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ENS A TSt OB EIatatl  Complex numbers can be added, subtracted.

Mor multiplied, and divided. If z; = a; 4 1b, and 2, = a, + 1b,. these operations
s Wrn ity are defined as follows.

Addition: 214+ 22 = (a1 + iby) 4 (a2 4+ ib2) = (a1 + a2) + i(by + b2)

Subtraction: z21—22 = (a1 + i) — (a2 + ib2) = (a1 — a2) + i(by — b2)

’ = >\

Multiplication: z; - zo = (a1 + iby)(az + iby)

(a) Vector sum = ayaz — b1bs + i(braz + a1bs)
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0s @ 5‘3’:' The symbol arg(z) actually represents a set o

values, but the argument # of a complex number that lies in the interva

Figure 1.7 Polar coordinates in the  —7 < # < 7 is called the principal value of arg(z) or the principal argu

complex plane ment of z. The principal argument of z is unique and is represented by th
symbol Arg(z), that is,

T'—T\l”(?-*‘“} -7 < Arg(z) < 7.
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and so (9) yields

GERY GRS TSEAVSIIEN When 2 = cosf +isinf, we have |z] =r =1, i‘t T 1 10
Yy,
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This last result is knov. n as de l\Iowre s formula anl is useful in deriving 2, ; -?
ertain trigonometric identities involving cos n# and sinnf. See Problems 33 C{J %
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| EXANMPLE 4 de Moivre’s Formula

From (10), with 8 = 7/6, cos 8 = \/3/2 angd sinf = 1/2: {
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Definition 2.3 Parametric Curves in the Complex Plane

If z(#) and y(¢) are real-valued functions of a real variable £, then the
set (' consisting of all points z(t) = z(t) + iy(t), a <t < b, is called a
parametric curve or a complex parametric curve. The complex-
valued function of the real variable ¢, z(t) = =z(t) 4+ iy(f), is called a
parametrization of C.
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Line Segment 1,\ 'ﬁ""‘
A parametrization of the line segment from z to z; is: 1

2(t) =20(1=t)+23t, 0Z<t<L

Ray o t=g
A parametrization of the ray emanating from zy and containing z is:

2(t) =20(1—=t) + 1t, 0<t<o0. rd
Circle 2z I

A parametrization of the circle centered at zp with radius r is: o
2(t) = zp+r(cost+isint), 0<t< 2. (9)

In exponential notation, this parametrization is:

=i < 2x.

EY, Frunglaicn,
Clﬂ-‘ﬂﬁ by Z‘L «3(:)&.._{

Image of a Parametric Curve under a Complex
Mapping

If w= f(z) is a compler mapping and if C is a curve parametrized by
2(t), a <t <b, then

w(t) = f(z2(£)), a<t<bh (11)

w) EXANMPLE 4 Image of a Parametric Curve
—

t<n Find the image of the semicircle shown in color in Figure 2.6 under the compl
mapping w = z2.
Solution Let C denote the semicircle shown in Figure 2.6 and let C’ deno
its image under f(z) = 2%. We proceed as in Example 3. By setting 2o =

and - =2 in ( l(l ) we obtain the following parametrization of C:
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1/r
1/=z

Figure 2.39 The reciprocal mapping

EXAMPLE 2 Image of a Line under w =1/

Find the image of the vertical line x = 1 under the reciprocal mapping

\.i\ Z+—?.-

Figure 2.42 The reciproc mappl

Pp— e —— A
w=1/z. S
Solution The vertical line z = 1 consists of the set of points 2z = 1 + iy,

-0 < y < oo, After replacing the symbol z with l s l(u inw = 1/z and
qimplifyinp;, we obtain: = J_ P l-.. L a
z 1+nl \ "'[3 TR
\ —'1-\ V= @ = . +3 o~ |
= 1+I’J l+1,\'2 l+y2, <

It follows that the image of the vertical line x = 1 under w = 1/2z consists of
all points u 4 iv satisfying:

1 -
. v - and

(3)

-00 < Y < 00.

We can describe this image with a single\Cartesian equation by eliminating
the variable y. Observe from (3) that v*"= —yu. The first equation in (3)

implies that u # 0, and so can rewrite this equation as y = —v/u. Now we
substitute y = —v/u into the first equation of (3) and simplify to obtain the
quadratic equation u

2 — u 4+ v2 = 0. Therefore, after completing the square

(4)

The equation in (4) defines a circle centered at (% 0) with radius % However,
because u # 0, the point (0, 0) is not in the image. Using the complex variable
w = u + iv, we can describe this image by | — | = 5. w # 0. We represent
this mapping using a single copy of the complex plane. In Figure 2.43, the
line r = 1 shown in color is mapped onto the circle |w - %| = % excluding the
point w = 0 shown in black by w = 1/=z.
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Figure 2.41 Complex conjugation



Definition 2.8 Limit of a Complex Function

Suppose that a complex function f is defined in a deleted neighborhood
of zp and suppose that L is a complex number. The limit of f as 2
tends to z; exists and is equal to L. written as llm f(z) =L, if

for every £ > 0 there exists a 4 > 0 such that |f(z) — L| <’. £ whenever

IlF &":‘_\2) -'F\zo)/ then e &% f w Y3 O =,

Z -)2 cpm-muaub

EXAMPLE 1 A Limit That Does Not Exist
Show that lim

o does not exist. z ‘g
AZ

Solution We show that this limit does not exist by finding two different ways

al

of letting z approach 0 that yield different values for lim % First, we let 2 oy - ‘>
approach 0 along the real axis. That is, we consider complex numbers of the ’_-r s Z-.; ﬂ’.;
form z = r + 07 where the real number r is approaching (. For these points 2- ‘v
we have: z
2 0
lina;zlimr_l_ L = 2)

z—0x —0i z— o \zl:lﬁz“‘_&

On the other hand, if we let z approach 0 along the imMkinary axis, then i
z = 0 + iy where the real number y is approaching (. For |this approach we l h E
SIRezl4 )¢ Lo

have:
= lim 2 _ iy (-1)= (3) ‘.:'Ihzl'l‘ 1]:“1

y—00—iy y—0
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Since the values in (2) and (3) are not the same, we conclude that hm does

not exist. ‘ O i lo

2
Reielo) <

Suppose that f(z) = u(z, y) +iv(z, y), 20 = o + iyp. and L = up + ivp.
Then lim f(z) = L if and only if

Z—2p

lim u(z, y) =uy and lim UL, Y) = Y.
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Definition 3.1 Derivative of Complex Function

Suppose the complex function f is defined in a neighborhood of a point
zp. The derivative of f at zp, denoted by_f'(zg). is




Theorem 3.4 Cauchy-Riemann Equations

Suppose f(z) = u(zx, y) + tv(x, y) is differentiable at a point z = x + y.
Then at z the first-order partial derivatives of u and v exist and satisfy
the Cauchy-Riemann equations

du v du Jdv

Proof The derivative of f at z is given by .f__.. “-‘_iv.

vey _ 1 J(2+A2) = f(2)

)= jim LE2I=IE), ®

By writing f(z) = u(z, y) + iv(x, y) and Az = Ax + iAy, (2) becomes

. u(lz+Axr,y+ Ay) +iv(r + Az, y + Ay) — u(z,y) — iv(z,y)
) lim - . (3)
Az—0 Ar 4+ iAy

Since the limit (2) is assumed to exist, Az can approach zero from any con-
venient direction. In particular, if we choose to let Az — 0 along a horizontal

line, then Ay = 0 and Az = Azx. We can then write (3) as Az
bras u(z + Az,y) — u(z,y) + i [v(z + Az, y) — v(z,y)] L
f(z) = Jim — " .y 2%
oy WEHATY) —u(my) o+ Azy) —v(z,)
Az—0 Ax Az—0 Ax )

The existence of f'(z) implies that each limit in (4) exists. These limits are
the definitions of the first-order partial derivatives with respect to x of u and
v, respectively. Hence, we have shown two things: both du/dx and dv/dx
2xist at the point z, and that the derjyative of f is

N
O ,- (5)
7,
We now let Az — 0 along a vertical life. With Ar = 0 and Az = iAy. R
(3) becomes Al=04
iy _ e Wz y+ Ay) = u(z, y v(z,y+Ay) =v(z,y)
r'e) = m ==y S Ay O
In this case (6) shows us that du/d) and dv/Py exist at z and that
f'(z) = (7)

By equating the real and imaginary parts of (5) and (7) we obtain the pair of
equations in (1). S



f(z) = = + 4iy is not differentiable at any point 2. If we identify « = r and
v = 4y, then du/dr =1, dv/dy =4, du/dy = 0,and dv/dzx = 0. In view of

du ov
or 17 5 dy =

the two equations in (1) cannot be simultaneously satisfied at any point 2. In
other words, f is nowhere differentiable.
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A Sufficient Condition for Analyticity By themselves, the
Cauchy-Riemann equations do not ensure analyticity of a function f(z) =
u(x, y) + iv(z, y) at a point z = z 4 iy. It is possible for the Cauchy-
Riemann equations to be satisfied at z and yet f(z) may not be differentiable
at z, or f(z) may be differentiable at =z but nowhere else. In either case, f
is not analvtic at z. See Problem 35 in Exercises 3.2. However, when we
add the condition of continuity to u and v and to the four partial derivatives
ouf/dzx, dufdy, dv/Oz, and dv/dy, it can be shown that the Cauchy-Riemann
equations are not only necessary but also sufficient to guarantee analyticity
of f(z) = u(z, y) +iv(x, y) at z. The proof is long and complicated and so
we state only the result.

Theorem 3.5 Criterion for Analyticity

Suppose the real functions u(z, y) and v(z, y) are continuous and have
continuous first-order partial derivatives in a domain D. If u and v satisfy
the Cauchy-Riemann equations (1) at all points of D, then the complex
function f(z) = u(z, y) + iv(x, y) is analytjc in D.
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Polar Coordinates In Section 2.1 we saw that a complex function

can be expressed in terms of polar coordinates. Indeed. the form f(z) =
u(r. @) + iv(r. 0) is often more convenient to use. In polar coordinates the
Cauchy-Riemann equations become

= _:___ (10)

The polar version of (9) at a point 2z whose polar coordinates are (r. #) is
then

=t (Jeidt) Lo (T2 an
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EXANMPLE 3 Using Theorem 3.5
. T ; y
For the function f(z) = — i
)= 3y~ im
are continuous except at the point where

the real functions u(r, y) =

33
x

——— and v(x. = ——
22 4+ y* = 0, that is, at 2 = 0. Moreover, the first four first-order partial

derivatives

du y? =2 du 2Ty . .
r — (22 +y2)% y (2 +y2)? £ s m\ﬂ‘@ﬁ
v 2ry dv Yy -z

=@ M T e j

are continuous except at z = (. Finally, we see from

du _ y*=x* v d&u_ 2zy _ Ov
gr " @HyR dy By @4y oz
that the Cauchy-Riemann equations are satisfied except at 2 = (. Thus we
conclude from Theorem 3.5 that f is analytic in any domain D that does not
contain the point z = (.

Sufficient Conditions for Differentiability

If the real functions u(x.y) and v(x, y) are continuous and have continu-
ous first-order partial derivatives in some neighborhood of a point z, and
if u and v satisfy the Cauchy-Riemann equations (1) at z, then the com-
plex function f(z) = u(x, y)+iv(z, y) is differentiable at z and f'(z) is
given by du dv dv _du

(z -——---—=——1—.
f(2) dr or dy dy

I EXAMPLE 4 A Function Differentiable on a Line

In Example 2 we saw that the complex function f(z) = 222 + y + i(y* — z)
was nowhere analytic, but yet the Cauchy-Riemann equations were satisfied
on the line y = 2x. But since the functions u(z. y) = 222 + y, du/dr = 4z
dufdy =1, v(z, y) = y* =z, dv/dr = —1 and v /dy = 2y are continuous at
every point, it follows that f is differentiable on the line y = 2x. Moreover,
from (9) we see that the derivative of f at points on this line is given by

fl(z)=4r—-i =2y —i.

@

d=2%

The following theorem is a direct consequence of the Cauchy-Riemann
equations. Its proof is left as an exercise. See Problems 29 and 30 in Exercises

3.2

Theorem 3.6 Constant Functions

Suppose the function f(2) = u(z, y)+iv(z, y) is analytic in a domain D.

(#) If | f (2)| is constant in D, then sois f(z). (“U k&1> )

If f‘[* = 0 in D, then f(a) = ¢ in D, where ¢ is a constant. Q
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:;_T(i- + % = (). (1)
This equation, one of the most fa.moags in 3£plied mathematics, is known as Laplace’s
equation in two variables. The sum @? - ?‘b of the two second partial derivatives in (1)
;ssdél;;te_doby V2¢ and is called the Laplacian of ¢. Laplace’s equation is then abbreviated

A solution ¢(z,y) of Laplace’s equation (1)
in a domain D of the plane is given a special name.

Definition 3.3 Harmonic Functions

A real-valued function ¢ of two real variables  and y that has continu-
ous first and second-order partial derivatives in a domain D and satisfies
Laplace’s equation is said to be harmonic in D.

Theorem 3.7 Harmonic Functions

Suppose the complex function f(z) = u(z, y) + iv(x. y) is analytic in a
domain D. Then the functions u(z, y) and v(z, y) are harmonic in D.

Proof Assume f(z) = u(z, y)+ iv(x, y) is analytic in a domain D and that
u and v have continuous second-order partial derivatives in D.T Since f is
analytic, the Cauchy-Riemann equations are satisfied at every point z. Differ-
entiating both sides of Qu/dr = dv/dy with respect to r and differentiating

both sides of du/dy 5 —gv/dx with respect to y give, respectively,

d*u v u v
= and —=- .
dr?  Oxdy dy? dydx

(2)

With the assumption of continuity, the mixed partials 3*v/dzdy and 3%v/dydzx
are equal. Hence, by adding the two equations in (2) we see that

e
v 2 - ~
2:_2 - g:::: =0 or Viu=0. &’ %\\"“ lMi/‘I &\} =e.0

EXAMPLE 1 Harmonic Functions
The function f(z) = 2% = 2% = y* + 2xyi is entire. The functions u(z, y) = T D

r? — y? and v(z, y) = 2xy are necessarily harmonic in any domain D of the

complex plane. | l u >

Harmonic Conjugate Functions RS PITETIEER RIS PR G\ < W .
function f(z) = u(x, y) 4 iv(zx, y) is analytic in a domain D, then its real . .
and imaginary parts u and v are necessarily harmonic in D. Now suppose 5\9'; W N
u(z, y) is a given real function that is known to be harmonic in D. If it is

possible to find another real harmonic function v(zx, y) so that u and v satisfy

the Cauchy-Riemann equations throughout the domain D. then the function

v(x, y) is called a harmonic conjugate of u(z, y). By combining the func-

tions as u(r, y) + iv(zr, y) we obtain a function that is analytic in D.




Theorem 4.1 Analyticity of e*

The exponential function e* is entire and its derivative is given by:

i
=", 3)

Proof In order to establish that e* is entire, we use the criterion for analyt-
icity given in Theorem 3.5. We first note that the real and imaginary parts,
u(z, y) = e*cosy and v(z, y) = e*siny, of e* are continuous real functions
and have continuous first-order partial derivatives for all (z, y). In addition,
the Cauchy-Riemann equations in u and v are easily verified:

du dv

2z =€ cosy:a—y and a:—e siny = —>—.

Therefore, the exponential function e* is entire by Theorem 3.5. By (9) of

Section 3.2, the derivative of an analytic function f is given by f'(z) = ? -
T
ov

i— . and so the derivative of e* is:
dx
%e‘=g;:+ig—i=e’cusy+iezsmy=ez. SN
— k- = - = d — ) S -
oy dx 3y~ an oz bry +5 (3)

Partial integration of the first equation in (3) with respect to the variable
y gives v(x, y) = 322y — y* + h(z). The partial derivative with respect to
r of this last equation is

a
—; = 6zy + /().

When this result is substituted into the second equation in (3) we obtain
h'(z) = 5, and so h(x) = 5z + C, where C is a real constant. Therefore,
the harmonic conjugate of u is v(z, y) =3z%y—-y* + 5z 4+ C.

Theorem 4.1 Analyticity of e*

The exponential function e* is entire and its derivative is given by:

d

Ef

. 3)

Proof In order to establish that e* is entire, we use the criterion for analyt-
icity given in Theorem 3.5. We first note that the real and imaginary parts,
u(r, y) = e*cosy and v(z, y) = e*siny, of e* are continuous real functions
and have continuous first-order partial derivatives for all (z, y). In addition,
the Cauchy-Riemann equations in u and v are easily verified:

du - dv du o dv

B_IZE cosy=a and 5=—e smy:—a.

Therefore, the exponential function e* is entire by Theorem 3.5.
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lodulus, Argument, and Conjugate RIS BITERE ST
nd conjugate of the exponential function are easily determined from (1). If
e express the complex number w = €* in polar form:

w=e"cosy +ie*siny = r(cosf + isinfh),

1en we see that r=e* and A =y + 2nm, forn =0, £1,+2. ... . Becauser
. the modulus and # is an argument of w, we have:

le*| = e (4)
nd arg(e*) =y+2nm, n=0, £1,42,... . (5)

Ve know from calculus that ¢* > 0 for all real z, and so it follows from (4)
1at |e*| > 0. This implies that €¢* 3 0 for all complex z. Put another way, the
oint w = 0 is not in the range of the complex function w = e¢*. Equation (4)
oes not, however, rule out the possibility that e* is a negative real number.
1 fact, you should verify that if, say, z = mi, then €™ is real and €™ < 0.

A formula for the conjugate of the complex exponential e is found using
roperties of the real cosine and sine functions. Since the real cosine function
i even, we have cos y = cos(—y) for all y, and since the real sine function is
dd. we have —siny = sin(—y) for all y, and so:

€= = e* cosy — ie” siny = € cos(—y) + ie” sin(—y) = "~ = €.
'herefore, for all complex z, we have shown:

ez =e’. (6)

Theorem 4.2 Algebraic Properties of e*

If z; and z; are complex numbers, then
(i) =1
(if) e21e22 — g1t
31
[
(itt) — =e** ™2
ex

(iv) (e*)" =e™*, n=0, %1, £2,... .

