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1.1. Banach Algebras 13 »o CJ,I_U);,-@».,'J&}". C"f‘ (_ghb I Al
We begin by setting up the basic vocabulary needed to discuss Banach

algebras and by giving some examples. (J’d'

An algebra is a vector space A together with a bilinear map (J,l Ty

AX A9 A, (a,b)— ab,

B o sub A
such that
afbe) = (ab)e (a,beed). if B 1§ uted “"l;g'ff:

A subalgebra of A is a vector subspace B such that b, € B = bb' € B mﬁ i;..
Endowed with the multiplication got by restriction, B is itself an algebra M
A norm ||.|| on A is said to be submultiplicative if el

€7%=" Jad 77

NN S Jabll < lalllsl (a,b € 4).
< |

lrf'ﬂt ?s CEHT he ;1):111' (A, ||-|D) is called a normed algebra. If A admits a unit 1

(al =la = a, for all a € A) and ||1|| = 1, we say that Aisa umtﬂf normed

algebra. ))*L’;bf_/fb

. Bl ) )y( A

If A is a normetl algebra, then it is evident from the meqw
llab — a'¥'|| < [la]lllb = b"[| + [la — a"[|[|¥']

that the multiplication operation (a,b) — ab is jointly continuous.
A complete normed algebra is called a Banach algebra. A complete
unital normed algebra is called a unital Banach algebra.

A subalgebra of a normed algebra is obviously itself a normed alge-
bra with the norm got by restriction. The closure of A jubalgebra is a
subalgebra. A closed subalgebra of a Aﬁ;ach algebra is a Banach algebra.

So B 15 o Bawsabely of & Bortilh aly A rdnen B s aswaﬂg
1.1.1. Ezample. If S 1s a set, £°°(S), the set of all nded complex-
valued functions on §, is a unltal Banach ere the operations are

defined pointwise:
g i }ﬂd? ;) J"J p-«.lﬁb
+9)(z) = f(z) + 9(z T

spin] (oo £ (o) = staiata) P YES 20 123 210k
xS (Af)(z) = Af(2),

o B . 0
.M o))
and the norm is the sun-norm -:9)1] D/J ﬁw}) %ﬂfﬂo




£l —ﬂuplf(fr)l
Srevese Piovehat 77S) i compltle (3

1.1.2. Ea:ample If 2 is a topological space, the set Cy({1) of all bounded
continuous complex-valued functions on {2 is a close

Thus, Cy(£2) is a unital Banach algebra. ﬁr

If Q is compamset of continuous fulyctiofis from 2 to C, is
of course equal to Cy(§2). the Confiamy M!M ,F__:] of-1 Y R
1.1.3. Ezample. If 2 is a locally compact Hausdorff space, we say that a
continuous function f from £ to C vanishes at infinity, if for each positive
number ¢ the set {w € Q | |f(w)| > €} is compact. We denote the set of
such functions by Co(€2). It is a closed subalgebra of Cy(2 d therefore,
a Banach algebra. Wnly if Q2 iSE,|;;;||:;|ﬂ;;g§-l in this case
Co(£2) = C(2). The algebra Cy(£2) is one of the most i ant examples O3 |7
of a Banach algebra, and we s it used constantly in C*- a.lgebra.
theory (the functional ca.]culus){j g ; (o >3/J)}9 /u&.l n-ls?/ Y

1.1.4. Example. If (2, u) is a measure space, the set L>°(§2, u) oﬁcllggsds "{‘-"ﬁ

of) essenti bounded complex-valued measurable functions on {2 is a
ital Banach algebra with the usual (pointwise- deﬁned) operations and %_
e essential supremum norm f +— || f]|co-

l‘FTTmm-Hq f%’:q[& ¥ ﬂ'}.@o 9»6'7[1] MCHM S em. bA.
ﬂ )| M1

1.1.5. Ezample. If ) is a measurable space, let B (Q)"’denute the set of ¢

all bounded complex-valued measurable functions on §2. Then B(2) is a

closed subalgebra of £°°({2), so it is a unital Banach algebra. This example

will be used in connection with the spectral theorem in Chapter 2.

1.1.6. Ezample. The set A of all continuous functions on the closed
unit disc D in the plane which are analytic on the interior of D is a closed
subalgebra of C(D), so 4 is a unital Banach algebra, called the
This is the motiva.ting example in the theory of function algebras, where

many aspects of the theory of analyti f‘un-:tmns are extended to a Banach
algebraic setting. fl m(ﬂ‘ 'F("L)_, e
All of the a examples are of'course abelian—that is, ab = ba for

all elements a and b—but the following examples are not, in general

1.1.7. Ezample. If X is a normed vector space, denote by B(X) the set
of all bounded linear maps from X to itself (the operators on X). It is



routine to show that B(X) 1s a normed algebra with the pointwise-defined
operations for addition and scalar multiplication, multlpllcatmn given by
(u,v) — uowv, and norm the operator norm:

lu(2)ll
|ul| = sup T - l|u(=)Il-
s#0  ||Z lzll<1

If X is a Banach space, B(X) is complete and is therefore a Banach
algebra.

1.1.8. e. The algebra M,(C) of n x n-matrices with entries in C
is id ith B(C™). It is therefore a unital Banach algebra. Recall
that an er triangular matrix is one of the form
}\11 ;\12 aaa —— }"lﬂ-
0 Koo wue  wwn Ao
0 0 sz A3n
0 0 ... 0 Aum

(all entries below the main diagonal are zero). These matrices form a
subalgebra of M,(C).

We shall be seeing many more examples of Banach algebras as we
proceed. Most often these will be non-abelian, but in the first three sections
of this chapter we shall be principally concerned with the abelian case.

If (Bx)xena is a family of subalgebras of an algebra A, then Nxega By is

a subalgebra, also. Hence, for any subset S of A, there is a smallest subal-

@a B of A containing S (namely, the intersection of all the subalgebras
ont

aining .S). This algebra is called the subalgebra of A generated by S.
If S is the singleton set {a}, then B is the linear span of all powers a"
(n=1,2,...) of a. If Ais a normed algebra, the closed algebra C' generated
by a set S is the smallest closed subalgebra containing 5. It is plain that
C = B, where B is the subalgebra generated by S.
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A left (respectively, right) ideal in an algebra A is a vector subspace I
of A such that '
V’I Nac€ A and be I = abe I (respectively, ba € I).

