ %��#",� �4�:. 

•]�"�
 ^���+ !���4 ���+ 0��+ )!M��_� ��+ ( �	 `	P� )� ��& 	� )�	�U  
!& ����� 1��& ^���+ !���� 1
 �	 5V�& ��& )�. 

( ) 0 and ( ) 0i jh X g X= ≤
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 اثرات تغییر در حدود قیود

•���� W�� -����D� 6��7 ��J� )O��� !��P$ � ��$��D"� )���C(  
9��4 !� ���� ^���+ 5� !*L�� �'�, !��J� �� �'�, !2��	 �	��4�",�  

��' �	 	� ��4 )� ����
: 

 

 
 

• 0�� 5V�& -����D� ��)�#U ) ����$ 	� ( 	����+ ���� ��	��: 

min ( )

( ) 0 ; 1 to

( ) 0 ; 1 to

i

j

f X

h X i p

g X j m

= =

≤ =

min (X)

(X) ; 1 to

(X) ; 1 to

i i

j j

f

h b i p

g e j m

= =

≤ =
53/68 

• ���� ��J� !234 !& 9,� �:�	 !*L�� ��$	���� !� ���7b  �e 
 �	�� ) "��: 

 

• ^���a�$ !��P$ O��� ��J� 	��3�P�4  !�b � e 9,� !"����: 

    

      )���� ) "�� !� !��P$ O��� b��Ub �e    )�	��M )�/� 9��4 <�*/�
 ����f  �� !&X��  bi �ej  �:��9��4 9,� 	�. 

 

• !�K+3.14   1��4 �� !� ��' )�P7 -�3"�� !�,��� ���� �	 )$�	
)� �$�    . 

),(** ebXX =

( , )f f b e=

and
j i

f f

e b

∂ ∂
∂ ∂
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 حساسیت تغییر قید 3.14قضیه 

T�� ���& O����                                                         ��  
�� !���� c"�� !",��F !":�� ��:��. ���a�$ T�� ���&      5�  

!234 ���� �:�� !& %���$ X���N     �     ^ �$ d���: <'. 1�&  
�&�� � �$ d���: )��& e�K+ 12.3 �	 ���� 5� e234 ������  

)*�� �B��� �! ��� ���� !*L�� �� !& 	� -.��/� ��' f��/�  
%�: �4�^ %�	�
�� ���&. 

( ) ( ) ( ), j=1 to m, , i=1 to p,j ig X h X f X

*
X

*
jv

min (X)

(X) 0 ; i=1 to p

(X) 0 ; j= 1 to m

i

j

f

h

g

=

≤

*
ju

(3.69)  

(3.70)  

Theorem 4.7 Constraint Variation Sensitivity Theorem 

55/68 ����� � �	�
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•�
� ���� �$                   9,	� �:�� !& ���� �             ^ %� 4
 6��7 

                ��Le* !��J� �'�, ^g�� !& 	� !���/� ��$ (3.69) �� (3.70) 
f��/� ^%�: 5� O��� !",��F c"�� ��hF '� b � e 	� ) ����$ b=0 � e=0  
�$��8 ���. 1�P�� �� ���: 

 
 

(3.71)   
 

(3.72)   

 

•!�K+ d3� ���� ���+ ������4 !& !� �@: )  ( !":�4 )� �:4� !� 	�& 
��	 )�. 

( ) 0=Xg j0* >ju

( )ebX ,*

*
*

*
*

*

*

, Now: ,

0

0

( (0,0))
, i=1 to p

( (0,0))
, =1 to m

i

i

j

j

L f vh ug h b g e

L f
v

b b

L f

f x
v

b

f
u

e

x
u j

ee

= + + = ≤

∂ ∂
= + = →

∂ ∂

∂ ∂
= + = →

∂ ∂

∂
= −

∂

∂
= −

∂
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(0,0) (0,0)
( , ) (0,0)i j i j

i j

f f
f b e f b e

b e

∂ ∂
= + +

∂ ∂

* *( , ) (0,0)i j i i j jf b e f v b u e= − −

* *( , ) (0,0)i j i i j jf f b e f v b u e∆ = − = − −
57/68 

i�� -����D� O��� !��P$ �� ���D� j�C 9,�	 ���+ 	� ) ����$ �#U �� 
%��#",� '� !�K+ 3.14 : 

 

 
d�� 	�*�� !���� 0�� O��� !��P$ �� X��  b � e  �! -	�U ��' 9,�: 

 
 
 
 

�� )��P ��7 !���/� ��$ (3.71) � (3,72) ��	�� : 

����� � �	�
��
 :��������� ��������  

•!7��: 

�
� d���: !�K+ 3.14 %�	�
�� ^���4 ��7� c"�� ��$ )��N 

-.��/� )71.3( � )72.3( �� ��� !�K+ )#4 )�4 ��:. )�/� ��� 

-�3"�� �@�� 9,� ��7� !":�� ��:�� )�� �� ��� !�K+ 1�:��7� 

���K� )�4 ��:. 

• ����            ���� ���+ 0�/� ������4 	� e234 ��J� : 
 
�� ��'
 1��& ��+ 0�/� ��	��: 

    

 

∑∑ −−=∆
j

jj

i

ii eubvf
**

0≥u
00 >=→= jjj egg

58/68 ����� � �	�
��
 :��������� ��������  



�������� ا��ا�����: 
�د
ور� و �����  12/6/2025 

30 

�+��� 	��"4� �� 9���� !& �� ��'
 �'�, ^��+ 6��7 ��J� 

1��� ���D� �4��� � �� ���J� ���� )���� ���4(. 

  

 

 

 

 ��k ���+0��+   '� �"�&          9,� ��� �� 	��"4� ���' 9,� 

  �:�� 1
 �� ����� �+��� ��. 

 

 ���� ���+ ��� Y4��
. X��N !_�"4 	� )#���4�:��. 

*

if :

0 , 0

( ) (0) 0

j j

j j j

u e

f f e f u e

< >

∆ = − = − >

0ju ≥

59/68 

x<0 x<1 

0 1 

x 

( )jf e(0)f

����� � �	�
��
 :��������� ��������  

0�A� :!��P$ O��� ��	 ��+ ���� ���D� �Q� 

•��L e* 0�A� 	� %�: �&l3.28 : 

 

 

 

 5���& %�	�
�� �	 )��& =�: �$ � <'. =�: �$ !& !234: 

2 2

1 2 1 2 1 2

2 2

1 2 1 2

min ( , ) 3

( , ) 6 0

f x x x x x x

g x x x x

= + −

= + − ≤

* * * *

1 2

1
3 , , ( ) 3

2
x x u f X= = = = −
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•�$ !V X��N Y4��
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