The most striking difference between the real and complex
exponential functions is the periodicity of €. Analogous to real periodic
functions, we say that a complex function f is periodic with period T if
f(z 4 T) = f(z) for all complex z. The real exponential function is not
periodic, but the complex exponential function is because it is defined using
the real cosine and sine functions, which are periodic. In particular, by (1)
and Theorem 4.2(ii) we have e**2™ = ¢%e?™ = ¢* (cos 27 + isin2x). Since
cos 2w = 1 and sin 27 = 0, this simplifies to:

i_:—Em' - ‘_:_ (8)

In summary, we have shown that:

The complex exponential function e* is periodic with a pure imaginary

)

It
EN



Exponential Mapping Properties

(i) w = €® maps the fundamental region —o00 < r < 0, =w < y < m,

onto the set |w| > 0.

(ii) w = e* maps the vertical line segment r = a, —w < y < «, onto the

circle |w| = e“.

(112) w = e* maps the horizontal

arg(w) = b.
L
, 4T

sZ4+4mi
2t

ez4+2mi

x
eI
__________ Saplesoescusoeees

—2r

ez=2m
=37r
—arl

Figure 4.1 The fundamental region
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€* is not a one-to-one function on its domain C. In fact. given a fixed nonzer
complex number z, the equation € = z has infinitely many solutions. Fc
example, you should verify that %m‘ \ ;__:m‘_. and -—%m‘ are all solutions to th
equation e = i. To see why the equation € = z has infinitely many solution:
in general, suppose that w = u+iv is a solution of ¢* = z. Then we must hav
le*| = |z| and arg(e™) = arg(z). From (4) and (5), it follows that e* = |:
and v = arg(z), or, equivalently, u = log, |z| and v = arg(z). Therefore, give
a nonzero complex number z we have shown that:

If € = 2z, then w = log, |z| + iarg(z). (10

Because there are infinitely many arguments of z, (10) gives infinitely man
solutions w to the equation e = 2. The set of values given by (10) defines
multiple-valued function w = (G(z), as described in Section 2.4, which is calle
the complex logarithm of z and denoted by Inz. The following definitio
summarizes this discussion.

Definition 4.2 Complex Logarithm

The multiple-valued function In z defined by:
Inz = log, |z| 4+ iarg(2) (11)

is called the complex logarithm.

= e“ = u:‘o&ﬂ\" '-‘-}ﬂl"\—
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EXAMPLE 4 Principal Value of the Complex Logarithm
Compute the principal value of the complex logarithm Ln 2 for
(a) z=1 (b)z=1+1 (¢) z2=-2 L:

Solution In each part we apply (14) of Definition 4.3. b \

(a) For z =i, we have |z| = 1 and Arg(z) = «/2, and so:

L.bs ®=10g€1 - ga

However, since log, 1 = 0, this simplifies to:

U(r, e

4

A N

= i
Theorem 4.4 Analyticity of the Principal Branch of In z L“ 2"—% !
The principal branch f; of the complex logarithm defined by (19) is an _\_ei
analytic function and its derivative is given by: '
v’é—’ﬁ
fi(z) = (20)

roof We prove that f; is analytic by using the polar coordinate analogue to D
heorem 3.5 of Section 3.2. Because f; is defined on the domain given in (18),
2 is a point in this domain, then we can write z = re with -7 < 6 < .

nce the real and imaginary parts of f; are u(r,f) = log,_r and v(r,0) =6,
spectively, we find that:

| =

du 1 dv —1

o r a0
ov du

0, d — =0.
el

hus, u and v satisfy
0) in Section 3.2:

iemann equations in polar coordinates

ows from Theorem 3.5 that f; is
1) of Section 3.2, the derivative

| points in the domain given in (18),
1alytic in this domain. In addition.
" f1 is given by:

_~i11;=—1 and ('1.‘?\L=;. 4 Z —
5 > W B he €46°%

[he complex hyperbolic sine and hyperbolic cosine functions are

lefined by: Z
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Steps Leading to the Definition of the
Definite Integral

1. Let f be a function of a single variable z defined at all points in a .
closed interval [a, bl. I Hooom
P . T i S .
2. Let P be a partition: a=3y % g
Figure 5.1 Partition of Ja, b] with =
A=Tpg=<<Ty <Xy <--<Tp 1 <Ty= b in cach subinterval [ze_1, o]

of [a, b] into n subintervals [zx_1, =i of length Axy = zp — T3 4.
See Figure 5.1.

3. Let ||P|| be the norm of the partition P of [a, b]. that is, the length
of the longest subinterval. |} P ] _-_—_ #}_ "

4. Choose a number x; in each subinterval |Ty_y, xx| of [a, b]. See -
Figure 5.1.

5. Form n products f(xrp)Azxi, k=1, 2, ..., n, and then sum these
products:

Definition 5.1 Definite Integral

Suppose a curve ' in the plane is parametrized by a set
of equations z = z(t), y = y(f), a <t < b, where z(t) and y(t) are continuous
real functions. Let the initial and terminal points of C, that is, (x(a). y(a))
and (z(b), y(b)), be denoted by the symbols A and B, respectively. We say

that:
(i) C'is a smooth curve if ' andy’ are continuous on the closed interval .
[a, b] and not simultaneously zero on the open interval (a, b). / N
o = s 5 Fh i H " 1 r .""---' I'-I.-"'I -".- . .-';__
(ii) C' is a piecewise smooth curve if it consists of a finite number of ad A
smooth curves C;, Cs, . . . , C, joined end to end, that is, the terminal )
: ! ] B T 2 R h : 1a) Smonth b Mocowass smonih
point of one curve '}, coinciding with the initial point of the next curve b TN M
Ck—l— 1- A=l
i |

(i11) C' is a simple curve if the curve €' does not cross itself except possibly
att—aand t=0>.

(iv) C is a closed curve if A = B./

(v) C'is a gimple closed curvelif the curve C' does not cross itself and
A = B; that is, (' is simple and closed.

] i=na v
i~

{£) Closesd bui (dh Simple diosed
o Shim i4| e

F

wire 5.0 Types of curves in the plafus




Steps Leading to the Definition of Line Integrals

1. Let G be a function of two real variables x and y defined at all points
on a smooth curve C that lies in some region of the zy-plane. Let C
be defined by the parametrization z = x(f), y=y(t),a <t <b.

2. Let P be a partition of the parameter interval [a, b] into
n subintervals [tp_q, ti] of length Aty =t —t;_y:

g—=Ilg<t <l < -l 3 <la=20

The partition P induces a partition of the curve C into n subares of
length Asy. Let the projection of each subare onto the r- and y-azes
have lengths Axy and Ay, respectively. See Figure 5.35.

3. Let ||P| be the norm of the partition P of |a, b], that is, the length of
the longest subinterval.

4. Choose a point (z;. y;) on each subarc of C. See Figure 5.3.

5. Form n products Gz, yp)Axy, Glrp,up)Aye, Glxy, yp)Asyg,
k=1, 2...., n, and then sum these products

> Glzy, yp)Azx, Y G(zi, vi)Aye, and ) G(a}, yi)As.

Definition 5.2 Line Integrals in the Plane

(i) The line integral of &G along € with respect to x is

Y&)

/G(:ﬂ,gjdﬂr: limn ZGEJ’L?&}&”}- 3"" |
C Iel—o.— " AR e

(#i) The line integral of G along C with respect to y is

Tl

Glz,y)dy = lim Glzxy, v ) Ayk.
f__} (z,¥) 1Pl 0~ (g, Yg) AUk

é'(ijj

(iii) The line integral of &G along € with respect to arc length s
is

/ G(z,y)ds =
Jo

lim GGy, vy ) Asy.
i _D§ (T Yi) Asy




Method of Evaluation—C Defined Parametrically The
line integrals in Definition 5.2 can be evaluated in two ways, depending on
whether the curve €' is defined by a pair of parametric equations or by an
explicit function. Either way, the basic idea is to convert a line integral to a
definite integral in a single variable. If ' is smooth curve parametrized by a:.::t(,-é—)
z=x(t), y =y(t), a <t < b, then replace z and y in the integral by the é
functions z(t) and y(t). and the appropriate differential dz. dy, or ds by

() dt, y'(@)dt, or /[ (OF + [y @) d.

The term ds = \/ [z/(t)]” + [y'(t)]” dt is called the differential of the arc length.
In this manner each of the line integrals in Definition 5.2 becomes a defini
integral in which the variable of integration is the parameter t. That j

b

/ Glz,y)dr = / G (z(t).y(t)) z'(t) dt,

: B
/_!i':‘[.a‘.;;inrf,r;: / G(z(t). y(t)) y'(t) dt, (7 JS:W
: . /
Gz y)ds = / G(z(t).y(t)) .a"'i'."’[F'i—i-i'_a,f“n:r;.fra’f. 8 = 4 2z
| e@mis = [ G@.uo)iEor + e ®) =\ s s

At
EXAMPLE 1 C Defined Parametrically 2 C.
Evaluate (a) [.xy*dz, (b) [, zy*dy, and (c) [, zy*ds, where the path of inte-
gration C is the quarter circle defined by r = 4cost, y = d4sint,
0<t< /2 "‘1'-'-‘:1"5-1#3":' 4

Solution The path C' of integration is shown in color in Figure 5.4. In each
of the three given line integrals, x is replaced by 4cost and vy is replaced by
4sint.

(a) Since dxr = —4sint dt, we have from (6):

w2
f rydr = f (4cost) (4sint)? (—4sint dt)
o ]

"T."II2 1 rfz
— —256 f sin® t cost dt = —256 [— sin® z] —— G4
0 1 0

b S;m;n\m teo (@)

(c) Since ds = \/16 (sin®t + cos? t) dt = 4dt, it follows from (8):

w2
fmyﬂdszf (4cost) (4sint)® (4dt)
[ ]

w2 1 wf2
— 256 f sin’ t cost dt = 256 {- sin® zl i
(1] 3 (1]



Method of Evaluation—C Defined Parametrically The
line integrals in Definition 5.2 can be evaluated in two ways, depending on
whether the curve ' is defined by a pair of parametric equations or by an
explicit function. Either way, the basic idea is to convert a line integral to a
definite integral in a single variable. If ' is smooth curve parametrized by
z=x(t), y =y(t), a <t < b, then replace z and y in the integral by the
functions z(t) and y(t). and the appropriate differential dz. dy, or ds by

() dt, () dt, or /(O + [y (@) dt

The term ds = \/ [z/(t)]” + [y'(t)]” dt is called the differential of the arc length.
In this manner each of the line integrals in Definition 5.2 becomes a definite
integral in which the variable of integration is the parameter ¢t. That is,

L

/u‘_’-'[:r.:uuh': [!'_T{.?‘H].j'HH];r’H]rfr, (6)
/ G(z,y)dy = / G (z(t),y(t)) y'(t) dt, (7)
i

/ Gz, y)ds = / G (z(t). “[f”".,“ 3’”;] +.urr] f (8)

EXAMPLE 1 C Defined Parametrically

Evaluate (a) [.xy*dz, (b) [, zy*dy, and (c) [, zy*ds, where the path of inte-
gration €' is the quarter circle defined by * = 4cost, y = 4sint,
0<t<af2

Solution The path C' of integration is shown in color in Figure 5.4. In each

of the three given line integrals, x is replaced by 4cost and vy is replaced by \l’_-l_’-q,
Asint. ds=y] dnda

2
(a) Since dxr = —4sint dt, we have from (6): = d,x?—'—%&h

o~ -
f ryldr = f 2{4c05t} (4sint)? (—4sint dt) =\ §m*dz
C ]

. o2 Ly BF
— _EEE_L %, sin® t cost dt = —256 E sin? tlﬂf = —ﬁd.}.)gf.-%(j-. : 3:-1'@

path of int egrat ion C is the gmph ::nl' an Exphnl I'umnuu y= f{r} a<r< b
then we can nse r as a parameter. In this situation, the Jiffor -

= f'(r)dr, and the difforential of are length isl
J’lfter substituting, L]mscEm line inteprals of Dc-ﬁnl

the definite integrals: (G (249 Y(H) X @)t = ( ({: ‘F&)‘Inlt‘ :
8y b fog
a:&@ /r..rm/[; G (z, f(x))dz, ’/’I (9)

d /I_f . ) dy = / Gz, f(z)) f'(z)dz, (10) (%g.-;?ff[ﬂf:}
\‘3 @ 'z, ) ds / {r':.a'.,i"l."flnll-"l } -f‘:.."-?‘1 d=x. (11) &{@ %ﬂb
t:f-'}




In many applications, line integrals appear as a sum
| Plz,y)de + fr (Q(z,y) dy. It is common practice to write this sum as one

1n1:ogra1 without parentheses as

::/P[rfyjd:r:ﬂ?(x,y}dy or simply /Fdi”r@ﬂ’% (13)
o C

A line integral along a closed curve €' is usually denoted by

j{ Pdr + Qdy.
[
EXAMPLE 2 € Defined by an Explicit Function % y
Evaluate [, zydx + x?dy, where C' is the graph of y =23, -1 <z < 2. (? ‘&3 T (2,8)
Solution The curve ' is illustrated in Figure 5.5 and is defined by the ’I.:‘)E 1
explicit function y = 3. Hence we can use r as the parameter. Using the <l
differential dy = 3z%dz, we apply (9) and (10): g"-:'x 1 C

2 ‘ T

/ rydr + 2 dy = f z (2°) dz + 2” (327 dz) +
C —1
2 .2 . T
—1 I o d(-—
(-1,-1)

Orientation of a Curve IRzt iRs nn:rrmally assume
that the interval of integration is @ < = < b and the symbol [ f(z) dz indi- B B
cates that we are integrating in the positive direction on the z-axis. Integ_Ta—
tion in the opposite direction, from xr = b to x = a, results in the negative of
the original integral: Jeg-’a‘l'“*\““ C -C

/: f(zx) dﬂ'lf—i f(z)dz. (14)
Collendur <)

Complex Integrals

Suppose the continuous real-valued functions
r = z(t), y = y(t), a =< t < b, are parametric equations of a curve C in
the complex plane. If we use these equations as the real and imaginary parts
in z = r+ iy, we saw in Section 2.2 that we can describe the points z on C by
means of a complex-valued function of a real variable t called a parametriza-
tion of C"-

_,:l:,u[.‘_:. a<t<h. [1}

w-Li‘C y=Yt)
R
N, §0)

H

€

Figure 5.16 z'(t) = ='(t) + iy'(t)
tangent vector



Steps Leading to the Definition of the
Complex Integral

1. Let [ be a function of a complex variable 2 defined at all points on a Z= x‘{t)
smooth curve C' that lies in some region of the compler plane. Let C ¥ 6{_,{_-&]
be defined by the parametrization z(t) = x(t) +iy(t),a <t < b

2. Let P be a partition of the parameter interval [a, b] into n subintervals

{tj;_j_, t_;;} of length Aty =t —tp_1: € ’."
g=tpaty <ty<oct,q<t.—0b lu"X.('f‘HlJ(fj

KUEY mgb!ﬁ =
The partition P induces a partition of the curve C' into n subarcs +'*-*-'x(f'.}-ﬁ py( 2

whose initial and terminal points are the pairs of numbers .

I g ll.
A= v ::' -' =
Q' = ¥

2p = z(tp) + iy(to), 21 = z(ty) +iy(ty), rak
21 = 2(ty) + dy(ty), 2 = 2(tz) + iy(ta), pg

n subarcs is induced by a partition P

1% Partition of curve C into

of the parameter interval [a. b).

Zn_1 = T(tn_1) + iY(tn_1), 2Zn = T(tn) + iy(tn).

Let Azg — 2z — 2 1. k=1,2, ..., n. See Figure 5.14.

3. Let | P|| be the norm of the partition P of |a. b], that is, the length of
the longest subinterval.

4. Choose a point 2] = x; + iy, on each subarc of C. See Figure 5.19.

5. Form n products f(z7)Az, k = 1, 2,..., n, and then sum these
products:

> flzt) Az

k=1

Definition 5.3 Complex Integral

The complex integral of f on C' is

If the limit in (2) exists, then [ is said to be integrable on . The
limit exists whenever if f is continuous at all points on €' and ' is either
smooth or piecewise smooth. Consequently we shall, hereafter, assume these
conditions as a matter of course. Moreover. we will use the notation | _, (2 )d-=
to represent a complex integral around a pas:z‘wefr,r oriented closed curve C.
When it is important to distinguish the direction of integration around a
closed curve, we will employ the notations ' _{..

f(2) dz and f(2)d
o &)

to denote integration in the positive and negative directions, respectively.



If f; and f; are real-valued functions of a real
variable ¢ continuous on a common interval a < t < b, then we define the

integral of the complex-valued function f(f) = .fi(f),+ifo(tlona <t < bin \'f(t)
terms of the definite integrals of the real and imaginary of I~
wt)
b 1] b
/ j'[r;.rfrp/ fi(t) dt + rf fa(t) dt. (4)

The continuity of f; and f; on [a, b] guarantees that both f: fi(t)dt and
I? fa(t) dt exist.

IREINET AT I S il Aol Dy VBl To facilitate the discussion on
how to evaluate a contour integral [, f(z)dz, let us write (2) in an abbreviated
form. If we use u+iv for f, Az+iAy for Az, lim for llm , 3 for Yy, and

then suppress all subseripts, (2) becomes \L[FL?'} dz - [l,,_._ i J laj &%z
NPl—7>
f f(2)dz =lim Y (u + iv)(Az + iAy)

= lim [Z{u&r —vAy) +1 E{vﬂ:ﬂ + ufly}] .