HCI CA S M:Tof T=p

An ideal in A is a vector subspace tha.t is simultaneously a left and a right
viously, 0 and A are ideals in A, called the trivial ideals.
in A is a proper ideal (that is, it is not A) that is not
contained\in'afiy other proper ideal in A. Maximal left ideals are defined

similarly. :,b ﬁ
An ideal I is modular if there i1s an element u 1 @s ch that a — au
and a — ua are in I for all a € A. It follows easily from Zorn’s lemma that

every proper modular ideal is contained in a maximal ideal. 9

—

If w 1s an element of a locally compact Hausdorff space {2, and M,
{f € Co(R2) | f(w) = 0}, then M,, is a modular ideal in the algebra
This is so because there is an element u € Cy(Q2) such that u(w) =/1,
hence, f —uf € M, for all f € Cp(f2). Since M,, is of codimensi
Co(R2) (as M & Cu = Cp(f2)), it is a maximal ideal.

If I is an ideal of A, then A/] i 1? an algebra w1th the multiplication
> 4

given by +1: acA 1‘;
(a+f)(b+f)_—_ab—l—f T
ﬂﬂﬁ'--;mta:?“»l,umhﬂf.} +

If I is modular, then A/I is unital (if a — au,a — ua € I for all a € A, then
u + I is the umt) Conversely, if A/I is umt.a.l then I is modular.

If A 1s unital, then obviously all its ideals are modular, and therefore,
A posesses maximal ideals.

If (In)aen is a family of ideals of an algebra A, then Nyegaly is an
ideal of A. Hence, if S C A, there is a smallest ideal I of A containing
S. We call I the ideal generated by S. If A is a normed algebra, then the
closure of an ideal is an ideal. The closed ideal J generated by a set S is
the smallest closed ideal containing S. It is clear that J is the closure of
the ideal generated by S.

1.1.1. Theor, mﬁ*‘f
is a normed glgebfa w

s a closed ideal in a normed algebra A, then A/I
n endowed with the quotient norm

la + I|| = inf ||a + B



)
)./ Le 0 and suppose that a, b belong to A. Then e+ |la+I|| >
|la + a'|| andF+ ||b + I]| > ||b + || for some a', b’ € I. ce,

166 £ |

(e + lla+ Il)(e + o+ INl) > lla + a'[|l|5+ 82 |lab + ]l = Iﬁﬂﬂ‘ofllh

whiere el e L, i, tesTiee Al e TS b,
Letting € — 0, we get ||la+ I||||b+ I|| > ||lab+ I||; that is, the quotient norm
1s submultiplicative. O

A homomorphism from an algebra A to an algebra B is a linear map
¢: A — B such that tp(ab) a.p(a}np(b) for all a,b € A. Its kernel ker(tp} is
an ideal in A and its image ¢(A) is a subalgebra, of B We say ¢ is unaital
if A and B are unital and ¢(1) = 1. : wfrx

If I is an ideal in A, the quotient map'm: A — A/I 1s a homomorphism.

If ©,1 are continuous homomorphisms from a normed algebra A to
a normed algebra B, then ¢ = ¢ if ¢ and ¥ are equal on a set S that
generates A as a normed algebra (that is, A is the closed algebra generated
by S). This follows from the observation that the set {a € A | ¢(a) = ¥(a)}
1s a closed subalgebra of A.

1.2. The Spectrum and the Spectral Radius

Let C[z] denote the algebra of all polynomials in an indeterminate z
with complex coefficients. If a is an element of a unital algebra A and
p € C|z] is the polynomial

:!f'J"='.""lZI'l":""l*af1 LR o, T S

we set
pla) = Aol + A1@' + -+ + Ana™.

The map
Clz] = 4, pr p(a),

1s a unital homomorphism.
We say that a € A is invertible if there is an element b in A such that
ab = ba = 1. In this case b is unique and written a~!. The set

Inv(A) = {a € A | a is invertible} Q 0'.-* } Dbzc

1s a group under multiplication. ID:’L{D =(C m)b:f(ﬁ’:)
We define the spectrum of an element a to be the set =C1e=0C



o(a) =oc4(a) ={A€C|Al—a¢Inv(A)}.
We shall henceforth find it convenient to write Al simply as A.

1.2.1. Ezample. Let A = C(§2), where ( is a compact Hausdorff space.
Then o(f g (§2) for all f € A.

1.2.2. Ezample. Let A = £°°(S), where S is a non-empty set. Then
o(f) = (f(S))” (the closure in C) for all f € A.

1.2.3. Ezample. Let A be the algebra of upper triangular n X n-matrices,
If a € A, say

Aii A12 ..o Ain

0 A2 ... Agn
a= ¥ . 5 .

0 P | S

it is elementary that

ﬂ'(ﬂ) = {}kll ¥ ‘:&221 LERE ’\ﬂﬂ}'

Similarly, if A = M,(C) and a € A, then o(a) is the set of eigenvalues

of a.

Thus, one thinks of the spectrum as simultaneously a generalisation of

the range of a function and the set of eigenvalues of a finite square matrix.

1.2.1. Remark. If a,b are elements of a unital algebra A, then 1 — ab is
invertible if and only if 1 —ba is invertible. This follows from the observation
that if 1 — ab has inverse ¢, then 1 — ba has inverse 1 + bca.

A consequence of this equivalence is that o \ {0} = o(ba) \ {0} for -
all a,b € A. ;\ o (ob 1‘] Gkb- Al :31-1\;‘(.:)&’.1
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1.2. The Spectrum and the Spectral Radius .I-( A),_. {-{-(-;)-;ﬁ(-ﬂ 7 T x-uy '.g l.,([

1.2.1. Theorem. Let a be an element of a unital algebra A. If o(a) is 1 <
"TI!" XX

m:m empity and p € C[q] th 0’( l) P (Q’fﬂ‘h
i it g e %meu%
Proof. We iiay suppose that  ie not condlaW I i €C, thers sie

elements Ap,...,A, in C, where Ay # 0, such that

y & T t
P?,é} hﬁ /%1 ?(-L]@‘H =X{z=X)...(z - A"@f - ,)

refore, &/J“MT g

pla) — p=Aola—=A)...(a = A,). we o Nl

It is clear that'p(a) — u is invertible if yifa—2Ay,...,a— A, are. V) =)=
It follows that '€ o(p(e)) if and onj},;,k:i p(A) for some A € o(a), a.nd - PT' '

therefm‘E, J(P(a)] G‘{{I]}. r)rﬁ”";l—}‘{ 15 ﬂm‘ 'ITN! F)-HL D‘ "'}1 1'5 hDJT \“U (1 %1. h : & ﬂ_(r!\}

The spectral mapping erty for’ polynomials is generalised to con-

tinuous functions in Chapter 2, but o —cer ments in certain é:l Me P(ﬁ ) ;{ f
algebras. There is a version of Theorem 1.2.1 foﬁim #F O
Banach algebras (see [Tak, Proposition 2.8|, for example). We shall not ‘P‘\ - 1o )
need this, however.