The interpretation of the last line is

(Lf[z}dz:Lrudm—tﬂdy+i[::vdm+udy. (9)

See Definition 5.2. In other words, the real and imaginary parts of a con-
tour integral [, o flz)dz are a pair of real line integrals fcudfﬂ —vdy and
fcvd.'r +udy. Now if * = x(t), y = y(t), @ < t < b are parametric equations
of C, then dxr = z'(t)df, dy = y'(t)dt. By replacing the symbols z, y, dz,

and dy by x(t), y(t), ='(t) dt, and y'(t) dt, respectively, the right side of (9)
becomes

J—c udr—vdy
P

M s =,

b
f [u(z(t), () = () — v(x(t), u(t) v'(t)] dt

f{:' vdr4udy
.

”~ ",

b
y f w(2(t), y(t)) 2/(t) +u(z(t), y(t)) ¥'(t)) dt.

(10)

It we use the complex-valued function (1) to deseribe the contour C', then
(10) is the same as f:' f(z(t)) 2'(t)dt when the integrand

AGAIGHSZ (1), u(t)) + iv(x(t), y(®)] [ (£) + iy ()] ':%>/ f(2)dz = / F(2(t)) 2'(t) dt.
20 z(E
is multiplied out and fd f(z(t)) z'(t)dl is expressed in terms of its real and
imaginary parts. Thus we arrive at a practical means of evaluating a contour

integral.



| EXAMPLE 1  Ewvaluating a Contour Integral
Evaluate fcfdz, where C' is given by z = 3t, y =12, —1 <t < 4.
Solution From (1) a parametrization of the contour €' is z(t) = 3t + it?.

Therefore, with the identification f(z) = 7 we have f(z(t)) = 3t +it? =
3t —it?. Also, 2'(t) = 3 + 2it, and so by (11) the integral is

fzdz—f (3t — it?)(3 + 2it) dt = /4 [2t* + 9t + 3t%i] d /\/J u+lwhfu+!‘§v
j—f?;;:‘:gt}dwrif‘i 3t* dt

-1
1 9\ |
= | =t* + =t?
(3 +3°)

—1

+it*| =195+ 65i.

| EXAMPLE 2  C Is a Piecewise Smooth Curve

Evaluate [ (2* + iy®) dz, where C is the contour shown in Figure 5.20. T e ‘ZH‘):T
Solution In view of Theorem 5.2(7ii) we write lgétz'g
f{:ﬂ +iyt)dz = (2% +iy?)dz + (:ﬂ +iy?) dz. x( &)=t
ci ) —
H:j H SN

Theorem 5.3 A Buundmg Theorem

If f is continuous on a smooth curve C' and if |f(2)| < M for all 2 on C,
then Hc: f(z) dz} < ML, where L is the length of .

Pmué!?t follows from the form of the triangle inequality given in (11) of ﬂP/f _4,

ection 1.2 that

> flan)Aze| <3 1F(20)] |Az| < M (14)
k=1 k=1

~ B

Because |Azg| = \/ (Azi)® + (Ays)®, we can interpret |Azi| as the length
of the chord joining the points z; and zx_1 on C'. Moreover, since the sum
of the lengths of the chords cannot be greater than the length L of €, the
inequality (14) continues as |3 ,_; f(z;)Azx| < ML. Finally, the continuity
of f gnarantees that [ f(z)dz exists, and so if we let ||[P|| — 0, the last

lity yields | [, f(2)dz | < ML. fv ) QH: =,
E‘—"%‘E(z)dz\ lgqe(z(@}z‘ﬁvdt\-gulﬁ(z&)ﬂl?(ﬁl < WM




| EXAMPLE 14 A Bound for a Contour Integral

Find an upper bound for the absolute value of f ‘ » where C is the

circle |z| = 4.
F(2)

Solution First, the length L (circumference) of the circle of radius 4 is 8.
Next, from the inequality (7) of Section 1.2, it follows for all points 2 on the

circlethat [z + 1| > |2| -1=4— é 3. Thus

=171 |24 $12)~ |=

1241 '};l o | 4-1-.—_3

I'?: { |€z| — EE3|< e‘x. {15}
241~ |2] =1 3N"%
In addition, |e*| = |e*(cosy + isiny)| = e*. For points on the circle |2| = 4,
the maximum that z = Re(z) can be is 4, and so (15) vields
e* - el

z+1|— 3° =t : x=

From the MI-inequality (Theorem 5.3) aw

{2l 9

Remarks M
There is no unique parametrization for a contour €'. You should verify “R ({__’.;‘Cl
that r N
z(t) = e = cost +isint, 0 <t < 27 \%’_—
2(t) =%§ms21rﬁ+isin2ﬂﬁ 0<t<1 'ﬁ:iﬂ&?"‘
z{t]:e*\"ﬁfzzcm%—l—isin%t,{]itii oA <)

are all parametrizations, oriented in the positive direction, for the unit
circle |z| = 1.



Simply and Multiply Connected Domains I &gl
tion 1.5 that a domain is an open connected set in the complex plane. We say
that a domain I is simply connected if every simple closed contour C' lying
entirely in ) can be shrunk to a point without leaving ). See Figure 5.26. D O:'
In other words, if we draw any simple closed contour €' so that it lies entirely
within a simply connected domain, then €' encloses only points of the domain

D). Expressed yet another way. a simply connected domain has no “holes™ in
it. The entire complex plane is an example of a simply connected domain;
the annulus defined by 1 < |2| < 2 is not simply connected. (Why?) A do-
main that is not simply connected is called a multiply connected domain;
that is, a multiply connected domain has “holes” in it. Note in Figure 5.27
that if the curve Cs enclosing the “hole™ were shrunk to a point, the curve D Q
would have to leave D eventually. We call a domain with one “hole” doubly

(e

Figure 5.26 Simply connected

domain [

connected, a domain with two “holes” triply connected, and so on. The
open disk defined by |z| < 2 is a simply connected domain; the open circular
annulus defined by 1 < |2]| < 2 is a doubly connected domain.
Figure 5.27 Multiply connected

domain D

(OETITo AN NI e il In 1825 the French mathematician Louis- Augustin
Cauchy proved one the most important theorems in complex analysis.

Cauchy’s Theorem
Yy | D .

Suppose that a function f is analytic in a simply connected domain

D gndihat £ e continyousin—. Then for every simple closed (1)
contour C in D, §. f(2)dz=0.

Cauchy’s Proof f. Pdr+ Qdy
u{ﬂ’ 3:1:" 2
f(2)dz = j{ w(z,y) dz — v(z, mdyﬂf z,y) dz + u(z, y) dy
c

R )

J-5)

o o
- [.Com) 1+ (5
=ffﬂ¢n; dA+-szm; dA=0. T3



Theorem 5.4 Cauchy-Goursat Theorem

Suppose that a function f is analytic in a simply connected domain .
Then for every simple closed contour C in D, §. f(z)dz = 0.

Since the interior of a simple closed contour is a simply connected domain,
the Cauchy-Goursat theorem can be stated in the slightly more practical man-
ner:

If f is analytic at all points within and on a simple closed contour C,
then fa flz)dz=0. (4)

-X

| EXAMPLE 2 Applying the Cauchy-Goursat Theorem

dz
Evaluate j{ ~5» Where the contour C is the ellipse (z — 2)2 + 1y —5)? = 1.
c

<
Solution The rational function f(2) = 1/2? is analytic everywhere except ! ©
| Z= £

at z = 0. But z = 0 is not a point interior to or on the simple closed elliptical

contour C'. Thus, from (4) we have that ¢ — =

Theorem 5.5 Cauchy-Goursat Theorem for Multiply

Connnected Domains

Suppose ', Cy, ..., C,, are simple closed curves with a positive orientation
such that ', Cs. ..., C, are interior to C' but the regions interior to each
Cr. k=1,2,..., n, have no points in common. If f is analytic on each
contour and at each point interior to C' but exterior to all the C., k = 1, 2,
...y N, then

Jed=} ¢ f(x)d= (8)

ff{z)dz=zgf{_z‘}dz. C_

% LE T

(oI |

:.(cj:ﬂ .;,J;;L_if =ch e



) the civedle. 1 12-2 )=

EXAMPLE™ zp is any constant complex number interior to eng simple closed contews ', then for n

e o
I
P
| ]
s =
[
Ne

Jo 2 —x2)" - lll . _—..~1_ }2}? }

s :'-?T ‘e =i 4 3 g
‘é dz g e e Glt‘—ij (6"9 dt - () Tot<om N=| '2:.%1-'61#.
- i

EXAMPLE 4 Applying Formula (6)

: bz +T
Ewvaluate jtg :

——— . where C is circle |z — 2| = 2.
c22+22—-3 | |

Solution s2+7 3 + 2
22 4+22—3 2

pr+ T
jgjzz-l—gz—Edz:Ej.gg

Definition 5.4 Independence of the Path

21
Let zg and z; be points in a domain ). A contour integral fp f(z)dz
is said to be independent of the path if its value is the same for all e .
contours C' in ) with initial point zp and terminal point z.
D
Zo

!

N —

ff{z]dz+ f(z)dz =0. Thus ff{z}dz= f(2)dz
Ly oS- o Cx

Theorem 5.6 Analyticity Implies Path Independence

Suppose that a function f is analytic in a simply connected domain
D and € is any contour in I). Then fc f(z)dz is independent of the
path C.




EXAMPLE 1

Evaluate [.Rafdz, where

entite i‘-

Choosing a Different Path

is the contour shown in color in Figure 5.39.
wnG "lﬂn n

Solution Since the function f(z

= 2z is entire, we can, in view of Theorem

3.6, replace the piecewise smooth pa,th ' by any convenient contour ' joining | -1 +! |
25 = —1 and 2y = —1 + i. Specifically, if we choose the contour *; to be the 'c
vertical line segment # = —1. 0 < ¢y < 1, shown in black in Figure 5.39, then ]

z = —1+1iy, dz = idy. Therefore,

1 1
fﬂzdz:[ 2z z:—?f ydy—?ff dy = —1 — 2i.
c C; “ 0 0

2( —-H-%rf
A contour integral [, ;Oga(t}} Z/Cfe"}cl't L

dz that is mdf,pendent of the path ' is usually
written fzn f(2z)dz, where 25 and 2; are the initial and terminal points of C'.

Antiderivative

Definition 5.5

Suppose that a funetion f is continuous on a domain [). If there exists / o 1L=0n

a function F' such that F’'(z) = f(2) for each 2z in D, then F is called an (;r.):_.-

antiderivative of f. 215;1. A+
4

Theorem 5.7 Fundamental Theorem for Contour Integrals

Suppose that a function f is continuous on a domain D) and F is an
antiderivative of f in D. Then for any contour ' in I? with initial point
zp and terminal point 2y,

(4)

t)% N

Proof

ff( )dz = @(z
[ g

— F(2(t) |}
= F(2(b)) —

ol
/.r

t)dt = f F'(z(t)

+— chain rule

F(z(a)) = F(21) — F(2).



| EXAMPLE 3 Applying Theorem 5.7

Evaluate fc cos 2 dz, where ' is any contour with initial point 2o = 0 and
terminal point 2y = 2 +14.

Solution F'(z) = sin 2z is an antiderivative of f(z) = cosz since F'(2) =
cosz = f(z). Therefore, from (4) we have

2+i _

f coszdz = coszdz = sinz |g+‘ = sin(2 + i) —sin 0 = sin(2 +1).

e N iz, stz 12 Ciz) breni

anting Q7= E 3-58: ¢ = ﬂ EE} &entthe..

o) MO st L) il  We can draw several immediate conclusions from

Theorem 5.7. First, observe that if the contour C is closed, then z; = z; and,
consequently.

f Flz)dz= 0. (5)
c

Next, since the value of _fs f(z)dz depends only on the points z; and 2, this
value is the same for any contour €' il D connecting these points. In other

words:

If a continuous function f has an anviderivative F' in D, then © ©)
Je f(2) dz is independent of the é
<

{@*@Az +§C08<&3 o 3(t={¢ , i

| EXAMPLE 4 Using the Logarithmic Function
Evaluate f %dzf where (' is the contour shown in Figure 5.41.
&

Solution Suppose that [ is the simply connected domain defined by
x>0, y =0, in other words, ) is the first quadrant in the z-plane. In this (In
case, Ln 2 is an antiderivative of 1/2 since both these functions are analytic

4
in D. Hence by (4), ~N P R ¢ Z
fﬁ ldz = Ln 2’2«; = Ln(ZiJ— In3 1
s & o . .

From (14) of Section 4.1,

-

™
In 2i=log, 2+ =i d Ln3=1log 3
nu og, —|—21 an n 3= log,

o+ 2L | 340l




If f is continuous and [ f(z)dz is independent of the path C in a (7
domain D, then f has an antiderivative everywhere in D.

The last statement is important and deserves a proof.

Proof of (7) Assumg f is continuous and .fc fl(z)dz is independent of the
path in a domain D and that F' is a function defined by F'(2) = f;ﬂ f(s)ds,

where & denotes a complex variable, zp is a fixed point in ), and z represents
any point in ). We wish to show that F'(2) = f(z), that is,

F(z)= | f(s)ds " (8)
- fz?wels

is an antiderivative.of f in D). Now,

Mz z4-z
F{z—i—ﬁzj—F{z}:f f(s)ds =f f(s)ds. (9)

Because ) is a domain, we can choose Az sd-that z + Az is in [). Moreover,
z and 2 + A2 can be joined by a straight segment as shown in Figure 5.40.
This is the contour we use in the last integral in (9). With 2 fixed, we can

write
z4+ A= z+Az 1 z+A=
f@a:=1G) [ {ds= [ s @ =5z f@ds (o)
SJ:fa:@fﬁ 2) . 2207
D
From (9) and the last result in (10) we have -
F Az)—F ko
e (CEy BNVCEV(OI

Now [ is continuous at the point z. This means for any £ > 0 there exists
a & > 0 so that |f(s) — f(2)| < £ whenever |s — z| < §. Consequently, if we
choose Az so that | Az | < 4, it follows from the MI-inequality of Section 5.2

that
F{z+ Az) — F(z2) IJS] M
Az o

z+ Mz
16| =5z [ U@ -1l

Hence, we have shown that

lim F(z+ Az) — F(z)

Az—0 Az =iz} ‘& FE=




|

Cauchy’s Integral Formulas and
Their Consequences

Theorem 5.9 Cauchy’s Integral Formula

Suppose that f is analytic in a simply connected domain [ and ' is
any simple closed contour lying entirely within [J. Then for any point zg

within C',
l - II..: » : /_
f(z0) = — f ——dz. (1)

"l_.' . -:||

Proof Let D) be a simply connected domain, €' a simple closed contour in
D, and zp an interior point of €. In addition, let 'y be a circle centered at
zp with radius small enough so that €'y lies within the interior of C'. By the
principle of deformation of contours, (5) of Section 5.3, we can write

&) 4§ SE) (2)
c* %o C1 * T A0

We wish to show that the value of the integral on the right is 2mi f(2;). To this
end we add and subtract the constant f(z;) in the numerator of the integrand,

(2) ds — f(za) — flzo) + f(2) ds.
o & 20 Ci =20
F(z) — F(zo)
= f(z0) T dz + 2 T dz.

From (6) of Section 5.3 we know that
1
j{ dz = 2mi
¢y £ T 20
and so (3) becomes
f(2)

—_—dr = 27mi f(z0) +
cy £ TR0

Since f is continuous at zg. we know that for any arbitrarily small £ = 0
there exists a d > 0 such that |f(2) — f(z0)| < £ whenever |z — 25| < 4. In
particular, if we choose the circle C; to be |2 — 2| = %J < &, then h;v'ﬁlll,]&ﬁﬂ\,
ML-inequality (Theorem 5.3) the absolute value of the integral pn the #fight
M%; oy \5—5

side of the equality in (5) satisfies <
SEN 2T E.)
2

In other words, the absolite value of the integral can be made arbitrarily &HE}_%E} — H‘:&?}
small by taking the radius of the circle ') to be sufficiently small. This can IZ ll
1) 4y — 2 f(z0). The > :

o) = T A0 8
theorem is proved by dividing both sides of the last result by 2mi. S ‘T

happen only if the integral is 0. Thus (5) is



| EXAMPLE 1 Using Cauchy’s Integral Formula

2
—4z+4
Evaluate j{ &dz? where C' is the cirele |2| = 2.

c z+i

Faye L b 22

'2“;, T-2

Solution First, we identify f(z) = 2? —42 +4 and 2o = —i asla point within Q
the circle C. Next we observe that f is analytic at all points within and on
the contour C. ngus by the Canuchy integral formula (1) we obtain

@ﬁ%)
jg dz = 2mif(—i) = 2mi(3 + 4i) = w(—8 + 6i).
- @xﬂh |

olciwalalo M 2aiuistil=8 We shall now build on Theorem 5.9 by using it to

prove that the values of the derivatives f1™)(2g),n =1, 2, 3, ... of an analytic
function are also given by a integral formula. This second integral formula is
similar to (1) and is known by the name Cauchy’s integral formula for
derivatives.

Theorem 5.10 Cauchy’s Integral Formula for Derivatives

Suppose that f is analytic in a simply connected domain D and C' is
any simple closed contour lying entirely within ). Then for any point z;
within ', (ﬂ\
Jirl'n'll- T - n! : f'r ] dz ﬁ}
B P # (2 2p )n+1 o ( —
ol=|

| EXAMPLE 3  Using Cauchy’s Integral Formula for Derivatives

z+1
Evaluate j{ AT s dz, where C' is the circle |z| = 1.
c

Solution Inspection of the integrand shows that it is not analytic at z =
and * = —2i, but only 2 = 0 lies within the closed contour. By writing the

integrand as ;ﬁ'{ 4'(0)
.R ) %G_S,m g

2% + 223 ;
we can identify, 2o = 0, n = 2, and f(z) = (z +1)/(z + 2i). The quc}t1ent - . 2‘-.-'1
rule gives f"(z) = (2 — 4i)/(z + 2i)%and so f"(0) = (2i — 1)/4i. Hence from = L" -
b

(6) we find

z+1 2mi T
—_—dr = —f"0) = —— + —i.
_){‘ Q!I(J 4 2

, 2%+ 423




| EXAMPLE 4 Using Cauchy’s Integral Formula for Derivatives

2343
Evaluate f W dz, where C' is the fipure-eight contour shown in Figure
o _

5.45.

Solution Although C' is not a simple closed contour, we can think of it as
the union of two simple closed contours €4 and 5 as indicated in Figure
5.45. Since the arrows on C'y How clockwise or in the negative direction, the
opposite curve —('y has positive orientation. Hence. we write

224+ 3 2343
—+'dz+f —+,2-1fz
oy 22 —1)

23+3 2‘3+3
(z—1i)? 1 2 o
cL—i—ﬁz i de=—l+h,

and we are in a position to use both formulas (1) and (6).
To evaluate I we identify 2o = 0, f(z) = (23 +3)/(z—i)?, and f(0) = —3.
By (1) it follows that '
(z )

Iy = }(C d:{ = 2mi f(0) = 2mi(—3) = —6mi.

-

,t.*\‘(u
To evaluate Is we now identify zq = i, n = 1, f(z) = (22 +3)/2, f'(2) =
(22% — 3)/23, and f'(i) = 3 + 2i. From (6) we obtain

1= j‘fﬂ oo &“ /(%) = 2mi(3 + 2i) = —4w + 6i.

23 +3 vl L , ,
Wﬂz = —I1 + I, =6mi + (—47 + 67i) = —4A7 + 1274,
s —

Finally, we get

Figure 5.45 Contour for Example 4



Theorem 5.11 Derivative of an Analytic Function Is Analytic

Suppose that f is analytic in a simply connected domain ). Then f
possesses derivatives of all orders at every point 2z in ). The derivatives
f', . f™, ... are analytic functions in D.

If a funetion f(2) = u(z, y) 4+ iv(z, y) is analytic in a simply connected
domain D), we have just seen its derivatives of all orders exist at any point z
in D and so f'. f”, f", ... are continuous. From

we can also conclude that the real functions 4 and v have continuous partial
derivatives of all orders at a point of analyticity.

OETITE SN NEGIEAE  We begin with an inequality derived from the
Cauchy integral formula for derivatives.

Theorem 5.12 Cauchy’s Inequality

Suppose that f is analytic in a simply connected domain D and ' is a ‘? 113 CE
circle defined by |z — 20| = r that lies entirely in D. If |f(2)| < M for all
points z on C, then 0 'ﬂ 'H‘L

‘f{"} (zu]"

r n!M % g }A%
L C. =
o Ao \,;,T g i

Proof From the hypothesis. c;.,.\l’ o % ,bt m

@) |l M boundes

e E O ey

Thus from (6) and the M[L-inequality (Theorem 5.3). we have

ﬁ _fm j ﬂ _ M 3 MUIZJ&Q]

{2 = .2'1]}“_'_1 .rn+l Fn % <

|10 (a0) | = 5=

" ML
-
ZAL
The number M in Theorem 5.12 depends on the cirele |2 — zg| = . But
notice in (7) that if n = 0, then M = | f(z0) | for any circle C centered at 2g
as long as C' lies within D. In other words, an upper bound M of |f(z)| on C
cannot be smaller than | f(zg) |.



Theorem 5.13 Liouville’s Theorem

The only bounded entire functions are constants.

for all 2. Then for any point 2y, (7) gives | f’(z0)| < M/r £ By making
r arbitrarily large we can make | f'(zp)| as small as we wish. This means

Proof Suppose f is an entire funetion and is bounded. that is, |f(z)| < M _ ! I‘%I ( JI_LM_

f'(2g) = 0 for all points z; in the complex plane. Hence, by Theorem 3.6(ii), n= l
f must be a constant. &
‘ol M
o < [Fezlg L1
Fundamental Theorem of Algebra EENEDCEE:RERSIELEERIERT g wﬁlﬂ" b‘)
establish a result usually learned—but never proved—in elementary algebra. E I ' °
b

Theorem 5.14 Fundamental Theorem of Algebra

If p(z) is a nonconstant polynomial, then the equation p(z) = 0 has at

least one root. . _Ff
o {z] =0
Proof Let us suppose that the polynomial p(z) = a,2" +a,_12" ' +--- + Hz] o 32
@12 + dag, n > 0, is not 0 for any complex number 2. This implies that the = $ nj‘
reciprocal of p, f(z) = 1/p(2), is an entire function. Now ﬁ_t):ﬂ
<
1 0«2_ — 4 )
= — -9 s
17(2)] |y 2™ + @y 2™ 1 + -+ ay2 + ag r;l. a:; > Z.__.E.E_
s - AZ40740=0 32
|eMan + @n /2 +---+ ar/2m 7t + agf2n] - . n-‘$ "l;“‘
10,0 i (b)

Thus, we see that | f(2)| — 0as |2| — oo, and conclude that the function f
must be bounded for finite 2. It then follows from Liouville’s theorem that I
is a constant, and therefore p is a constant. But this is a contradiction to our
underlying assumption that p was not a constant polynomial. We conclude
that there must exist at least one number 2 for which p(2) = 0. =N

Q-A

ol s e en M, A L

aetd SoE ) N “
Kl ¥ 5

i'r;iz: \z];(MI}:.A; 2 @ &E’W% IZ23M %l?&)}(ﬂ

Jroelze A; ol KQ&,,:%:,% E=193M Ve, 2yl ey«
0,@ ;L_m__)b’zeﬂl;lﬁ(z)}@&; t%z@ﬂ}m




Theorem 5.15 Morera’s Theorem

If f is continuous in a simply connected domain D and if fc flz)dz=10
for every closed contour €' in ), then f is analytic in ).

Proof By the hypotheses of continuity of f and _ﬁ.: f(z)dz = 0 for every
closed contour C' in D), we conclude that fc: f(z)dz is independent of the
path. In the proof of (7) of Section 5.4 we then saw that the function F
defined by F(z) = f:: fl(s)ds (where s denotes a complex variable, 2 is a

fixed point in D, and 2 represents any point in IJ) is an antiderivative of
f: that is, F'(2) = f(z). Hence, F' is analytic in D). In addition, F'(z)
is analytic in view of Theorem 5.11. Since f(z) = F'(z), we see that f is
analytic in ).

Theorem 5.16 Maximum Modulus Theorem Y

Suppose that f is analytic and nonconstant on a closed region R bounded (C)
by a simple closed curve €'. Then the modulus | f(2)| attains its maximum

on C'. M
(\ ‘Zii::: ZZ )

| EXAMPLE 5 Maximum Modulus — ~—"—"

Find the maximum modulus of f(z) = 2z + 5i¢ on the closed circular region

defined by 2] <2 |2)=2 (C)

Solution From (2) of Section 1.2 we know that |2|* = 2z. By replacing the
symbol z by 2z + 5i we have ;T:F :ﬁ;}*ﬂ t%

122 + 5i|® = (22 + 5i)(22 + 5i) = (22 + 5i)(2Z — 5i) = 427 — 10i(z — 2) + 25.  (8) t-'[""‘"'-l- 13;'
But from (6) of Section 1.1, 2 — 2 = 2iIm(z), and so (8) is <. {k@
|22 4 5i]* = zﬁqz +20Tm(z) t_z_g_zlﬂ—\-il)Iul (9) JidsD
_ o aHaing
<2 \ 'ﬁﬁ

X \vwimn
Because f is a polynomial, it is analytic on the region defined by |2| < 2. By an Q? S
Theorem 5.16, max,.|<z |22 + 5i| occurs on the boundary |2| = 2. Therefore, .

on |z| = 2, (9) yields ﬁ@}l G-HMQ
L
|22 + 5i | = /41 + 20 lmEz]. (10)

The last expression attains its maximum when Im(z) attains its maximum on
|2| = 2, namely, at the point z = 2i. Thus, max|.j<2 |22 + 5i| = /81 = 9. |




| &ﬁ;)re Wﬁw | @)

, where (' is given by z(f) =2t + %, 0 < £ < L.

Jé(?(ﬁm&lf S 1++Jc:a)(f ) (2+2ﬂ & - jucﬁh “(,( s )Jz‘
w

O
Up* L \}&)

2
¢} i i
3.:. ; :_ni; da: Emitive if:teger and C is the comtour |z|] = 2, then ﬁ\
Iﬁ@z Ml ]ET 2%l i = 53
T gy ("

w1 "0 "
%172‘* jlz\ =€ -> 5(21—-@ {7' fi}m
X

_ |z| >0, —w < arg(z) < , the derivative of the principal value
L;z E n
=0 . ~N
()=l ¢ L7 }

f [J' 1+9( Ndz= [ f(2)dz + [ g(2) dz

R
j[o((zfi-)ﬂ (214 ] Zwdt jbﬁfzrﬁ zﬁa&ﬂ




-ff:?z}dz = Jof2)dz + [ fz)dz, where C consists of the (Q)

smocth Garves O id (s iumei end to end. ’ r\/;["ﬂ'/_\-/c\
[Pan Eﬁ)dz 1{ fleco) 2o f+£ WZ(@?@ S yofr {fﬁ (

ﬁa%ﬂ ( g*‘ uStdt dt 5-& 041)dt = ‘T"%"’a;’?q
- Xr\R= + Lol |\t 0% .
= — C.
cjrp{ - !i-ﬂ}deifrcrm :?uémmgthemmu ngw_:’%/" i wre v.L—ul

J ('E—H(I :z’)> (++(F-Jr)1)1~2 (—-H}’ T

x)=T

4t
m_\—/ o L

In Problems 25-28, find an upper bound for the absolute vakie of the given integral
along the indicated contour. i
e” N v ﬁ\ﬁ
25. ‘?{ ——— dz, where C is the circle |z| =5 . )
o Z + 1

26. f 5 : -dz, where C is the right half of the circle |z| = 6 from z = —6i
o2 — M —
to z =61 x} —
z . > K < 5
8

el lﬁC\EHl €, H’e.'_-__el :e B
l - lzzI_I T—"—"Izlﬂ_"l"zg_l — 2[_,_ Lf _5‘5-;;‘:530

! 2%
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A sequence {z,} is a function whose domain is the set of !"N TH _)k_ Z)

rd
positive integers and whose range is a subset of the complex numbers C. In £ (E
other words, to each integer n = 1, 2, 3, ... we assign a single complex niumber l}
zn. For example, the sequence {1+ i"} is s @ (25‘

143 0 11—t & I+t ... i.
S <
TR>" I (1) y T lsan,

HL'QZ{H
Pe Ny T TS (). B

If lim z, = L, we say the :.equem:e {z.} is convergent. In other words,

-[z,,} converges to the number L if for each positive real number £ an N can
be found such that |2, — L| < £ whenever n > N.

Do
| EXAMPLE 1 A Convergent Sequence x i}
i1 jn+1 '.:6:.':- WY
« The seqlﬁuﬁ d } converges since 111n = 0. As we see from \

net

S8

k: ;f _’2 et gt & n)
gy, _T" ny K=>00 o
and Figure #72, the ter the sequence, marked by colored dots in the //

figure. spiral in toward the point z = 0 as n increases.

|
'1‘-#'3\__ \ﬂ; 2*-’:)\_. &"’:z_iz—)[_\btbk—?m
L;})Gﬁran 0. an\:*n*;»N 12, L\<S m&wwuﬁg—z,

Mik}NMh{frz L\ <8 " Henee ,@»m

by 2K | (&) Eiven &> e fy Hha
: ‘5‘1& of- the hmﬂ-@

Re{ } converges to HE(L} =da a_nd Im(z,) converges to Im(L) = b. '—][\5_ 2K
7=
- —_

zﬂ:ﬂmq-bht = A4bl 2> ﬂ“"bﬂi& hﬂ-—)b i l-*.—; 4" Zie <

Progf. ()

eag~ (=)

2—0=JRe(z- LY <)z~ L)
Given Ero ANy A 12 - L) <E. | Cheeahy

o fo a2 LL<£ L"M“‘-wﬂ'
h,_u.w_h agel) N=2k >N
U@lz L=} (a_c.)+LLh_L]|4!G—&]-\4b" )%"I 1-145-‘-‘? I“LH:T'

N=le =Yk= ﬂ->ﬂl%ﬂ:ﬁf
N=2k- -f.—_-,bka—ﬂi'—‘—>ﬂ




| EXAMPLE 2 Illustrating Theorem 6.1

34+ ni
n+ 2ni

Consider the sequence { } From

3+ni _ (B+ni)(n—2ni) 207 +3n  n®-—6n

" n+2ni n2 + 4dn2 5n2 Yz
we see that
2 +3n 2 3 2
Relen) =52 =575 5

n® —6n 1 i} 1
and I_I:r_lf_z,,t}:T:g_a_ﬂ—n-E

as n — oo, From Theorem 6.1, the last results are sufficient for us to conclude
- i . i j l ¥
that the given sequence converges to a +ib = = + =i,
=SV 58 An infinite series or series of complex numbers

= )

Y a=untzmtamtotzmto-
k=1

is convergent if the sequence of partial sums {S,, }, where
Sn =X+ zZat+Zg+---+ 2,

converges. If S, — L as n — oo, we say that the series converges to L or that
the sum of the series is L.

LR SER e A geometric series is any series of the form

aC

Zu =l st ar a4 4Las™
k=1

b s, (2)

For (2), the nth term of the sequence of partial sums is

S.=a+az+az>+---+az""\, (3)
(1 =2)S, =a(l—=:z"). Solving the last equation for S, gives us "4 v
( f;’tHNbLn;q- ZUo1ce
_a(l=2")
Now z" — 0 as n — oo whenever |z| < 1, and so S, — a/f(1 — z). In other (ﬂ-{-D %j/]q"(’#g
words, for |z| < 1 the sum of a geometric series (2) is af(1 — z): 1:?-“-'-
! N e
P RPN RPT I SR R S (5)
=z nJ
0 -

A geometric series (2) diverges when |z| > 1.



If 5", z converges, then lim z, = 0.

n— 00 c}m‘%}'
Such, that 1o _f"'"
Proof Let I denote the sum of the series. Then S, — L and §,,_; — E"l“ihﬂ. N 1'{51;
n — oo. By takmgthell' o : P=N+1 We Gt

Theorem 6.3 The nth Term Test for Divergence

If lim z, # (. then Z:;l zp diverges. ' " } L--.L‘:

For example, the series Zi‘;l (ik +5)/k diverges since z, = o ' w
(in+5)/n — i # 0 as n — oc. The geometric series (2) diverges if |z| = 1 '
because even in the case when lim,,_,_ |z"| exists, the limit is not zero.

Definition 6.1 Absolute and Conditional Convergence Z n . 2
An infinite series Z;‘;l zp is sald to be absolutely convergent if ld'l'] HM‘%
S = |zk| converges. An infinite series Y ,_, zx is said to be condi- CevV/,

tionally convergent if it converges but 3_,_ | |z¢| diverges.

oo

In elementary calculus a real series of the form 3 >
k=1

and converges for p > 1 and diverges for p < 1. We use this well-known result
in the next example.

is called a p-series

EXAMPLE 4 Absolute Convergence

i* < | ik
The series 12_:1 is absolutely convergent since the series E = is the same
O
as the real convergent p-series Here we identify p =2 > 1.

2°
k=1 k

As in real calculus:

Absolute convergence implies convergence.
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IEE N G OGTIRSR S iteal  Two of the most frequently used tests for
convergence of infinite series are given in the next theorems.

Theorem 6.4 Ratio Test

Suppose E:;l zp is a series of nonzero complex terms such that

lim |t f (9)

(i) If L < 1. then the series converges absolutely.
(i) If L > 1 or L = oc, then the series diverges.

(#if) If L = 1. the test is inconclusive.




Theorem 6.5 Root Test

ean], INPnEN,
\ :gl 'J\_'q,; ~L|<4-L
"{l"'-‘-m

Suppose ¥, zk is a series of complex terms such that

lim ¢/|z,| = L. (10)
& - ENEC
(i) If L'< 1, then the series converges absolutely. 'l/’ 'S;—_L q{\"\ do ConV. (A\ < ))

(ii) If L > 1 or L = oo, then the series diverges. %\ mlsﬁn ) Csc
=21z 1<to.0

(i) If L =1, the test is inconclusive.

We are interested primarily in applying the tests in Theorems 6.4 and 6.5
to power series.

The notion of a power series is important in the study
of analytic functions. An infinite series of the form

Gﬁwﬂ-— Y ak(z - 20)* = ag + ai(z = 20) + az2(z = z0)*+ - -,

where the coefficients a; are complex constants, is called a power series in
z=zp. The power series (11) is said to be centered at zg: the complex point
zp is referred to as the center of the series. In (11) it is also convenient to
define (z — z3)? = 1 even when z = z,.

(11)

k=0 d‘lﬁ'mgem:e I

- e -

Figure 6.3 No general statement con-
cerning convergence at points on the

circle |z - zg| = :allic-’made

'an\f ﬂ-‘t

(0o CGT OGS NSEWEl  Every complex power series (11) has a ra-
dius of convergence. Analogous to the concept of an interval of convergence 12~ 'I. l < ] 2'. - "Z.,‘ l

for real power series, a complex power series (11) has a circle of conver- ! v
gence, which is the circle centered at zp of largest radius R > 0 for which ]ﬂ.@-— ) \ 4“1 "‘Z) I

(11) converges at every point within the circle |z — zg| = R. A power series .““ T
corverges absolutely at all points 2 within its circle of convergence, that is, Nﬁ ('W"‘ M‘
for all z satisfying |z — 23| < R, and diverges at all points 2 exterior to the M

circle, that is, for all = satisfying |2 — 29| > R. The radius of convergence can Z_ ] ah('z —_ Sﬁ‘l < o,

be:
e

(i) R =0 (in which case (11) converges only at its center z = z[]}

Sag =5 v, <o
interior A’S on CM_ ﬁ‘

(i) R a finite positive number (in which case (11) converges a{ all
points of the circle |z — zy| = R), or

(##i) R = oo (in which case (11) converges for all z).