1.2.2. Theorem. Let A be a unital Banach algebra and a an element of
A such that ||a|| < 1. Then 1 — a € Inv(A) and

oo

o (1—a)
60T, S0 -4 compantoon e T1i0" canogo> an

Proof. Sinel 3%, ™l € S0 el = (1 V)1 < oo, the series
oo ,a™ is convergent, to b say, in A, and since (1 — a1+ +a") =
1—a™*! converges to (1 —a)b = b[] - a) and tjr 1 as n — 'gq the element,

b is the inverse of 1 — a. 5“'[{-3 W\ < !:;u(} 'c-~= v, { 5}” )Ei—’ﬁ)

The series in Theorem 1.2.2 is called the Naum&?m series for (1—a)™",

1.2.3. Theorem. If A is a unital Banach algebra, then Inv(A) is open in
A, and the map

Inv(A) = A, ar—a™ ',

is differentiable. ~ Oa

Pmuf Suppose that a € Inv(A4) and ||b—a| < ||a™!||~*. Then ||ba™! —
< |6 - a||||a-] | < 1, so ba™' € Inv(A), and therefore, b € Inv(A). ,Thus,

Inv{A) is open i A. N

If be A and ||b]| < 1, then 1+ b € Inv(A) and So N(G)T i)
i—bj| s Mol
I(1+5)"" —148] = | Z{—l]“b’* 1+ = Y (1)

n=>0 n=2




R |
< 3 llel™ = 18112 /(1 — 181)™. ta)]

n=32

Let a € Inv(A) and suppose that ||c|| < §|la™'||™'. Then |la™'¢| <
1/2 < 1, so (with b= a~'¢), /A(

I(1+a7"e)™ =14+a7 | < la7"el?/(1 = [la™ ell)™" < 2lla™eff?, —_
since 1 — ||a™'¢|| > 1/2. Now define u to be the linear operator on A given _Lﬂ‘.f@’:@ "}n}

by u(b) = —a~'ba~!. Then, ]
- e N a tea™| -

l@a+¢) —a* —u(e)| = [l(1+a'c) "a
<1 +a™re) —1+a ella|| < 2(la™ P llel?).

T — — !
Consequently, v (%}" E
. la+e)" —a™t —u(e)ll _ /
11111 — U} -— \
o0 el P )=
and therefore, the map o: b b~! is differentiable at b = a with derivative 2_2‘
o'(a) = u. ]

The algebra C[z] is a normed algebra where the norm is defined by
setting

llpll = sup [p(A)].
A<

Observe that Inv(C[z]) = C)\ {0}, so the polynomials p, = 1+ z/n are not
invertible. But lim,—oc pn = 1, which shows that Inv(C[z]) is not open in
C|[z]. Thus, the norm on C|[z] is not complete.

1.2.4. Lemma. Let A be a unital Banach algebra and let a € A. The
spectrum o(a) of a is a closed subset of the disc in the plane of centre the
origin and radius ||a||, and the map fh}_

C\o(a) = A, A (a=A)"1,

is differentiable. A0 X - (o .J}\)h |

Proof. If |A| > |la||, then ||A~'a|| < 1, so 1 — A~'a is invertible, and
therefore, so is A — a. Hence, A ¢ o(a). Thus, A € o(a) = |A| < |la||. The

Banach algebras.

1.2.5. Theorem (Gelfand). Ifa is an element of a unital Ban
A, then the spectrum o(a) of a is non-empty.

Proof. Suppose that o(a) = 0 and we shall obtain a contradicti
|A] > 2||a]|, then ||A71q|| < %, and therefore, 1 — ||A7a|| > :—, Hence,

)3
A & 0 g
1030 1=\ gna-aa7 -1 =1 >otarie Yz A 0 &
O | e —— =) _ \!1//4. Cﬁﬂiefs



T l-|Ate T T — o
Consequently, ||(1 — A~%a)""|| < 2, and therefore, - h"
@ =27 =[IA"" (1 = A" a) "M < 2/|A] < [lal| ™ \

(a # 0 since o(a) = @). Moreover, since the map A — (a — A)™! is contin-
uous, it is bounded on the (compact) disc 2||a||D. Thus, we have shown
that this map is bounded on all of C; that is, there is a positive number M
such that [|(a —A)7'|| < M () € C).

If - € A*, the function A — 7((a — )~ ) 18 entire a.nd bounded by
M]||r]||, so by Lmuwlles theorem in complex analysis, i
particular, 7( = f( (a—1)7"). Because this is true for all T € A“‘ we '
have a= A4 ( ' soa % 1, which is a contradiction. =,
\é;!éisy that there b ‘Alg;ebras in which not all elements have ;\h 3 ls
non-empty spectrum. For example, if C(z) denotes the field of quotients é‘ Emﬂ*lﬂ'b\t

of C[z], then C(z) is an algebra, and the spectrum of z in this algebra is
empty. er" +£\£ dU!WM

1.2.6. Theorem (Gelfand—Mazur). If A is a unit algebra in L{ Tkﬂ-‘\d

which every non-zero element is invertible, then A = él. ? , ?\H ?(@1’ .A | )
Proof. This is immediate from Theorem 1.2.5. o - N
If a is an element of a unital Banach algebra A, its spectral radius is aﬂ,l)q 3!
ith dew

defined to be
= sup |A
@ = 228, P=AN D 02415) Tou

By Remark 1.2.1, r(ab) = r(ba) for all a,b € A.