L’*‘*ﬂ;:l (a2 2y _ }zﬁl}g&a L[r { A2, e
. " - } }(G’"'@ A0 V- ﬁfwﬁﬁw&

P20 1 () eekie el



| EXAMPLE 5 Circle of Convergence

r the power series gf: 31:1. By the ratio test (9). 7; M dﬂ"’ Mym ‘ﬁ

n—nc| gntl n—;cu: n+4+1

n >

Thus the series converges absolutely for |z| < 1. The circle of convergence __t__
is |z| = 1 and the radius of convergence is R = 1. Note that on the cirel

of convergence |z| = 1, the series does not converge absolutely since 7 s

QJ_@-J[
M ah

is the well-known divergent harmonic series. Bear in mind this does not s
that the series diverges on the circle of convergence. In fact, at 2 = =1,

k41
Do i

be shown that the series converges at all points on the circle |z| = 1 except at

is the convergent alternating harmonic series. Indeed, it can

[rep—
e

l}

n

EXAMPLE 6 Radius of Convergence

o [CIFT), =
Consider the power series % 3 z—=1-= i]"‘. With the identification
k=1 - z =

2n = {—l}“"'lfnl we have ak - l +L

{_1}n+‘2
(n+1)! _ 1

Hence by (13) the radius of convergence is oo; the power series with center
zp = 1 + i converges absolutely for all 2, that is, for |z = 1 — 1| < oc.

2]
h)

n+2 C"""W ke, Conn Kg"'@
i | BELL_ 2 = |z|..(l e /‘&,ﬁo 7@»2%'

R 1
ooy

EXAMPLE 7 Radius of Convergence

6k + 1 eg _ f(6n+1Y
Consider the power series Z (2;._.}_ ) z=2i)% Witha, = (2n+5) . the

root test in the form {L)} gives

Notobionm

V- i 2L Zwaf%

By reasoning similar to that leading to (12), we conclude that the radius f:-f
convergence of the series is R = 1. The circle of mnvergenﬂe is |z=2i| =1
the power series converges a.bsulutelv for |z — 2i| {: =

M_

FZZRR, o 1T-ZKR,

Z;ua"{z —20)" + E:;D bie(z = 20)" = Z [ﬂ;: + b )(z — 20)%.

(i) ¥ 2, = a, + ib, then the nth term of the sequence of par-
tial sums for 377, 2, can be written S, = Y _ (ap +ib) =
ELI ﬂk+iE:=Ih},. Analogous to Theorem 6.2, Er;lzkﬂnnvergm
to a number L = a+ib if and only if Re(S,) = 3 [ _, ai converges to

|2-z L o ®

'L‘



Differentiation and Integration of Power Series

theorems that follow indicate a function f that is defined by a power series is z im.if?
continuous, differentiable, and integrable within its circle of convergence. ,Jﬁa ; ?

Theorem 6.6 Continuity

A power series E.:;u ax(z — 20)* represents a continuous function f
within its circle of convergence |z — 29| = R

Theorem 6.7 Term-by-Term Differentiation

A power seriess Y g ailz — zp)¥ can be differentiated term by term
within its circle of convergence |z — 25| =

> B R K m<ompuet
sv-Szekizex;
|2~z AN

'S:C = aplz—2g) = ﬂk—z—zﬂ - a Z—zu"'l
?)= Z (2 = z0)" Z (2 = 20 = ; k(= = z0) 5;&1[ 4(z-2%)¢|a (z_—é’)
Mn'<"°, “",(;[—’Fﬁ

MVZ‘

Differentiating a power series term-by-term gives,

/S Za
Theorem 6.8 Term-by-Term Integration C =
A power series ¥ 5o, ai(z — z)* i -by- ithi : '”r?k
power series » o ap(z — z)" can be integrated term-by-term within 1

its circle of convergence |z — | = R, for every contour C lying entirely M
within the circle of convergence. 'ﬁ' Mﬂ, CT,‘S
%! 4 f?-._ J GIM.J

The theorem states that

beniifo
fz:ak[z—zu] dz_zﬂ-'fj (z — 20)" dz P')",go CEHV ‘&C

ok % #\-(_/
whenever (' lies in the interior of | 2 — 25| = R. Indefinite integration can ;1115«:.5-;*2661"’I k)

be carried out term by term: -’t’b C@ Q VE ‘__: " q‘?)"d

/ Emmﬂ%_zﬂ -l o FKis a sm%'rl»t{i-}
_Zk+1{3_zu}k+l+r_‘ﬂnstant. %mmg M

The ratio test given in Theorem 6.4 can be used to be prove that both

o GZ‘I"Z‘ (wam

. ak
Z ak(z — z0)"* and Z F+1 (z—20)**" have the same circle of conver z = zgl,=

k=0 o H’bt(..b'




AFITEISETEES  Suppose a power series represents a function f within
| z = z0| = R, that is,

o0

f(z} = Zﬂﬁ:{z = Z:}}k = ag + all:z - zu:l +-:12{Z = Z’{]}z +'11.';[Z — znjz R (1]
k=0

It follows from Theorem 6.7 that the derivatives of f are the series

. o
F'(2) = ank(z = 20)*! = ay + 2a0(z — 20) + 3az(z — 20)* + -, (2) o —F(%):al

k=1
- _{_,;-

f'(2)=) ark(k=1)(z—20)"7=2-1a2+3-2a3(z = ) +---,  (3) 7D (Z‘}r— 24,
k=2
o0 12

f(2) = akk(k=1)(k=2)(z = 20)**=3-2-lag+ -~ (1) \d 4" (Z.-)=£a3
k=1

and so on. Since the power series (1) represents a differentiable function f
g within its circle of convergence |z — 25| = R, where R is either a positive
number or infinity, we conclude that a power series represents an analytic
function within its circle of convergence.

There is a relationship between the coefficients aj in (1) and the deriva-
tives of f. Evaluating (1), (2), (3), and (4) at z = 2, gives

flz0) =g, f'(20) =1lay, f'(z0) =2las, and ["(z) = 3laa,
respectively. In general, [“:'{zu} =nlag f or
= £ (20)

n!

n > 0. (5)

il

When n =0 in (5). we interpret the zero-order derivative as f(zp) and 0! =1
so that the formmla gives ap = f(20). Substituting (5) into (1) yields

— [ ()
,f{:}=zf " ~ (2 = 2p)

=]

This series is called the Taylor series for f centered at z;. A Taylor series
with center zy = 0.

a"w, (k) 0
.f[:_lzzf ﬁ.:: :I'.‘Z

L=

(7)

is referred to as a Maclaurin series.
We have just seen that a power series with a nonzero radius R of conver-
gence represents an analytic function. On the other hand we ask:

Question

If we are given a function f that is analytic in some domain D, can we
represent it by a power series of the form (6) or (7)7



Theorem 6.9 Taylor's Theorem

Let f be analytic within a domain IJ and let zy be a point in D). Then f
has the series representation

T ek
) =3 e - st ®

valid for the largest circle C' with center at z; and radius R that lies
entirely within D).

Some I'mportant Maclaurin Series

) ok
et ey o (12)
fe=01
53 25 i . s2k+1
snp=s-Fag-c=L (Vom0
TR Z 2k + 1)
22 =1 i : »2k
CDE::I_E-I-E_“.:EZ:;(_” ) (14)
S
| EXAMPLE 1 Radius of Convergence ,?--L
gL et h=o

Suppose the function f(z) = 1 is expanded in a Taylor series with

—i4z
center zg = 4 — 2i. What is its radius of convergence R?

Solution Observe that the function is analytic at every point except at
z = —1+1i, which is an isolated singularity of f. The distance from z = -1+
tozg=4—2iis

lo = 20| = /(=T = 47 + (1 = (=2))?

If two power series with center z;, J

‘—Iﬂ-z—zu* Ih;—zg’“
-Hz)_g K( ),::nﬂ::.-g k(2 = 2)

Tf yow <am
represent the same function f and have the same nonzero radius R of conver- o { r :

gence, then

uk=bk=f{k}{z")._k={],1.2._.... @ ﬁm%ﬁe,v_%

k!

_ | | - =2 \"
Stated in another way, the power series expansion of a function, with center v

2y, is unigque. On a practical level this means that a power series expansion

of an analytic function f centered at zq, irrespective of the method used toﬁh;a 8 o EL""F ~

obtain it, is the Taylor series expansion of the function. For example, we can

obtain (14) by simply differentiating (13) term by term. The Maclaurin serier?—:li ! - E N “: ! E ’ﬁ

for e* can be obtained by replacing the symbol z in (12) by 2% at



| EXAMPLE 2 Maclaurin Series
1

Find the Maclaurin expansion of f(z) = m

Solution We could, of course, begin by computing the coefficients using (8).
However, recall from (6) of Section 6.1 that for |z] < 1, \ | \7
(-
1 2, .3 (_I s ‘ -
T =itz 24 (15 h=] Mﬂ)
If we differentiate both sides of the last result with respect to 2. then (Z‘-g

d 1 _dl d d , d 4
dz1—2 d= +dzz+dzz +dzz +--

o0
or =0+1+2:4322+..=) k20 (16)
k=1

(1—2)

Since we are using Theorem 6.7, the radius of convergence of the last power
series is the same as the original series, R = 1. |

We can often build on results such as (16). For example, if we want the

3 Qo
Maclaurin expansion of f(z) = : 7. We simply multiply (16) by 23 1
2 3 1 5 = k42 Q _2")2 mn
——— =242 434 =) kT =|
[‘1 - Z:ﬂ k=1 e
The radius of convergence of the last series is still R = 1. 'Z?P zn __ZTFLQ
~ Q___
| EXAMPLE 3 Taylor Series -z N=)
1
Expand f(z) = 1—2 in a Taylor series with center zp = 2i.
-z
Solution In this solution we again use the geometric series (15). By adding
and subtracting 2i in the denominator of 1/(1 — z), we can write _ 1|
1 1 B 1 1 1 Lol R STTROY
l—z 1-z+2i-2" 1-2i—(2—2) 1-2, 2z-2 o
1—2i = —
: _ 1 _ _ _ -2, ~(Z-2i)
We now write —— —9; as a power series by using (15) with the symbol =
=13 . = L - 1
replaced by the expression i — ;: L—.z{_‘ )
— 1 —
i
. N\ 2 .\ 3 o
I | 1+z—21+(z—21 N z—EE) N ‘l n
11—z 1-2i 1—2i 1—2i 1-2i T—_— - W
';_'24‘5- =g

& PR
=)_gmaym @2
Vi=g



in the neighborhood defined by |z — 2i| < 1, except at z = 2i, and at every
point in the neighborhood defined by |z — (—=2i)| < 1, except at z = —2i. In
other words, f is analytic in the deleted neighborhoods 00 < |z — 2i| < 1 and
0 < |z 4+ 2i| < 1. On the other hand, the branch point z = 0 is net an isolated
singularity of Ln 2 since every neighborhood of z = () must contain points
on the negative r-axis. We say that a singular point z = z; of a function f
is nonisolated if every neighborhood of z; contains at least one singularity
of f other than z;. For example, the branch point z = 0 is a nonisolated
singularity of Ln z since every neighborhood of z = (0 contains points on the
negative real axis.

LA ST G M TSl  If = = z; is a singularity of a function f,
then certainly f cannot be expanded in a power series with z; as its center.
However, about an isolated singularity z = zp. it is possible to represent f
by a series involving both negative and nonnegative integer powers of 2 — 24
that is,

flz)=---+ {ﬁ“_? 2t %“___ +ag 4 a1z = 29) +az(z =) + . (1)
T=2p z =2y

As a very simple example of (1) let us consider the function f(z) = 1/(z = 1).
As can be seen, the point 2 = 1 is an isolated singularity of f and consequently
the function cannot be expanded in a Taylor series centered at that point.
Nevertheless, f can expanded in a series of the form given in (1) that is valid
for all zynear 1:

f-[‘EYz‘----}-{Z_{]]}E +zil+U+[]-[z—1)+ﬂ-{z—1}2+---. (2)

The series representation in (2) is valid for 0 < |z — 1] < oc.
Using summation notation, we can write (1) as the sum of two series

¥}

f@) =) aiz=2 4+ anz-=)" py )
P"WW -
The two series on the right-Hand side in (3) are given special names. The part

with negative powers of z — 2z, that is,

er_;,,-li'.'—:u:l_'t' = Z(”;i (4)

k=1 k=1 \Z — 20)

is called the principal part of the series (1) and will converge for
|1/(z — za)| < r* or equivalently for |z — 2| > 1/r* = r. The part consisting
of the nonnegative powers of z — zg,

&

Z ax(z — 20)", (5)

ke=()

is called the analytic part of the series (1) and will converge for |z — zg| < R.
Hence. the sum of (4) and (5) converees when z satisfies both |z = zal > 7

and |z = zg| < R, that is, when z is a point in an annular domain defined by
o=l |Z—Z[;| < R.

By summing over negative and nonnegative integers, (1) can be written

compactly as .
flz)= Z ak(z = 20)*.

k sl

S Not .
2 mi"f%
;-ZM Polng ¢
7}{'7’ 2 4 "od "aéz
Oy 7 ©
el o,
§ 3 ﬁZj =4




| EXAMPLE 1 Series of the Form Given in (1)

The function f(z) = ——
hence cannot be expanded in a Maclaurin series. However, sin z is an entire
function, and from (13) of Section 6.2 we know that its Maclaurin series,

is not analytic at the isolated singularity z = () and

_ P I |
smz=z—§+§—ﬁ+ﬁ—-“, _ZE"Q,

converges for |z| < co. By dividing this power series by 2! we obtain a series

for f with negative and positive integer powers of z: I R_
principal analytic | ”
t part
par N '{]'Z’ ( Q0
s # 7 = -
sin z 1 1 z 23 P Z=hd
=g =s-m*s-~ata" ©)

The analytic part of the series in (6) converges for |z| < oo. (Verify.) The
principal part is valid for |z| > 0. Thus (6) converges for all = except at z = (;
that is, the series representation is valid for 0 < |z| < oc.

A series representation of a function f that has the form given in (1),
and (2) and (6) are such examples, is called a Laurent series or a Laurent
expansion of f about zy on the annulus r < |z — z| < R.

Theorem 6.10 Laurent’s Theorem

Let f be anmalytic within the annular domain D defined by

r < |z — zp| < R. Then f has the series representation

oo

flz)= ) ar(z—z)* (7)

k=—nc
valid for r < |2 — zg| < R. The coefficients a; are given by

1 f(s)

™= 2mi Jo (5= 20)1

ds, k=0, 1, +2, ..., (%)

where C is a simple closed curve that lies entirely within D and has z; in
its interior. See Figure 6.6.




EXAMPLE 2 Four Laurent Expansions y ¥
Expand f(z) = ——— in a Laurent series valid for the following annular o e
domains ey ]L] <] ) "L l "( l _|'f_.._\l_ _r‘i.,_\‘l_
g ,__,/’ Z -\ A o] ST
(a) 0<|z| <1 (b) 1 < |2| ()0<|z—1] <1 d)1<|z-1]
Solution The four specified annular domains are shown in Figure 6.8. The (a) (b)

black dots in each figure represent the two isolated singularities, = = () and
z=1, of f. In parts (a) and (b) we want to represent f in a series involving
only negative and nonnegative integer powers of z, whereas in parts (c) and
(d) we want to represent f in a series involving negative and nonnegative
integer powers of =z — 1.

(a) By writing

z 1=z -2 —
we can use (6) of Section 6.1 to write 1/(1 — z) as a series:
1 g ¥ S -Z.“"-I
flz)=—-[14z422427+--]. -
= Ni=o9

The infinite series in the brackets converges for |z| < 1, but after we
multiply this expression by 1/z, the resulting series

1
f{z}=—;-l—z—zz—z‘?‘—---

converges for 0 < |z < 1.

(b) To obtain a series that converges for 1 < |z|, we start by constructing a
series that converges for |1/z| < 1. To this end we write the given function

o)== — Hade -
2 _ % ¥ Z —~ 'l
and again use (6) of Section 6.1 with z replaced by 1/=: — ‘. \

2 T
foy=— 1+§+$+$+...]. z 1_,2_%)40

The series in the brackets converges for |1/z| < 1 or equivalently for \ fo]
1 < |z|. Thus the required Laurent series is < ]

1

o
2

1
—

1 1
_? s

flz)==+—=+ :

tic e

[ ]



(c) This is basically the same problem as in part (a), except that we want all
powers of z — 1. To that end, we add and subtract 1 in the denominator
and use (7) of Section 6.1 with z replaced by z — 1:

i L
1
f{z}: {1 _1+zJ[z—l} :-"ﬂ_-_“‘*-“
— 1 1 - \ S ‘ - _ﬂ‘t:?j:_x
a=11+(=-1) 2 l—-(—-(’Z—\))
. (ch (d)

l-(z=1)+(z=-1)=(z=1)*+--]

z=1 .
Figure 6.8 Annular domains for

Example 2

=~_1—1+(:—l]—[z—ljz+---.

The requirement that = # 1 is equivalent to 0 < |z — 1|, and the geometric
series in brackets converges for [z — 1| < 1. Thus the last series converges \ e,

—_——
for z satisfying 0 < |z — 1| and |2 — 1| < 1, that is, for 0 < |z = 1] < 1. Vi— o

dPﬁ,ad' in part (b), we writ
(d) Pro mg_ﬂs np (b), we write

-\ 2
1 1 1 1
A

I 1+ (-1 (z-1)2 .

_ 1 1 1 1 1
_{z-UZ[ TSl tEoy et

ot -t 1t 1
C(z-1)2 (z-1P  (z-1F (z—-1)°

<+

Because the series within the brackets converges for |1/(z = 1)| < 1, the
final series converges for 1 < |z —1]|.

| EXAMPLE 3 Laurent Expansions

Expand f(z) =

1
D3 in a Laurent series valid for (a) 0 < |z = 1| < 2

)2 ¢

(a) As in parts (c) and (d) of Example 2, we want only powers of z — 1 and
s0 we need to express z — 3 in terms of z — 1. This can be done by writing

1 1 1 -

T E-12(z-3) (212 —2+(z—1) 2@z-1)7 [ _

and then using (6) of Section 6.1 with the symbol = replaced by (z—1)/2,

-1 z=1 (z=-1)* (z2-1)*
=———|1+ e
7z 20z = 1) 2 e 2
1 1 11

= "3e-17 1e-1 5 1w Y- (16)



| EXAMPLE 5 A Laurent Expansion

1
Expand f(z) = G0 in a Laurent series valid for 1 < |2 = 2| < 2.
v
Solution The specified annular domain is shown in Figure 6.9. The center ,"‘ B \\"n
of this domain, z = 2, is the point of analyticity of the function f. Our goal L 7N )
now is to find two series involving integer powers of z — 2, one converging for > l-‘. 3 : -
1 < |z — 2| and the other converging for |z = 2| < 2. To accomplish this, we \ "x\‘ y ‘;'
proceed as in the last example by decomposing f into partial fractions: hoo s
1 1 o
f[zj=-:+z—_i"=f1{=]+f2{2}- (17)
r & 1 1
Bow, ") ==="3vs3
_ 1 1
o z=2
1
* 2
1 =2 (2=2)% (2-2)
== |] = = -
2 B g8 TR
_ 1 z-2 (z=-2* (z-2)
=Tt T
This series converges for |(z — 2)/2| < 1 or |z = 2| < 2. Furthermore,
1 1 | 1
B = el ~i%a—3 =3 I
1+ —

et B 1 1 1
T z=2 z-z"'(:-ﬂ}?_{z-m-?"'”']

S SR SN
-2 (z-22 (z=28 (=2p "

converges for |1/(z = 2)| < 1 or 1 < |z = 2|. Substituting these two results in
(17) then gives This representation is valid for = satisfying |z = 2| < 2and 1 < |z = 2: in
other words, for 1 < |z — 2| < 2.
1 1 1 1 -2 -2} -
LE=2_ (=2 (=20

flz)=--— + - + n
(z) = (z=2) " (z=2)° (2—=2)2 ' z—-2 2 ' 22 23 o

| EXAMPLE 6 A Laurent Expansion
Expand f(z) = ¢** in a Laurent series valid for 0 < |z| < oc.

Solution From (12) of Section 6.2 we know that for all finite z, that is,

|z] < oo,
- z
ef=1+z+r+35+--. (18)
We obtain the Laurent series for f by simply replacing = in (18) by 3/z,
z#0,
3 1 3

eafz:1+;+@+ﬁ+ This series (19) is valid for = # 0, that is, for 0 < |z| < oc.



Classification of Isolated Singular Points
lar point z = zg of a complex function f is given a classification depending
on whether the principal part (2) of its Laurent expansion (1) contains zero,
a finite mumber, or an infinite number of terms.

An isolated singu-

(i) If the principal part is zero, that is, all the coefficients a_j in (2) are
zero, then z = zp is called a removable singularity.

(i1) If the principal part contains a finite mumber of nonzero terms, then
z = zp is called a pole. If. in this case, the last nonzero coefficient in
(2) is a_p, m = 1, then we say that z = zy is a pole of order n. If
z = zp is pole of order 1, then the principal part (2) contains exactly
one term with coefficient a_,. A pole of order 1 is commonly called a
simple pole.

(i22) If the principal part (2) contains an infinitely many nonzero terms, then
z = zp is called an essential singularity.

Table 6.1 summarizes the form of a Laurent series for a function f when
z = zy is one of the above types of isolated singularities. Of course, R in the
table could be oc.

Z = Zp

Removable singularity

ap + a1(z — z0) + az(z — z0)% +---

Pole of order n

a_p a_[p—1)
_|_
(z=z)* (2=z)"!

+o-+

. n_1 3 ?

Simple pole +ag+ ai(z = z0) + az(z = z0)* + - R Sa
Essential singularit P - 2 ‘ ,Izrn vz
ssential singularity ven =) + Ep—— +ag+ay(z—zp) +az(z —z)" + - o

Table 6.1 Forms of Laurent series

| EXAMPLE 1
Proceeding as we did in Example 1 of Section 6.3 by dividing the Maclaurin
series for sin z by 2z, we see from 8;“2_ 2 e 15
. T el
4

Removable Singularity

sin z 22z \ lﬁ—“*,
;{qf}: - —1-m+a— Il."q!zl@ [-i}

that all the coefficients in the principal part of the Laurent series are zero.
Hence z = () is a removable singularity of the function f(z) = (sinz)/z.

| EXAMPLE 2 Poles and Essential Singularity

3.5
(a) Dividing the terms of sinz = 2 — o + :—! — -+- by 2? shows that
{1
principal
part
: - 3
sinz 1 2 z
2z 3! 5!

for 0 < |z| < co. From this series we see that a_; # (0 and so z =0 is a
simple pole of the function f(z) = (sinz)/z2. In like manner, we see that
z =0 is a pole of order 3 of the function f(z) = (sinz)/z" considered in

Fvarmmle 1 of Sactican @ 2



(b) In Example 3 of Section 6.3 we showed that the Laurent expansion of

f(z2)=1/(z = 1)*(z = 3) valid for 0 < |z = 1| < 2 was
ke sz L

prinfilial part ’ @..|J-2 ’
f{}—r 1 1 1 z-=1
JETa—12 " 4z-1) 8 16 .
2

Since a_q = —% # (), we conclude that z =1 is a pole of order 2.

(c) In Example 6 of Section 6.3 we see from (19) that the principal part of 0o
the Laurent expansion of the function f(z) = */* valid for 0 < |z| < 0o %ﬂ.
contains an infinite number of nonzero terms. This shows =TIt z C-
ni

an essential singularity of f. Vico
\

:\\\']-_3— + _&-Tl
27t %

Recall, a number z; is zero of a function f if f(z5) = 0. We say P hnci
that an analytic function f has a zero of order n at » = z; if F M

zg is a zero of f and nLi.t: first m—1 derivatives
Flzo) =0, f'(z0) =0, f"(20) =0, ..., fU V(z) =0, but f™(z)#0. (4) -?
(z

A zero of order n is also referred to as a zero of multiplicity n. For
example, for f(z) = (z — 5)* we see that f(5) =0, [(5) =0, ] (5) =0, but
f"(5) = 6 # 0. Thus f has a zero of order (or multiplicity) 3 at zo = 5. A
zero of order 1 is called a simple zero.

The next theorem is a consequence of (4).

Theorem 6.11 Zero of Order n

A function f that is analytic in some disk |z — 29| < R has a zero of order _?
n at z = z; if and only if f can be written (2}= e/ .zn)""i'“\
f(z) = (2 = z0)"&(2), (5) = h"z‘_'Eb—l
. . ~
where ¢ is analytic at z = zp and @(zp) # 0.
& 7 )ﬂ
Aot
Partial Proof We will establish the “only if” part of the theorem. Given <4 ~<.
that f is analytic at zp, it can be expanded in a Taylor series that is centered “ he. ﬁ
at zp and is convergent for |z — zy| < R. Since the coefficients in a Taylor kn.um a--": C%}

K""—-—-—

series f(z) = Sregar(z — z)* are ap = f®) ()KL, k=0, 1, 2, ..., it N
follows from (4) that the first n terms series are zero, and so the expansion -?('Z} ﬁ.(’z {1 .
T 'Z; T

must have the form

flz) =an(z = 20)" + ans1(z = 20)" "' + anyo(z = 20)" T + - - : ﬂ[ﬂ
T . _Z
= (2= 29)" [an + @pp1(2 = 2p) + Appalz = 29)° + -+ | -E) ﬁ.l.%\ \g)
- . - . e
With the power-series identification % :J

o

we conclude that ¢ is an analytic function and that ¢(z;) = a, # () because

A3 :
an = f™(z0)/n! # 0 from (4). = 14 c?{fktfé-};:

)



| EXAMPLE 3 Order of a Zero '\'g-a=3\m‘?_

The analytic function f(z) = zsin 2% has a zero at z = 0. If we repldce z hy 2
2% in (13) of Section 6.2, we obtain the Maclaurin expansion % -L_E 'zﬁ__ - \ S 7 o T
3) 5\
g gl iy : \ < e i

A T > B
SNz =27 = — 4 —— =-.0 | AT - . AR g
il 725" VR
3

Then by factoring z* out of the foregoing series we can rewrite f as

2 =8
=2"¢(z) where g(z)=1-—=+—=—-- (6)-

3l " 5l s 56“_52

and ¢(0) = 1. When compared to (5), the result in (6) shows that z =0 is a
zero of order 3 of f. |

f(z) = zsin2”

We can characterize a pole of order n in a manner analogous to (5).

Theorem 6.12 Pole of Order n

A function f analytic in a punctured disk 0 < |z — 2| < R has a pole of
order n at z = zg if and only if f can be written
o z)

ﬂf]=mn ':T:'

where ¢ is analytic at z = z5 and ¢(z;) # 0.

[
3%@
Partial Proof As in the proof of (5). we will establish the} t of
the preceding sentence. Since f is assumed‘tu have/a pole of order n at 2, it W—’

can be expanded in a Laurent series Y & o (39 1
Gopn [ ey v

d_n a1_2 a1
D Py +{Z—Zu)2+z—2u+ﬂu+ﬂl{z zp) + . (8)

valid in some punctured disk 0 < | 2z — 23| < R. By factoring out 1/(z — z,),
(8) confirms that f can be written in the form ¢(z)/(z — zp)". Here we identify

olz)=a_p+ - -+a_s(z- zu,}“_z +a_qy(z - zn}"_l + ap(z = zp)" 4+ a1(z - zﬂ]"+1 +-00 (9)

as a power series valid for the open disk | 2z — 23| < R. By assumption, z = z;
is a pole of order n of f, and so we must have a_,, # 0. If we define
&(zg) = a_,,, then it follows from (9) that ¢ is analytic throughout the disk
I z - Z’DI < R. LN

. -r tz)?jh{z‘? - ﬂ%)+%{é}é’%)+%uz“gim
Gl AN . e

Theorem 6.13 Pole of Order n

If the functions g and h are analytic at z = zp'and h has a zero of order WKz ’\
n at z = zy and g(z,) # 0, then the function f(z) = g(z)/h(z) has a pole | = -

of order n at z = 2. \ ; ?S‘{_L {z__ N
e e —— AR Y




Theorem 6.13 Pole of Order n

If the functions g and h are analytic at z = zp and h has a zero of order
n at z = 2 and g(zg) # 0, then the function f(z) = g(z)/h(z) has a pole
of order n at z = z.

Proof Because the function h has zero of order n, (5) gives h(z) =
(z — z0)"@(z), where ¢ is analytic at z = zp and ¢(z) # 0. Thus f can
be written

g(z)/o(z)

f&) = (10)

Since g and ¢ are analytic at z = zp and ¢(zp) # 0, it follows that the
function g/¢ is analytic at 29. Moreover, g(zp) # 0 implies g(z0)/o(z0) # 0.
We conclude from Theorem 6.12 that the function f has a pole of order n
at zg. L=)

When n = 1 in (10), we see that a zero of order 1, or a simple zero, in
the denominator h of f(z) = g(z)/h(z) corresponds to a simple pole of f.

EXAMPLE 4 Order of Poles f—[—z)_ S TLx Eé SE % )3 (2)
a) Inspection of the rational function f @_R I_'ZB

fz) =

z—l}[z+"i (3—2}‘-

shows that the denominator has zeros of order 1 at z = 1 and =z = -5,
and a zero of order 4 at z = 2. Since the numerator is not zero at any
of these points, it follows from Theorem 6.13 and (10) that f has simple
poles at z =1 and z = —5, and a pole of order 4 at =z = 2.

(b) In Example 3 we saw that 2 = 0 is a zero of order 3 of z sin 22. From
Theorem 6.13 and (10) we conclude that the reciprocal function f(z) =
1/(zsinz*) has a pole of order 3 at z = 0. |

(i) From the preceding discussion, it should be intuitively clear that if
a function f has a pole at z = zp, then |f(z)| — o0 as z — z from
any direction. From (i) of the Remarks following Section 2.6 we can
write ,H_].:E,f{z]:m‘

(i) If you peruse other texts on complex variables, and you are encour-
aged to do this, yon may encounter the term meromorphic. A func-
tion f is meromorphic if it is analytic thronghout a domain D,
except possibly for poles in D. It can be proved that a meromorphic
function can have at most a finite number of poles in D. For exam-
ple, the rational function f(z) = 1/(z% 4 1) is meromorphic in the
complex plane.



The coeficient a—y of 1/(z — zp) in the Laurent series given ‘Q{g(,ﬁ
above is called the residue of the function f at the isolated singularity zp. ﬁq

We shall use the notation g
ay = Res(f(), z) f - _[?_*;:}"*\%@‘L— +a
=1 siAV=)y <o) 7 g

| EXAMPLE 1 Residues

-0\ {,1—27-\- Y
(a) In part (b) of Example 2 in Section 6.4 we saw that z = 1 is a pole \ -

: 1
of order two of the function f(z) = =1 =3) From the Laurent
series obtained in that example valid for the deleted neigh oodofz=1
defined by 0 < |2 - 1] < 2, \ |
2
a_y L_Z--D \ "Bi—"z)]
A
-1/2 -1/4 1 =z-1
1(z) = o M G M b

(z—12 " z—1 8 16

we see that the coefficient of 1/(z —1) is a_; = Res(f(z2), 1) =—3

(b) In Example 6 of Section 6.3 we saw that z = 0 is an essential singularity
of f(z) = e¥*. Inspection of the Laurent series obtained in that example,

=1

—~—
=1+

0 < |z| < oo, shows that the coefficient of 1/z is a—; = Res(f(z), 0) = 3.

Theorem 6.14 Residue at a Simple Pole

If f has a simple pole at z = 2z, then - (

L
Res(f(z), z0) = :l_igtilﬂ)!cl r l (ﬁ

Proof Since f has a simple pole at z = zp, its Laurent expansion convergent
on a punctured disk 0 < |z — zp| < R has the form

(2 —z0) + az(z —z) +- %—1E¥'(Z.) &+ G.(?,—-Z}\.m

f(z) =
-._] L
where a_y # 0. By multiplying both sides of this series by z — zp and then ' L—-"‘—Y\-{
taking the limit as z — zp we obtain ow, WQ
W;‘hiﬂ
lim (z — 2)f(z) = lim [a_; + ag(z — z9) + ay(z — 29)* + - - -]
A, = % se Cl3

=i =R$ 120]

ﬂuuij%%ww AN



Theorem 6.15 Residue at a Pole of Order n

If f has a pole of order n at z = 25, then 37
o
1 dn -1
Res( f(z), 20) = ———— lim e 4| e Y F(z). (2)
(n— l:lr z—ezg dz™=
k)
Proof Because [ is assumed to have pole of order n at z = z;, its Laurent ﬁ‘ h—t ?5

expansion convergent on a punctured disk 0 < |z — z5| < R must have the
form

[ 11

f{z] m+"‘+{2_zﬂ)2 z_zu+ﬂﬂ+ﬂ1[2—zn}+"',

where a_,, # 0. We multiply the last expression by (z — z5)".

(z = 20)™ 1+ﬂu'[z— 1 s (z — z0)™+! + ‘f!z—z)h
WV Atz S by Puthing ®Z)a

(z = 20)"f(z) = (n — 1)la_; + nlag(z — zp) + - (3)

(z=20)"f(2) = G + -+ a—a(z— 20)" "% +

Sv G—";jﬂgtlﬁ 'cw';. o WML?. )
O™
dzn—1

Since all the terms on the right-hand side after the first involve positive integer S - 9(
powers of z — zg, the limit of (3) as z — 2z is . Fr‘“-ur

_— _‘:é -J
Ll S B W %P‘ e~ ("\/

lim
Z—Zq fdzn=1

Solving the last equation for a_; gives (2). %' S H\%

| EXAMPLE 2 Residue at a Pole
The function f(z) = ! has a simple pole at z = 3 and a pole of

(z—1)%(z — 3)—
order 2 at z = 1. Use Theorems 6.14 and 6.15 to find tmm & g L ‘
Z

Solution Since z = 3 is a simple pole, we use (

Res(f(2).3) = lim(z = 3)/() = .;ﬁ -3
i i f—{_z)___ %?{q

Now at the pole of order 2, the result in (2) gives
-\

Res(f(z),1) = lun—{z —1)2f(2)




Theorem 6.16 Cauchy’s Residue Theorem

Let D be a simply connected domain and C a simple elosed contour lying
entirely within D. If a function f is analytic on and within C, except at
a finite number of isolated singular points z;, 25, ..., 2, within C, then

)[ flz)dz = 2xi Res (f(z). zx)- (5)

Proof Suppose Cy, Cs, ..., C, are circles centered at z;, 29, ..., 2,,
respectively. Suppose further that each circle C has a radius r; small enough

so that Cy, Cs, ..., C, are mutually disjoint and are interior to the simple

closed curve C. Sec Figure 6.10. Now in (20) of Section 6.3 we saw that 2
fc' f(z)dz = 2mi Res(f(z), 2x), and so by Theorem 5.5 we have

n Fayde
if@).ﬁ:i:{ £(2) d‘z—zmz '3-“ S

k. 3 C.J- u-l IJ
EXAMPLE 4 Evalual:mn by the H.emdue Theorem
1
Evaluate jg dz, where
c(z—1)*(z—3) y=
(a) the contour C is the rectangle defined by s =0,z =4, y=-1, y=1,

(b) and the contour C is the circle |z| = 2.