1.2.4. Ezample. If A = C(Q), where § is a compact Hausdorff space,

o e éi!ﬁ‘)@*ﬁ Bl
P)

/, (% @ wﬁ:\;gg“ﬂ":,, syl
a;.z

\@M*\\S(T»x.)\\ <\£l\ m\ S| |m\ \be) o= 3;1-

~STER)- Morewes, 157 ‘”il‘@f"” < VSN
xio 121

Then ||a|| = 1, bu
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1.2.7. Theorem (Beurling). Ifa is an element of a unital Banach algebra
A, then ; i
o n)lfn _ 1= n n
r(a) = inf la"]1/" = lim_Jla" /" |12}
Proof. If A € o(a), then A™ € o(a™), so |[A"]| £ ||a"||, and therefore,
r(a) < infy> [la™||}/" < liminfp—q |la™|/".
Let A be the open disc in C centered at 0 and of radius 1/r(a) (we

use the usual convention that 1/0 = +o0c). If A € A, then 1 — Aa € Inv(A).
If r € A*, then the map

fiA = C, A r((1=2a)7"),

1s analytic, so there are unique complex numbers A,, such that
fA) =2 (AeA).
n=0

However, if || < 1/||a]|(< 1/r(a)), then ||Aa| < 1, so

(1= Aa)” El“a ,

n=0
and therefore,
f) =) A'r(a"
n=0

It follows that A, = r(a™) for all n > 0. Hence, the sequence (r(a")}A")
converges to 0 for each A € A, and therefore a fortiori, it is bounded.
Since this is true for each v € A*, it follows from the principle of uniform
boundedness that (A"a") is a bounded sequence. Hence, there is a positive
number M (depending on A, of course) such that ||A"a"|| < M for all
n > 0, and therefore, ||a®||'/™ < MY™/|\| (if A # 0). Consequently,
lim sup,_. ., [la™||}/™ < 1/|A|. We have thus shown that if r(a) < |A~?|, then
hmsupn__,m la®||*/™ < |A~}|. It follows that limsup, ., [la™||*/® < r(a),
and since r(a) < liminf,_. [|a"]|*/", therefore r[ )= b ||a“|1”“ 0

1.2.6. Ezample. Let A be the set of C'-functions on the interval [0,1].
This is an algebra when endowed with the pointwise-defined operations,
and a submultiplicative norm on A is given by

1A= fllee + f' e (f € A). [)@C‘R’) )
It is elementary that A is complete under this norm, and therefnre A 13
a Banach algebra. Let z:[0,1] — C be the inclusion, so z € A. Clearly,

lz"|| = 1 + n for all n, so r(z) = lim(1+n)*/" =1 < 2= ||z||.
7(('{'):'1'

1.2.9. Theorem. Let A be a unital Banach algebra.

Ifa € A, then e® is invertible with inverse e~®, and Jfﬂ b are commut-
ing elements of A, then e®t? = e%eb,
8 W irowt proo
We shall see later that not every invertible element is of the form e®. " 75
N
If an algebrais non-unital we can adjoin a unit to it. This is very helpful C - z 2

in many cases, and we shall frequently make use of it, but it does not reduce _ Wer




the theory to the unital case. There are situations where adjoining a unit
is unnatural, such as when one is studying the group algebra L'(G) of a
locally compact group G (see the addenda sectmn of th ter for the
definition of this algebra). E

If A is an algebra, we set A=A®Casa vactﬂr spar:e We cleﬁne a
multiplication on A making it a un:ta.l ebra by setting

cinh-t }*-—a-&-’a ’M%/l

{ﬂ* + Ab + pa, Ap).

Th. urlt ik (0,1). The algebra A is called the unitization of A. The map

-
.-.——-—

A—H‘i, aw+ (a,0),

is an injective homomorphism, which we use to identify A4 as an ideal of A.

We then write a + A for (a, A). The map (& } & J%Gfelj L’
A= C,a+ A A, ! ;7
) pod (SN

is a unital homomorphism with kernel A, called the canonical homomor-

phism. .
If A is abelian, so is A.

1.3. The Gelfand Representation 13
If A is a normed algebra, we make A into a normed algebra by setting
la + All = llall + [Al.

Observe that A is a d subalgebra of A, and that A is a Banach algebra
if A is one, —_—

If A is a non-unital Banach algebra, then for a € A we set 04(a) =
o;(a), and r(a) = supye, ,(q) |[A|. Note that 0 is an element of o4(a) in
this case.

1.3. The Gelfand Representation

The idea of this section is to represent an abelian Banach algebra as an
algebra of continuous functions on a locally compact Hausdorff space. This
is an extremely useful way of looking at these algebras, but in the case of
the more “complicated” algebras, the picture it presents may be of limited
accuracy.

We begin by provmg some esults n ideals and multiplicative linear

functionals. (’\ ‘3": Aoy ')Ué V.80 ASAv.

1.3.1. Theorem. Let I be a mndufar ideal of a Banach algebra A. If I 1s
proper, so is its closure I. If I is maximal, then it is closed.



Proof. Let u be an-element of A such that a — au and a — ua are in |

foralla € A. If b€ I and ||u — b|| < 1, then the element y =1 —u + b is

invertible in A. If a € A, then av = a —au + ab € I, sni%_@&‘u S i This
'—h-u..i-ui—-'

contradicts the assumption that I is proper, and shows at ||u

bl 2
for all b € I. It follows that u ¢ I, so I is proper. 1{:“&1,% Tfo.l mf f'f’ b.*u
If I is maximal, then I = I, as I is a proper 1c.1§oal containing I.

IcT SAS IN; b u}mx‘
1.3.1. Remark. If L id a left ideal of a Banach algebra A, it is modular if
there 1s an element u in A such that a — au € L for all a € A, and 1n this
case its closure is a proper left ideal. Moreover, if L is a modular maximal
left ideal, it is closed. The proofs are the same as for Theorem 1.3.1.

1.3.2. Lemma. IfI is a modular maximal ideal of a unital abelian algebra
A, then A/I is a field.

Proof. The algebra A/I is unital and abelian, with unit u + I say. If J
is an ideal of A/I and « is the quotient map from A to A/I, then n~1(J)
is an ideal of A containing I. Hence, 7~!(J) = A or I, by maximality of I.
Therefore, J = A/I or 0. Thus, A/I and 0 are the only ideals of A/I. Now
suppose that w(a) is a non-zero element of A/I. Then J = w(a)(A/I) is a
non-zero ideal of A/I, and therefore, J = A/I. Hence, there is an element
b of A such that (a+ I)(b+ I) =u+ I, so a + I is invertible. This shows
that A/I is a field.