Solution

G
(a) Since both z = 1 and z = 3 are poles withlin the rectangle we have fr o
(5) that

1
j{: o =g & = 2 [Res(f(2). 1) + Res(/(2), 3) L[ ]
We found these residues in Example 2. Therefore, _3> @ D ( _3)
&
1 ) 1 1
f e =ni|(-3) v =o —=1

(b) Since only the pole z = 1 lies within the cirele |z| = 2, we have from (5)

-+l

ﬁ,{z_]};(z_g] dz = 2mi Res(f(z),1) =2mi _1 — ——i.

<) é?: . S ﬂ@—*
Q"—-U z-3) o

C;‘ll-’f\'. \ the fungiien Aa {: on & w|

civele I=+41=)




EXAMPLE 5 Ewaluation by the Residue Theorem

2z +6 2|
Evaluate f ——— dz, where the contour C' is the circle |z — i| = 2. L
L a4 Sy T= =&)L —\ "
Solution By factoring the denominator as = (z — 2i)(z + 2i) we see

b ]
nly 2i lies within -4

2@=_4—_étisﬂ’

2:@?!:?52"—%1

st Res(f(2), 2) = ;!ilnzi(z B zi}{z _2;}:':_'_ 2i) — ,__t 2

that the integrand has simple poles at —2i and 2i. Becau
the contour C, it follows from (5) that

Z

2z+6 .
j&;, ) dz = 2mi Res( f(z), 2i).

_6+4i  3+2i
4 2
Hence 2z 4+ 6 3+ 2 .
! — dz=2 = 2¢).
ﬁ;zﬂ+4 z m( T ) w(3 + 2i)

EXAMPLE 6 Ewaluation by the Residue Theorem

Evaluate f 48— dz, where the contour C is the circle |z| = 2.

=g, L=-5

Solution Writing the denominator as z* + 52% = 23(z + 5) reveals that the
integrand f(z) has a pole of order 3 at z = 0 and a simple pole at z = -5.

But only the pole = 0 lies within the given contour and so from (5) and (2)

we have 712
’ =t
) ) ﬁ(zj

e . 1 i : ‘
j{:mdz=2wtfiﬁ5{f( z),0) = 21 !u% d22 2 z3(z+5)
i (22 +82+17)e*  17m
= mi lim (z +5)3 - 1251'
=) 2.2 |\ 2.3
i a2l ) <A

evsontial

| EXAMPLE S//Evaluatmn by the Residue Theorem
Evaluate f e “dz, where the contour ' is the circle |z]| =
g =1 _r =

Solution As we have seen, z = () is an essential singularity of the integrand -

f(z) = €** and so neither formulas (1) and (2) are applicable to find the -

residue of f at that point. Nevertheless, we saw in Example 1 that the Laurent 1

series of f at z = 0 gives Res(f(z), 0) = 3. Hence from (5) we have Q’E (’E z U)
J

h
j{ e3/* dz = 2miRes(f(2),0) = 2mi (3) = 6mi. ?
c



F(cosf,sin 0)df EEyTREEEtS

Integrals of the Form j:jh

here is to convert a real trigonometric integral of form (1) into a complex
integral, where the contour C is the unit cirele |z| = 1 centered at the origin.

A i
To do this we begin with (10) of Section 2.2 to parametrize this contour by /- é&
" < e o £ . - |
~ 5 =
T E:ﬂ + et . E:ﬂ - c—uﬁl' \-/
dz =ie'dfl, cosl = ———, sinfl = ——.
4 2 2
The last two expressions follow from (2) and (3) of Section 4.3. Since dz = Lzl - 1
ie?df = izdf and z=' =1/2z = ¢, these three quantities are equivalent to
dz 1 1
dd=—, cos@=—_(z+2""1), sinf=_—(z—2"1). (4)
iz 2 2q

The conversion of the integral in (1) into a contour integral is accomplished
by replacing, in turn, df, cos#, and sin# by the expressions in (:

2T
ﬁF(%{Z-FE-I},%{E-Z_I}) f—:: i&gl‘:'(gg}ieyda
' ©

where C is the unit circle |z]| = 1. =2

5O <21

EXAMPLE 1 A Real Trigonometric Integral

2o 1
Evaluate f —— __dp_ A7
o (24cosf) = 33

Solution When we use the substitutions given in (4), the given trigonometric
integral becomes the contour integral
1 dz 1 dz - Q_L/

fg 25 j‘g g - Ed
c(2+3(z+2z"1)) 2 Je (2+32+1) 1z \
2
. 'I'ZI'::.i
Carrying out the algebraic simplification of the integrand then yields
- j‘{ : . 7.=2ENE ]
T o {zz + "1.2 W - 1
From the quadratic formula we can factor the polynomial 22 + 4z + 1 as
24dz41= (z— z1)(z — z2), where z; = -2 — V3 and zo = =2+ /3. Thus,
the integrand can be written
= o Z
(22 +4z4+1)2  (z2—21)2(z— 20)2°
Because only zs is inside the unit cirele ', we have '1 SR S ey ] rifls! Jrll ) __.E Il L
){ : dz = Sxi Rea( Fl2); z) el e +“ ! 6
c(22+4z+1)2 e
To calculate the residue, we first note that z2 is a pole of order 2 and so we
use (2) of Section 6.5:
i el 4 —E— 1

Re vz3) = lim ——(z — 29)? f(2) = lim ————— -
es(f(2). ) = lim —(z — 2)*f(2) mmdz(z—2 zlﬂl;z{z-zl}’* 6v3



Integrals of the Form j' f[._'{‘j G668  Suppose y = f(x) is a real

funection that is defined and mntmucuus on the interval [0, o). In elementary

calculus the improper itegral I} = [© f(x) dz is defined as the limit

N.!\K‘:"ﬁ‘»g‘ \
¥ ~ ol n EZ/”J;: ;
Wl & h— L @ar =T | f@)ieg TR () - =

If the limit exists, the integral I, is said to be convergent; otherwise, it is

divergent. The improper integral Is = f_nx flz)dzx is defined similarly: ﬂ_ < d i
0 0 7ﬁ x_5 31-5
I = r)dr = lim r)dr. LX)
o= [ f@de=tm [ 1) 0 km o
Finally, if f is continuous on (—oo, oc), then [~ f(z)dz is defined tobe 0 whHnire.
oo 0 oo . =
/ flz)dz = f f(z)dz +[ fla)de =1 + I, (7) g:;snm%(‘
o 'I v het @axistH

provided both integrals I} and Is are convergent. If either one, I or Is, is
divergent, then f:ﬂ flx)dz is divergent. It is important to remember that

the right-hand side of (7) is not the same as
. 0 R . R /}"T\T\{\
lim. [ [ t@a+ [ s d:r] = Jim [ @@

R| R
For the integral [ f(x)dz to be convergent, the limits (5) and (6) must
exist independently ‘of one another. But, in the event that we know (a priori)
that an improper integral f f(x)dzx converges, we can then evaluate it by ﬁv\ -‘Fﬁ(ﬂ){
means of the single limiting pmcﬂss given in (8): Q R-

] 4

I?.noa
/ = Jim f ® Ftayin, m)ﬂ.g -chsJ:c -(L E_ =fo

R 2N
On the other hand, the symmetric limit in (9) may exist even though the i uu— ‘-:’M g & JE*J‘ M
proper integral Jf_m f(x)dr is divergent. For example, the integral Jl'_:"C %} X M
is divergent since limp_, fnﬂ rdz = limp_,. 1R? = so. However, (9) gives i -
. So- 4 Sg?(xlrl'x
lim rdr = lim —[R = [:-R] | = (10)
R—oof_p R—oo2 - ba

The limit in (9), if it exists, is called the Cauchy principal value (P.V.) of

the integral and is written
® Asvune that S-F(a‘iﬂiﬂ
.00 -1
]-‘.\"./ flx)dx = R““' / flz)dx. {11; 5 t S...
o - - I

—_— ore_ Cony. 'EJ S
In (10) we have shown that P.V.["__zdr = 0. To summarize: 9‘. (5 #‘@bd‘!’_ [S‘ Soadx
F:,-, cq
Cauchy Principal Value ;l.y,] (]_,_‘S %J‘H -'rg-.-i,}.,

When an integral of form (2) converges, its Cauchy principal mlue is the
same as the value of the integral. If the integral diverges, it may stil =
possess a Cauchy principal value (11). ffebélq-sh?mai ?ﬁ“é .



One final point about thi
tinuous on (—oo, oo) and je
its graph is Synlnmtri%ﬁit L resp

auchy principal value: Suppose f(z) is con-
ten function, that is, f(—z) = f(x). Then
{E the y-axis and as a consequence

R— =K
[ 1@l [* j) e (12)
-R 0
R 0 R R
and Lﬁf[m}dx=£ﬂf[m}dx+fn flz)dzx = 2/{]. f(x) dx. (13) _Ztt.}%&_;z
From (12) and (13) we conclude that if the Cauchy prineipal value (11) exists, (C) —Ré't' ‘ﬂ-_ R

then both [~ f(z)dr and [ __ f(z)dx converge. The values of the integrals

-
]uxf{“d""zép-”-/_iﬂm}dr s f_:f(w}dz=P.v.j_Zf{x)dz_

To evaluate an integral [~ f(x)dz, where the rational function f(zr) =
p(z)/g(x) is continuous on (—oo, oc), by residue theory we replace x by the
complex variable z and integrate the complex function f over a closed contour
C that consists of the interval [-R, R] on the real axis and a semicircle Cg of
radius large enough to enclose all the poles of f(z) = p(z)/g(z) in the upper
half-plane Im(z) > 0. See Figure 6.11. By Theorem 6.16 of Section 6.5 we
have

R mn
ff feydz=[ flz)dz+ f f(z)dz = 2mi’y" Res(f(2). z).
c Cr ~R pe

where 2, k=1, 2, . . . , n denotes poles in the upper half-plane. If we can
show that the integral [ f(z)dz — 0 as R — oo, then we have

P.V. f ey Jlim. f S()dr = 2niy Res(f(2),2).  (14)
o e E=1




EXAMPLE 2 Cauchy P.V. of an Improper Integral o a
y xpp ) gr \““SL“}‘—'}'I”{«‘:‘G
Evaluate the Cauchy principal value of f_ @I DET9) dx éaﬁ &9
el
Solution Let f(z) =1/(z? + 1)(z% + 9). Since b ""L>° :—)Iﬂ. oo
h‘idq n n
(22 +1)(22 +9) = (z — i) (z + 1)(z — 30) (= + 3i), 83 ¢ |u o, Zh,<o 6

we take C be the closed contour consisting of the interval [—R, R| orf the
r-axis and the semicircle C'g of radius R > 3. As seen from Figure 6. 12 d "g""'- L l< L

1 _[" 1 ) 1 & 5< 2
 Er D=~ _[_R @2+ 1)(22+9) ‘i“r/.gn 22+ 1)(z2 +9) “{Z 4 nf{ LI%
glmdﬂﬂ_‘hﬂ <onv.

T i B e e
and I + I = 2mi [Res(f(2), i) + Res(f(2), 31)]. we have Cemv, toyy

‘é"‘\- W'VL IHW
At the simple poles z =i and z = 3i we find, respectively, L,,_ Q'-
-H!MQ& 1
Se

1
Res(f(z), i) = ﬁ and  Res(f(2), 3i) = — ==, ‘Lt
I2)-12,) 7, £1,) s
1 1 B “-”-'S g S,
so that I] + Ig = 2mi |i1_E-z + ( 48!)j| = E (15) o x -~
voa COMPUILHI)
) <% .

et R — oo in (15). Before doing this, we use the

We now want t —_
e that on the contour Cp, ¢ (2% lx_‘:(?‘-\-‘.l)

inequality (10) of Section™t

| (2 +1)(2*+9)| =] +1]- | +‘?|l‘>||z2|-1| ||zz|-9|_{5>< (R* = 1)(R* - 9). |M

Zf
Since the length L of the semicircle is 7R, it follows from the ML-inequality, &
Theorem 5.3 of Section 5.2, that {__'_‘__h/-——\
1 TR ‘ S .d E": M L_.
&N

I5] = dz| < X
=] ) o9 ‘ " (R -1)(R?-9) .
This last result shows that |I;] — 0 as B — oo, and so we conelude that
limp_, - I5> = 0. It follows from (15) that limg_, . I} = 7/12; in other words, ﬁ-—zj Y ﬁL
R e e &0
. 1 T 1 iy J
lim der = — or P.V. dr = —.
R—oof_p (2 +1)(22 +9) 12 e (22 + 1) (22 +9) 12

=t
y £ =un
t<R
. 5 Reldz= (Rt 3, &
=) “o p 2



Integrals of the Form j_mﬁ f(x)cosaxdx and

[;xcm f(z) sina x dx Because improper integrals of the form

[Z-_ f(z)sinax dx are encountered in applications of Fourier analysis, they
often are referred to as Fourier integrals. Fourier integrals appear as the
real and imaginary parts in the improper integral [~ f(z)e'™* dzr.¥ In view

EXAMPLE 4 Using Symmetry

Evaluate the Cauchy principal value of f i inx

Solution First note that the limits of integration in the given integral are not

from —oo to oo as required by the method just deseribed. This can be remedied e = C,.x -I-:'IS:-‘K
by observing that since the integrand is an even function of & (verify), we can
write
Saih 2 L [ @sinr
jsm.cld__::_[ #sinr s (17) e
o 249 2)_ 2249 p

2)

With o = 1 we now form the contour integral

'Y
— F
f [ r:izdz, R‘ R
C

L]

JEE—FQ -3 L

where (' is the same contour shown in Figure 6.12. By Theorem 6.16,

fc ) zgfr et + j: z IE: S dz = 2mi Res(f(2)e*, 3i), L(x -zgﬁ(z] q%\

Res(f{z}e“f, Hi) = ee

i)
e . /
—u 8¢ JTW?ZL@’JEF/
from (4) of Section 6.5. Then, from Theorem 6.18 we conclude
Jen f(z)e*dz — 0 as R — oo, and so

P.V. f - _® v gy = 2ni (E_j.) R | 2249

e X+ 9 TI- »ed

But by (16), G x4 & o e o

j’c‘“ 8 @d*— “‘ms:cdw_i_/ jam.r:d,w
e 2249 <A e T2+ 9 z_x, 31

Equating real and imaginary parts in the last line gives the bonus result

®cosr '.blli.[‘
P.V._/; I2+qdr—&5—aalﬂngw1th V.| Higdr= X (18)

Finally, in view of the fact that the integrand is an even function, we obtain PV / -I-"'fﬂhf -0
the value of the preseribed integral: oo 24 9

=2 pgin 1 /™ zsiny T 8O o
dl':— —d.E= i rsimT _1
ﬁ 249 2_/_1:179-!-9 2e3 P'V‘_/;xxz+gd'ﬂ_f3'




Theorem 6.19 Behavior of Integral as r — 0

Suppose [ has a simple pole z = ¢ on the real axis. If €, is the contour
defined by(Y=c + re'?, 0 < 6 <, then

w} liu}j; f(z)dz = miRes(f(z).c).

r—{

Proof Since f has a simple pole at z = ¢, its Laurent series is (‘ )

a_q ’
f(z) = + g(2),

Z=—

where a_; = Res(f(z), ¢) and g is analytic at the point e. Using the Laurent
series and the parametrization of C, we have

T iret? . s 1
flz a!zza_l[ - d!?-i—ir/ c+re?)e®do =1 + Is. 19
[ 1) et | siet eyt (19)
First, we see that 2{'@) 2 (‘9’}

T jret? -
I =u_1[ dﬂ=u_1[ idf = wia_y = wi Res(f(z).c).
0 1]

retl

Next, g is analytic at ¢, and so it is continuous at this point and bounded
in a neighborhood of the point; that is, there exists an M > 0 for which

|g(c +re®)| < M. Hence, f\_,\ Jw < _\l‘ﬂ(ﬁ)},}p

| I2| = ir/ gle+re?) p:.l'ﬂ'l < r/ M df = mrM.
0 0

It follows from this last inequality that lim, .o |f3] = 0 and consequently
lim, . fs = 0. By taking the limit of (19) as r — 0, the theorem is
proved. L)

Figure 6.13 Indented contour



EXAMPLE 5 Using an Indented Contour Im(gi'x') CR.
sin x ) {1

w(r2 —2r+2) —R _?E] v g

Evaluate the Cauchy principal value of f

Solution Since the integral is of the type given in (3), we consider the contour

integral | o S] ﬂ i,
% !.ji-z d b
o222 =224 2) = '

The function f(z) = 1/2(2? =2z +2) hasa pole at z =0 and at z = 1 +i
in the upper half-plane. The contour C', shown in Figure 6.14, is indented at
the origin. Adopting an obvious condensed notation, we have

}€3=LR + j:: + f_cr +er = 2mi Res(f(2)e", 1 + 1), (20)

where [_. =— [, . If we take the limits of (20) as R — oo and as r — 0, it
follows from Theorems 6.18 and 6.19 that

P.V.f e _E;:- ) dx — i Res(f(z)e'*,0) = 2mi Res(f(2)e**, 1 +i).

=0

Now,

—14i

R.cs{fl[z:]r:iz,ﬂ} =% and Rﬂs{f{z}ﬁiz,lﬁ-i} - 1 (1+14).

Therefore.

Pvfx i L) + 2mi (= (144

Using e~!'*" = e~!(cos 1 + isin 1), simplifying, and then equating real and
imaginary parts, we get from the last equality

P.v.fm z(xﬂiﬁﬁzi+ 5 4 = T e~(sin1 + cos1)

]

- sin T 1
and P’.V.j:m T =22 12) dr = 5[1-1- e~ (sin1 — cos 1)].