-{a{ : o;éA'% r.an@‘rI) ’rg(b'ﬁt):: (ae,gb) “rf :

c:r[n oy At *((ﬂ 04T 15 #he Juotio” ep,
a9 § jthealer ()

LIUIn 18 IMoivared DY € IOIOWIIE TE€S51IL.

1.3.7. Theorem. Let A be a unital Banach algebra generated by 1 and

an element a. Then A is abelian and the map He dﬁﬂlﬂ ‘{’ Y ma{(
m = a(a), T — 7(a), qﬂ P(&) St P II‘ ap %

is a homeomorphism. how . -'A-"JE (C]n

Proof. It is clear that A is a.beha.n a.nd that @/is a contlnuous bijection,
and because {)(A) and o(a) are compact Hausdorff spaces, a is therefore a
homeomorphism. O

VoY



) (ﬂ) (0,1) = (ao{)\()-r a,0)= (W))

OXAa™E i 1 U169, sf w0

/::(ab ) LV"‘)"
l0b)={0b 0)- (a0)(b, o) )=£006(h)

a\-%):f(l\"r% (b) A

@&J@I&#EM& paitoll it st ¢

thon (€,0)a,))= (43¢, 0) = (4,))
(,1\(a, l) (01hesa,%) = (o D)
So el\(u} no Yﬁlﬂi lh%
@ 147‘7(&*&1!} _,j(g}%), LoF €So.
Q]\]'blﬂéﬂ' ” (a,,‘ffﬂ) (Or A)}}<i .
, N Tomals T
e W<E Sieg £ 13 arb;ﬁﬁfy A= o
/
Therefore (6)- 60)¢).

Let b o DILE. v :
Tf Ao 'H«.. |Mq-lzll. ~§u|$‘;!f).§‘



Note that if ¢p: A — B is a homomorphism between algebras A and B

iEEﬂxﬁ‘Mthentp A—ry, a+J\H{p(a)+A (a€ A, A€ C)is the,
i nique unital homomorphism extending c,a q...r,. ttﬂs;-\—g —@ a)ﬁ\'?] ?
If p: A —» B is a unital humomo bk T)etweeu unital algebras, then A
A)) € Inv(B), so o(¢(a)) C of E A).

character on an abelian algeb =’ A is a non-zero homomorphism

7: A — C. We denote by (}(A) the set of characters on 4.

1.3.3. Theorem. Let A be a unital abelian Ban?ch algebra.

v/ (1) If r € Q(A), then ||r| = 1. (a) 15 mV;‘tL[f\m
(2) /The set Q}( A)/is non-empty, and the izap A b T@‘D:'I Se

NSO L 20 (e apzoy
gt(l) uyrm):r c}\g{‘@ )7(1)=o ti«x & f ok )

efines a buer:tmn from Q(A) onto the set of all maximal nieals of A.
Pma_f If r € Q(A) and a € A, then 7(a) € o(a), so |r(a)| £ r(a) < ||af.

Hence, ||7|| < 1. Also, 7(1) =1, smc‘e g = 7(1)? and (1) # 0., Hence,

Il = 1. = 7 (e 3a,76) o Sa k.:rra kaz#}
Let I ote the closed ideal ke; his is proper, since 7

IQCl1 = ce a—7(a) € I for aIl_a€ It follows th/tk{lsama.xlmal

ideal of A. g‘

If 11,m"€ Q(A) and ker(m;) = ker(r;), then for e ea.ch a E A we have |
m1(a — r2(a)) = 0, so 71(a) = ra(a). Thus, 1, = 9. /
cley 18 an arbitrary maximal ideal of A, then I is closed by Theorem 1.3.1 [
A/I is a upital Banach algebra in which every non-zero element is in-
vertible, by L a 1.3.2. Hence, by Theorem,1.2.6 A/l = C(1+1I). It
follows that A\=" J@ C1. Define r: A — C by 7( L+A} =X (LE I, e C).
Then 7 is a character and ker(7) = I.
Thus, we have shown that the map = +— ker(r) is a bijection from the

characters onto the maximal i1deals of A.
We have seen already that A admits maximal ideals (since it is unital).

Therefore, }(A) # 0. oo
UL YA

1.3.4. Theorem. Let A be an aheliz

(1) If A is unital, then . &—(ﬂ)] IS nOT “IV My h“"ﬂ@ 7/
Aoy = {f( )17 € QAT (a € A). = h;
"“ﬂ}t

(2) If A is non-unital, then

o(a) = {r(a) | 7€ AA)}IU{0} (a€ A)V*‘q”(ﬁ ""0‘“‘
o .J'EHJ. ey



Proof. If A is unital and a is an element of A whose spectrum contains A, =~
then the ideal I = (a — A)A 1s proper, so I is confained in a maximal ideal
i et v AT "?*)15:“ So

ker(r), where € 2(A). Hencef7(a) = A. This shows that the inclusion h ™
o(a) C {r(a) | 7 € Q(A)} holds, and the reverse inclusion is clear. A ¢

Now suppose that A is non-unital, and let 7o: A — C be the can mca.] 2 %
homomorphism. Then QUA) = {#| 7 € QA)}U{Teo }, where 7 is the mquet AAQ
character on A extending the characfgr 7 on A. Hence, by i
4 = 210 = (@) | 7 € AP F r@) [ € Q(A)} U {0)

4 "R

If A is an abelian Banach algebra, it follows from Theorem 1.3.4 t
2(A) is contained in the closed unit ball of A*. We endow Q(A) with t
relative weak™ topology, and call the topological space §)(A) the chamctcr’((q.‘.k)
space, or spectrum, of A. -—A

1.3.5. Theorem. If A is an abelian Banach algebra, then (A) is a Joca.Hy-Ln' =
compact Hausdorff space. If A is unital, then §2(A) is compact.

Proof. It is easily checked that Q(A)U {0} is weak® closed in the clcmed F

unit ball S of A*. Since S is weak* compact (Banach—-Alaoglu theorem), {I €

Q(A) U {0} is weak* compact, and therefore, (2(A) is locally compact. St( x)’
If A is unital, then §2(A) 1s weak* closed in S and thus compact. -H‘M

Note that (( A) may be empty. This is the case for A = 0, for example. (?IE an
Suppose that A is an abelian Banach algebra for which the space (2( A)
is non-empty. If a € A, we define the function a by 0 (p_q

a:YA)— C, 7 1(a).

Clearly the topology on §2( A) is the smallest one making all of the functions
a continuous. The set {r € Q(A) | |[r(a)| = €} is weak* closed in the closed
unit ball of A* for each € > 0, and weak* compact by the Banach-Alaoglu
theorem. Hence, a@ € Co(52(A)).

We call é@ the Gelfand transform of a.

Although the following result is very important, its proof is easy, be-
cause we have already done most of the work needed to demonstrate it.

1.3.6. Theorem (Gelfand Representation). Suppose that A is an
abelian Banach algebra and that Q)(A) is non-empty. Then the map

A = Co(2(A)), a— a,

i1s a norm-decreasing homomorphism, and



r(a) =|lallc  (a € A).

If A is unital, o(a) = a(2(A)), and if A is non-unital, o(a) = a(2(A))U {0},
for each a € A.

Proof. By Theorem 1.3.4 the spectrum o(a) is the range of a, together
with {0} if A is non-unital. Hence, r(a) = ||@|lcc, Which implies that the
map a + & is norm-decreasing. That this map is a homomorphism is easily

checked. 0

The kernel of the Gelfand representation is called the radical of the
algebra A. It consists of the elements a such that r(a) = 0. It therefore
contains the nilpotent elements. If the radical is zero, A is said to be
semasimple.

In a general algebra an element whose spectrum consists of the set {0}
is said to be gquasinilpotent.

Let a,b be commuting elements of an arbitrary Banach algebra A.
Then r(a + b) < r(a) + r(b), and r(ad) < r(a)r(b). To see this, wé
may suppose that A i1s unital and abelian (if necessary, adjoin a unit
and restrict to the closed subalgebra generated by 1,a, and b). Then
r(a+b) = ||(a + b)|eo < ||@loc + ||b]loc = r(a) + r(d) by Theorem 1.3.6.
Similarly, r(ab) = [|(ad)]lco < l|&lleo||®lleo = r(a)r(b). Direct proofs of the
first of these inequalities (that is, where the Gelfand representation is not
invoked) tend to be messy.

The spectral radius is neither subadditive nor submultiplicative in gen-
eral: Let A = M;(C) and suppose

0 1 0 0
a—(ﬂ {]) and b—(l O)'
Then r(a) = r(b) = 0, since a and b have square zero, but r(a + b) =
r(ab) = 1.

The interpretation of the character space as a sort of generalj
trum is motivated by the following result.

1.3.7. Theorem. Let A be a unital Banach algebra
an element a. Then A is abelian and the map

a:QA) — o(a), 7+ r(a),
is a homeomorphism.

Proof. It is clear that A is abelian and that a 1s a continuous
and because {)(A) and o(a) are compact Hausdorff spaces, a is therefore a
homeomorphism. O
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A set Y < X 1s called a subspace of X if Y 1s itself a vector space (with
respect to the same opcrations of course). One checks easily that this

happens if and only if 0 e Y a
{«-{*x: 0(({7}
pY <« Y

for all scalars « and f. A4 R= {G-lr'o ach L@E?

A set C < X 1s said to be convex iIf
{t'x't(l-i')a .‘K,UEC.} ~tC+ (1 —t)C<=C 0D<t<l1).

In other words, 1t 1s required that C should contain tx + (1 — t)y if x € C,
yeC,and 0 <t < 1.

A set B< X 1s said to be balanced if xB < B for every a € @ with
ol < 1.

A vector space X has dimension n (dim X =n) f X has a basis

{u,, ..., u,}. This means that every x € X has a unique representation of the
form

X =0ou; + -+ a,u, (x; € D),

dim X = 0.

Separation Properties

1.10 Theorem Suppose K and C are subsets of a mpﬂ ! vector space

X, K is compact, C is closed, and K n C = (7. Then 0 has :gﬁ% Uﬂd V
such that
(K+V)n(C+V)= 6‘

Note that K + V is a union of translates x + V of V (x € K). Thus
K + V 1s an open set that contains K. The theorem thus implies the exis-
tence of disjoint open sets that contain K and C, respectively.

PROOF. We begin with the following proposition, which will be useful
in other contexts as well:

,L'W\-'-\M‘ If W is a neighborhood of O in X, then there is a neighborhood U
of 0 which is symmetric (in the sense that U = — U) and which satisfies
U+ UcW,

T rmes Fhie #mamata thad NV L DV —— DN that additimaes 10 ot 8111110 s e
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that O thcr@: has neighborhoods V,, V; such that V; + V, < W.If

U=V, V,(=V,)n [—Vz@
then U has the required properties.

The proposition can now be applied to U in place of W and
yields a new symmetric neighborhood U of O such that U s U

+\%+U -o+U,+UJrU ¢U+U+U+UW

It is clear how this can bc contmucd,
If K= 4, then K + V = (7, and the conclusion of the theorem

is obvious. We therefore assume that K # ¢, and consider a point

x € K. Since C is closed, since x is not in C, and since the tepolog

X is invariant under translations, the preceding proposi ioné DWS

that 0 has a symmetric neighborhood V, such that x + V., +3¥,+ V.

does not intersect C,; the symmetry of V, shows the t
(1) x+ Vi+V)n(C+V)=¢.
bmccgﬁ’ is compact, there are finitely many points x,, ..., x, in K such

that(: kQU’H‘ xﬂm
xe}< K ':(x1 + Vx:} Ut J (I" + Vxﬂ}'

Put V=V,n - nV.. Then

K+Vc U(x."" l";c,-"'K): U(xi+in+in}5

i=1 C.’ i=1
and no tcrmrm this last union mtcrscc{s C + V, by (1). This completes
the DI‘DDf R Sine VC Vm ¥ L’- /1]

Since C + V is open, it is even true that the closure of K + V does not
intersect C + V; in particular, lqsure of K + V does not intersect C.
The following special case of this-obtained by taking K = {0}, is of con-
siderable interest.