We will also use the term conformal mapping to refer to a complex
mapping w = f(z) that is conformal at 25. In addition, if w = f(2) maps a
domain ) onto a domain I)' and if w = f(z) is conformal at every point in
D, then we call w = f(2) a conformal mapping of [ onto I)'. From Section
2.3 it should be intuitively clear that if f(z) = az + b is a linear function with
a # 0, then w = f(z) is conformal at every point in the complex plane. In
Example 1 we have shown that the w = Z is not a conformal mapping at the

point 25 = 1+ i because the angles # and ¢ are equal in magnitude but not

in sense.
. N 'Z’Cﬁo‘,l Theorem 7.1 Conformal Mapping

’W%} If f is an analytic function in a domain I containing zg, and if f'(z5) # 0,

\ then w = f(z) is a conformal mapping at 2.

y P FAY

Ca -
- o ""-z’d;) Inspection of Figure 7.3 shows that the
anglé® between C'; and C5 at 2y is the value of

o

T N T arg (23) — arg(2;) (1)

-ff:z&]_mg{f‘} in the-interval [0, 7], provided that we can rotate 2| counterclockwise about
zj 0 through themele f§ onto 2;5. In the case that a clockwise rotation is needed,
c

\ 1y then —# is the value of [T3n the interval (—m, 0). In either case, we see that
o D (1) gives both the magnitude and sense of the angle betwee;u 1 and s at
-

Zn. 4. F

Proof Suppose that f is analytic in a domain D containing zp, and That ~ 2
f'(z0) # 0. Let €'y and '3 be two smooth curves in ) parametrized by 24 (t)
and za(t), respectively, with 21(ta) = 22(to) = 20. In addition, assume that
w = f(z) maps the curves C'; and C3 onto the curves C'] and C;. We wish
to show that the angle # between C'; and C5 at zy is equal to the angle ¢
between C] and C5 at f(zp) in both magnitude and sense. We may assume, ” ‘F
by renumbering 'y and €5 if necessary, that z; = 2{(fy) can be rotated ;f' Ezéf-':')
counterclockwise about 0 through the angle # onto 25 = 25(fa). Thus, by (1),

the angle # is the unique value of arg(z5) — arg(z]) in the interval [0, w].

From (11) of Section 2.2, (] and % are parametrized by wi(t) = f(z1(t))

and wa(t) = f(22(t)). In order to compute the tangent vectors wj and w5 to

C7 and C5 at f(zp) = f(21(to)) = f(22(tp)) we use the chain rule

wy =wy(tp) = f'(21(te)) - 21(to) = f'(20) - 21,

and wy = wa(to) = f'(22(ta)) - 22(te) = f'(20) - 22

Since €'y and C5 are smooth, both 2] and 2} are nonzero. Furthermore, by
our hypothesis, we have f'(25) # 0. Therefore, both wi and w5 are nonzero,
and the angle ¢ between €] and C'5 at f(zp) is a value of

arg (wy) — arg (wy) = arg (f'(zo) - 22) — arg (f'(20) - 21)-

Now by two applications of (8) from Section 1.3 we obtain:

arg (f'(zq) - 2) —arg (f'(20) - 21) = arg (f'(20)) + arg (23) — [arg (f'(20)) + arg (21)]

= arg (25) —arg (2;).

This expression has a unique value in [0, 7], namely #. Therefore, § = ¢



| EXAMPLE 2 Conformal Mappings

(a) By Theorem 7.1 the entire function f(2) = e® is conformal at every point
in the complex plane since f'(z) =¢e* #0 for all 2z in C.

(b) By Theorem 7.1 the entire function g(z) = z* is conformal at all points
z, 2 # 0, since g'(z) =22 # 0.

(@einle:1MEGTIN The function g(z) = z® in part (b) of Example 2 is
not a conformal mapping at zg = 0. The reason for this is that g'(0) = 0. In
general, if a complex function f is analytic at a point 25 and if f'(z5) = 0,
then z; is called a critical point of f. Although it does not follow from
Theorem 7.1, it is true that analytic functions are not conformal at eritical
points. More specifically, we can show that the following magnification of
angles occurs at a critical point.

Theorem 7.2 Angle Magnification at a Critical Point

Let f be analytic at the critical point z5. If n > 1 is an integer such that
f(z0) = f'(20) = ... = f"V(2p) = 0 and f")(zp) £ 0, then the angle
between any two smooth curves intersecting at 2y is increased by a factor
of n by the complex mapping w = f(2). In particular, w = f(2) is not a
conformal mapping at zg.

| EXAMPLE 3 Conformal Mappings

Find all points where the mapping f(z) = sinz is conformal.

Solution The function f(2) = sinz is entire, and from Section 4.3 we have
that f'(z) = cosz. In (21) of Section 4.3 we found that cos 2 = 0 if and only if
z=(2n+1)7/2, n=0, £1, £2, ... , and so each of these points is a critical
point of f. Therefore, by Theorem 7.1, w = sin z is a conformal mapping at

zforall z £ (2n+1)7/2, n = 0, &1, £2, ... . Furthermore, by Theorem
7.2, w = sin 2 is not a conformal mapping at z if 2 = (2n + 1)7/2, n = 0, £1,
+2, ... . Because f"(2) = —sinz = *1 at the critical points of f, Theorem

7.2 also indicates that angles at these points are inereased by a factor of 2.




Definition 7.2 Linear Fractional Transformation

If a, b, ¢, and d are complex constants with ad — bc - ﬂ then the complex

function defined by: }
,—T——> L_?—+‘5

Sharm s s |[072-3410370 |
is called a linear fractional transformatior ?L% Ok er':i:t ) 1" NWL

% — H
D=z Iy "5 -
Linear fractional tramsfgrmatins e !‘é’l(‘d Mabius tra_nsf-:lrma- 40 10 0_11 KOO

tions or bilinear transfornmttions. If ¢ = 0, then the transformation T w QF'F'FQEL
given by (1) is a linear mappingl and so a linear mapping is a special case of

a linear fractional transformation. If ¢ & Daﬁhen we can write ‘F'2_1-5 l'l
' ~
Te }_z:; _’bc;a&{l:'\Jr% \ @ O mestion_
) na )
be — ad a = 1"1'5 ".I"HC&)QL\\ M@gaf\m
Setting A = - B = . we see that the linear tr rmation T in ‘q]
(2) can be written as the ccrmposfition T(z) = fogoh(z), where f(z) = A2+ B 2

and h(2) = cz+d are linear functions and g(2) = 1/2 is the reciprocal function.
The domain of a linear fractional transformation T given by (1) is the set
of all complex 2z such that 2 #£ —d/e. Furthermore, since

ad — be
(ez + d)?

it follows from Theorem 7.1 and the requirement that ad — be £ 0 that linear
fractional transformations are conformal on their domains. The requirement
that ad—be £ 0 also ensures that the T is a one-to-one function on its domain.
See Problem 27 in Exercises 7.2.
Observe that if ¢ £ 0, then (1) can be written as
az+b _ (a/e)(z+b/a) ()

Tz)= cz+d  z+dfe  z2—(—dfe)’

where ¢(2) = (a/e) (z + b/a). Because ad—be # 0, we have that ¢ (—d/c) # 0,
and so from Theorem 6.12 of Section 6.4 it follows that the point » = —d/c is
a simple pole of T'.

When ¢ £ 0, that is, when T is not a linear function, it is often helpful to
view T as a mapping of the extended complex plane. Since T is defined for
all points in the extended plane except the pole 2 = —d/e and the ideal point
oo, we need only extend the definition of T to include these points. We make
this definition by considering the limit of 7" as 2 tends to the pole and as =
tends to the ideal point. Because

cz+d 0 0

z—lrlfr;lilrr Lz +b -[—dl,-"lﬂjl =+ b - _ﬂd+b‘-n - D"

it follows from (25) of Section 2.6 that

'TI(Z] _

1z + b
lim

z——dfe CZ 1+ d
Moreover, from (24) of Section 2.6 we have that

. az+bh ) afz-i—b a+z2b a
lim = lim = lim = —.
z—o0 0z +d z_ucjz d z—0e+zd ¢
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If €' is a circle in the 2-plane and if T' is a linear fractional transformation d

given by (3), then the image of C' under T is either a circle or a line in e - : (3)
the extended w-plane. The image is a line if and only if ¢ £ 0 and the a

pole 2 = —d/e is on the circle C'. e’ o

a
Proof When ¢ = 0, T is a linear function. and we saw in Section 2.3 that 7@/&_\{:& 1‘|- ‘6

linear functions map circles onto circles. It remains to be seen that the the- 'Z'H: »
“orem still holds for ¢ # 0. Assume then that ¢ # 0. From (2) we have that

T(z) =_fogoh(z), where f(2) = A2+ B and h(z) = ez +d are linear functions R

and g(2N= 1/z is the reciprocal function. Ohbserve that since h is a linear

mapping, dhe image C' of the ecircle C' under h is a circle. We now examine

== N\ ) Ced)=H e g ro - 25 -

Case 1 Assume that the origin w = 0 is on the circle C’. This oceurs

only if the pole 2 = —d/e is on the circle €. From the Remarks in Section
2.5, if w = 0 is on ", then the image of C' under g(z) = 1/2 is either a
horizontal or vertical line L. Furthermore, because f is a linear function, the
image of the line L under f is also a line. Thus, we have shown that if the
pole 2 = —d/e is on the circle C, then the image of C' under T is a line.

Case 2 Assume that the point w = 0is not on €. That is, the pole z = —d/¢
is not on the circle C. Let €' be the circle given by |w —wg| = p. If we set
£ =f(w)=1/w and & = f(wy) = 1/w,, then for any point w on C” we have

1 1

w (ify}

_ Jw— wy

€ —&ol = = pléol[€]- (4)

 Jw] Juwol
It can be shown that the set of points satisfying the equation

¢ —al = Al —b) (5)

is a line if A = 1 and is a circle if A > 0 and A # 1. See Problem 28 in
Exercises 7.2. Thus, with the identifications a = &;, b = 0, and A = p|¢,| we
see that (4) can be put into the form (5). Since w = 0 is not on C’, we have
lwg| # p, or, equivalently, A = p|ég| # 1. This implies that the set of points
given by (4) is a eircle. Finally, since f is a linear function, the image of this
circle under f is again a circle, and so we conclude that the image of C' under
T is a circle. By




| EXAMPLE 2 Image of a Circle

mation T(z2) = (2 +2)/ (2 —1). What is the image of the interior |
this circle?

Solution The pole of T is 2 = 1 and this point is on the unit ¢ircle 12
Thus, from Theorem 7.3 we conclude that the image of the unit circle UE_J
line. Since the image is a line, it is determined by any two poinis. Becau¥b—=——
T(—1) = —% and T'(i) = —3 —3i, we see that the image is the line u = —£. To 2
answer the second question we first note that a linear fractional transformation

is a rational funetion, and so it is continuous on its domain. As a consequence,

the image of the interior |2| < 1 of the unit circle is either the half-plane

U < —% or the half-plane u > —%. Using z = 0 as a test point, we find
that T(0) = —2, which is to the left of the line u = —%? and so the image is

the half-plane « < —=. This mapping is illustrated in Figure 7.13. The circle

|z| = 1 is shown in color in Figure 7.13(a) and its image u = —% is shown in
black in Figure 7.13(b). |

| EXAMPLE S Image ofa Circle

Find the image of the unit circle |z| = 2 under the linear fractional trans-
formation T'(z) = (2 +2)/(2 —1). What is the image of the disk |2| < 2
under T

Solution In this example the pole 2 = 1 does not lie on the circle |2| = 2, and
so Theorem 7.3 indicates that the image of |2| = 2 is a eircle €. To find an
algebraic description of €, we first note that the circle |2| = 2 is symmetric
with respect to the z-axis. That is, if 2 is on the circle |2| = 2, then so is z.
Furthermore, we observe that for all z,

o z+2 z+ 2 z+2
T(z)= - 1=_=( ):T{z].
F— z—1 z—1

Hence, if 2 and 7 are on the circle |z| = 2, then we must have that both
w = T(z) and w = T(z) = T(Z) are on the circle C'. It follows that C’

is symmetric with respect to the w-axis. Since z = 2 and —2 are on the
cirele |2| = 2, the two points T'(2) = 4 and T(—2) = 0 are on C’. The
symmetry of C" implies that 0 and 4 are endpoints of a diameter, and so
C' is the circle (i — 2| = 2. Using z = 0 as a test point, we find that
w = T'(0) = —2, which is outside the circle |w — 2| = 2. Therefore, the image
of the interior of the circle |2| = 2 is the exterior of the circle jw — 2| =2. In
summary, the disk |z| < 2 shown in color in Figure 7.14(a) is mapped onto
the region | — 2| > 2 shown in gray in Figure 7.14(b) by the linear fractional
transformation T'(2) = (z + 2)/ (2 — 1). |

(a) The circle Izl =2

{b) The image of the circle in (a)

Figure 7.14 The linear
fractional transformation

Tiz)=(z+2)/(z-1)



Linear Fractional Transformations as Matrices EYEGES
can be used to simplify many of the computations associated with linear
fractional transformations. In order to do so, we associate the matrix

A ol Fa- ()
i W

with the linear fractional transformation

a2+ b
cz+d

T(z) = (7)
The assignment in (6) is not unique because if e is a nonzero complex number,
then the linear fractional transformation T'(z) = (az +b)/(ez +d) is also
given by T'(2) = (eaz + eb)/ (ecz + ed). However, if e £ 1, then the two

matrices
a b ea  eb
A= and B = =eA (8)
' | ec  ed

are not equal even though they represent the same linear fractional transfor-
mation.

It is easy to verify that the composition 75 o T} of two linear fractional
transformations

Al
Ti(2) = (@12 +b1)/ (12 +d1) and Ta(z) = (a2 + ba)/ (€22 + d2) b:,{gz)g-l(-}_i%?_

is represented by the prodnet of matrices ﬂ(\ /"'l
_—

‘——____._..--"I
az  ba ay b [ @2a1 +b2e1r  azby + bady )
e da 1 dy Cm‘_:;ii(}__ caby + dady

In Problem 27 of Exercises 7.2 you are asked to find the formula for T-1(z)
by solving the equation w = T'(2) for 2. The formula for the inverse function
T-1(z) of a linear fractional transformation T' of (7) is represented by the
inverse of the matrix A in (6)

—1
gicf o 1 d —b
i c d ~ ad—be —c a |’

By identifying e =
matrix

in (8) we can also represent T-1(z) by the

1
ad — be

( : _b)
> (10)
— 14

C
2%t

T
p— N

_ 424/
245



Definition 7.3 Cross-Ratio

The cross-ratio of the complex numbers z, 24, 25, and 25 is the complex
number

e (11)

When computing a cross-ratio, we must be careful with the order of the
complex nmimbers. For example, vou should verify that the cross-ratio of 0, 1,
i, and 2 is 4 + 24, whereas the cross-ratio of 0, ¢, 1, and 2 is § — 4.

We extend the concept of the eross-ratio to include points in the extended
complex plane by using the limit formula (24) from the Remarks in Section
2.6. For example, the cross-ratio of, say, oo, 21, 22, and 23 is given by the

limit

Theorem 7.4 Cross-Ratios and Linear

Fractional Transformations

If w="T{(z) is a linear fractional transformation that maps the distinct
points 2z, 22, and 25 onto the distinct points wy, ws, and wa, respectively,
then

22— 2123 — 23 w — un U — U3

2—23%9— 2 W— W3 Wy — Wy

for all =.

Proof Let R be the linear fractional transformation

22— 21 2y — 23
2z —232p— 2

R(2)

(13)

and note that R(21) =0, R(z2) = 1, and R(23) = co. Consider also the linear
fractional transformation

Z— iy Ws — iy

S(2) = (14)

2 — U3 Wy — Ul

For the transformation S, we have S{w,) = 0, S(ws) = 1, and S(w;3) = oc.
Therefore, the points z4, 25. and 25 are mapped onto the points wy, ws, and
1w, respectively, by the linear fractional transformation S—!(R(z)). From this
it follows that 0, 1, and ¢ are mapped onto 0, 1. and oo, respectively, by the
composition T-1(S~1(R(z))). Now it is a straightforward exercise to verify
that the only linear fractional transformation that maps 0, 1, and oc onto 0,
1, and oo is the identity mapping. See Problem 30 in Exercises 7.2. From this
we conclude that T-1(S—(R(2))) = z, or, equivalently, that R(z) = S(T'(2)).
Identifying w = T'(2), we have shown that R(z) = S(w). Therefore, from (13)
and (14) we have

Z2— 21 22— 23 w — U e — W3
2— 292 —2; W—1WsWg— Wy T,




| EXAMPLE 5 Constructing a Linear Fractional Transformation
Construct a linear fractional transformation that maps the points 1, i, and —1

on the unit circle [2| = 1 onto the points —1, 0, 1 on the real axis. Determine
the image of the interior |2| < 1 under this transformation.

Solution Identifying 2y =1, 2, =1, 23 = —1, w; = —1, w5 =0, and w5 = 1,
in (12) we see from Theorem 7.4 that the desired mapping w = T'(z) must
satisfy

z—1 d=(=1} w—(-1) 08-1
g—§—=1)} §—1 & w—1 B—-{2A)y

After solving for w and simplifying we obtain

z—1
w=T[z}=i2_l.

Using the test point z = 0, we obtain T(0) = i. Therefore, the image of the
interior |2| < 1 is the upper half-plane v > 0.

| EXAMPLE 6 Constructing a Linear Fractional Transformation

Construct a linear fractional transformation that maps the points —i, 1, and
oo on the line y = r—1 onto the points 1, ¢, and —1 on the unit circle |w| = 1.

Solution We proceed as in Example 5. Using (24) of Section 2.6, we find

that the crossratioof 2, 21 = —i,22 =1, and z3 = is
) 24i1—=z : 241 1—-1/2 . 241 23—1 L]
lim ,3=].u:n ;,3=11m = — = -
zg—ood — ¥q | 41 za—0z —1f23 1414 za—l0zy2e —1 14+1 1414
Now from (12) of Theorem 7.4 with wy = 1, wy = i, and w3 = —1, the desired

mapping w = T'(2) must satisfy

zZ+1 w—1i+1

1+i wH+1i—1

After solving for w and simplifying we obtain

z+1

== i