1.11 Theorem I[f# is alocal base for a topological vector 3pace X, then
every member of 9 contains the closure of some member of &. ‘6‘

So far we have not used the assumption that every point of X is a
closed set. We now use it and apply Theorem 1.10 to a pair of distinct
points in place of K and C. The conclusion is that these points have disjoint
neighborhoods. In other words, the Hausdorff separation axiom holds:




1.12 Theorem Every topological vector space is a Hausdurﬁspace@
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1.13 Theorem Let X be a topological vector space.

@ IfAdAc X thenA = ﬂ (A + V), where V runs through all neighborhood.

of 0.
b) IfAdc Xand Bc X,thenA + Bc A + B.

() IfY is a subspace of X, so is f'@
(d) If Cis a convex subset of X, so~are C and C°.

(e) If B is a balanced subset ﬂfX SO 1S E if also 0 € B° then B’ is balanced.
(f) IfEis a bounded subset of X, so is E. {-—(A:m({—) JI-E In Md'fTC(fi@/))

PROOF. (a) x € A if and only if (x
hood V of 0, and thlS hap

V) n A # & for every neighbor-
if and only if x € 4 — V for every such
V.Since —V 1s orhood of 0 if and only if V 1s one, the proof
is complete. ﬂéé{-}ﬂ)ﬂﬂ- ﬁgiﬂﬂf Yoxy Vs o=y \?GA..V

(b) Take a€ A, b € B; let W be a neighborhood of a + b. There
are neighborhoods W, and W, of a and b such that W, + W, < W.
There exist xe A n W,and ye B~ W,,sinceac Aand b € E. Then
x + ylies in (4 + B) n W, so that this intersection is not empty. Cop-
sequently,a + b € A + B. @,b) "‘30"1‘

() Suppose o and f are scalars. By the proposition in Section

17, @Y =a ¥ X o« # 0; if @ =0, these two sets are obviously equal. o

Hence it foll from (b) that @ M. X—-—bj’(z ’
ﬁ\
¥+ f¥=aY + Y ca¥ + Y c ¥, g hﬂmgw}:$ﬁ;m

the assumption that Y 1s a subspace was used in the last inc]usic-n

The proofs that convex sets have convex closures and that bﬂ]'
anced sets have balanced closures are so similar to this proof of (¢}
that we shall omit them from (d) and (e).

(d) Since C° < C and C 1s convex, we have

ofen1C £(1 - 1C° = C

if 0 <t < 1. The two sets on the left are open, hence so 1s their sum.
Since every open subset of C is a subset of C”, it follows that C° is
convex.

(e) If 0 < || < 1, then aB® = («B)°, since x — ax 1s a homeo-
morphism. Hence aB° < aB < B, since B is balanced. But «B” is open.
So «B° < B°. If B° contains the origin, then «B° < B° even for & = 0.

(f) Let V be a neighborhood of 0. By Theorem 1.11, W< V for

Mw: ﬁ)



some neighborhood W of 0. Since E i1s bounded, E < tW for all suffi-
ciently large t. For these t, we have E < tW < tV, ///

1.14 Theorem In a topological vector space X,

(@) every neighborhood of 0 contains a balanced neighborhood of 0, and
(b) every cunvex‘g igfiborhood of O contains a balanced convex neighbor-

hood of 0. 457 VQSXEJ\L@; NBV<U

PROOF. (a) Suppose U 1s a neighborhood of 0 in X. Since scalar multi-
plication is continuous, there is a 6 > 0 and there is a neighborhood
V' of 0 in X such that < U whenever | <&. Let W be the union
of all these sets ﬂ/ en Pv‘lf{(is a neighbdrhood of 0, W is balanced,
and W < U. 11, 1EW=s I 1€V dx :SQWEW“*
(b) Suppose U 1s Ia‘{:lzijnvc?nﬁéhbm m’(x/]?:{”{y'kg
A= ﬂ alU, where o ranges over the scalars of absolute value 1.
Choose W as in part (a). Since W is balanced, « 'W = W when
o] = 1; hence W < aU. Thus W < 4, which implies that the interior
A° of A4 1s a neighborhood of 0. Clearly A° < U. Being an intersection
of convex sets, 4 1s convex; hence so 1s 4°. To prove that 4° 1s a
neighborhood with the desired properties, we have to show that 4° is
balanced : for this it suffices to prove that A4 i1s balanced. Choose r and
fsothat0<r<1,|f|= 1. Then
rfA = ﬂ rfal = ﬂ ral.
la| =1 la| =1
Since alU is a convex set that contains 0, we have raU < alU. Thus
rBA < A, which completes the proof. [/

Theorem 1.14 can be restated in terms of local bases. Let us say that a
local base # i1s balanced if its members are balanced sets, and let us call #
convex if its members are convex sets.

Corcllary

(@) Every topological vector space has a balanced local base.
(b) Every locally convex space has a balanced convex local base.

Recall also that Theorem 1.11 holds for each of these local bases.



1.15 Theorem Suppose V is a neighborhood of 0 in a topological vector

space X. %kth

(@ If0O<r,<r,<---andr,— o0 asn— m,rhen\Nﬁ a,.+
v A

X=rvV. t
n=1

(b) Every compact s.:ubser K of X is bounded.
© Ifé,>6,> - and 6,—0 as n— oo, and if V is bounded, then the
collection '}L{ InveYgt
{511'/”:1!2!35} [maﬁ’e oﬁ\/

WNORY & 1y AX

Fs X 77

is a local base for X.

PROOF. (a) Fix x € X. Since o> ax 1S a continuous/ mapping of the
scalar field into X, the set ot @l o with ax € V_is fopen, contains 0,

hence contains 1/r, for all, Jarge n. Thus (1/r)x € V, or x g?ﬂ",‘]f%?
large n. ; E(u}’)(;‘v.

(b) Let W be a balanced neighborhood of 0 such tha cV
By (a), .
YO DL e 3N YA, —',,—flgé:*)-@l{-re
N

Y
" Kc|)nw. R

n=1

V

Since K is compact, there are integers n, < :*+ < n, such that
KenWuou--~unW=nW,

The equality holds because W is balanced. If t > n,, it follows that
KctWctl.

(c) Let U be a neighborhood of 0 in X. If V is bounded, there
exists s > O such that V < tU for all ¢t > s. If n i1s so large that s, < 1,
it follows that V < (1/6,)U. Hence U actually contains all but finitely
many of the sets é, V. 1]/

»
=Neh=
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eminorms and Local Convexity
33 Definitions A seminorm on a vector_space X is a real-valued func-

on p on X such that
? Po)= P@0)-2P() = P (")‘“F)(
) p(x + y) < p(x) + p(y) and o=P(o)- )¢ PAy Per)=2
) plox) = |al p(x) @) P JCP#H'P(-K)- #}-aﬂ?;u

for all x and y in X and all scalars o.

Property (a) 1s called subadditivity. Theorem 1.34 will show that a semi-
orm p is a norm if it satisfies

Y e DA=
) p(x) #0if x #0. ° ﬁﬂ"eﬁ’ °

A family 2 of seminorms on X 1s said to be separating if to each x # 0
orresponds at least one p € 2 with p(x) # 0.

Nextm&ﬂ lgec)qnvex set A « X which 1s absorbing, in the sense
nat every x t = [For example, (a) of
‘heorem 1.15 implies that every neighborhood of 0 in a topological vector
pace 1s absorbing. Every absorbing set obviously contains 0.] The
dinkowski functional u, of A is defined by

pax) =inf {t >0:t 'x e A} (x € X).

Note that p4(x) < oo for all x € X, since A is absorbing. The seminorms on
C will turn out to be precisely the Minkowski functionals of balanced
Onvex absorbing sets.

34 Theorem Suppose p is a seminorm on a vector space X. Then

. Fg )= s

2P 00 2

\

) p0)=0.

) Ip(x) — p(y)| < p(x — y).
) plx) =2 0.

) {x p(x) = 0} is a subspace of X. ‘L

] spt B = {x: p(x) < 1} is convex, balanced, rbt , and\R = g .
G T 161 015 TPl )1 Pty ) o3 GAE B s bidoweed
PROOF. Statement (@) follows from p(ax) = |o|p(x), with o = 0. The
subadditivity of p shows that




p(x) =p(x —y +y) < plx — y) + p(y)

so that p(x) — p(y) < p(x — y). This also holds with x and y inter-
changed. Since p(x — y) = p(y — x), (b) follows. With y = 0, (b) implies
(¢). If p(x) = p(y) = 0 and o, f§ are scalars, (¢) implies

0 < plax + By) <|a|p(x) + |B|p(y) = O.

This proves (d).
As to (e), it 1s clear that B 1s balanced. If xe B, y € B, and
0<t<1,then

pitx + (1 — t)y) < tp(x) + (1 — t)p(y) < L.

Thus B is convex. If x e X and s > p(x) then p(s™ 'x)=s 'p(x) <1.
This shows that B is absorbing and also that ug(x) < s. Hence ug < p.
But if 0 <t < p(x) then p(r 'x) > 1, and so t™ 'x is not in B. 7This
implies p(x) < pg(x) and completis the prqof. So T ¢ /NS(T‘J 1/

35 Theorem Suppose A is a convex ubsarbmg set in a vector space X.

h
en N (S/}a S?(GB} /j 7() -4\ ,;;ﬂ]";f{ § (< y)
) HalX + ¥) < palx) + ua(y). s e 3 »
) Ha(tx) = tpa(x) if £ > 0. ? ?(g ?{) S 'f{ % :"} y) 2 }jjnﬁ‘{fﬁ

i is a seminorm if YMBRAGRIAN L X
If B={x: pdx) <1} and C ={x:uyx) <1}, then B= A< C and
Hp = Uy = U .

2
PROOF. If t = pi4(x) + € and s = uy(y) + ¢, for some ¢ > 0, the@,and

y/sarein A:; hence so is their convex combination \ i
x+y S+t
Nk

This shows that p,(x + y) <s +t = pu x) + pa(y) + 2¢, and (a) is
proved.

Property (b) is clear, and (c) follows from (a) and (b).

When we turn to (d), the inclusions B =« 4 « C show that u; <
ty<p. To pr@ equality, fix x € X, and choose s, t so that u.(x) <



<L INEN X/5 € U, X, 5) = 1, HBqX/1) = S/ < 1, NENCE X,/ I € D, 50
Ty

that y(x) < r. This holds for every t > pu(x). Hence ug(x) < pe(x). ///,

36 Theorem Suppose % is a convex balanced local base in a topologi-
al vector space X. Associate to every V € A its Minkowski functional 1, .
"hen '

) V={xe X:uy(x) <1}, for every V € B, and
) {uy: Ve A} is a separating family of continuous seminorms on X.

PROOF. If x € V, then x/t € V for some t < 1, because V i en;
hence iy (x) < 1. If x ¢ V, then x/t € V implies ¢ > 1, because V is

balanced; hence 14(x) = 1. This proves (a).
Theorem 1.35 shows that each p, is a seminorm. If r >0, it
follows from nd Theorem 1.34 that

| q
I‘(FHH]QV ?F;,L 7 )[ pp(x) — py(y)| < HV(J‘E - }’] <Tr

if x —/ﬂ}e rV. Hence u, is continuous. If x € X and x # 0, then x ¢ V
N,rr

for some V € 4. For this V, p4,(x) > 1. Thus {u,} is separating.  /,
A nown 354 p(fuJ\ZaOmJ § A o
S

37 Theorem Suppose 2 is a separating family eminorms on' a vecmﬁ
ace X. Associate to each p € 2 and to each positive integer n the set

0| P X R s TS s
} [ bellAyl | <D

L B be the collection of all finite intersections of the sets V(p, n). Then & is
Convex balanced local base for a topology t on X, which turns X into a
cally convex snace such that

every p € 2 is continuous, and
aset E < X is bounded if and only if every p € 2 is bounded on E

PROOF. Declare a set 4 — X to be open if and only if 4 is a (possibly

empty) union of translates of members of @ learly defines a
=

translation-invariant topology 7 on X ; eac of # 1s convex
Suppose x € X, x # 0. Then p(x) > O for some p € 2. Since x is

Vip, n) = {x p(x

and balanced, and # is a local base for 7.



not m Vi{p, #) I np(x) > 1, we se€ that U 1S not In tne neignoornood
x — V(p, n) of x, so that x is not in the closure of {0}. Thus {0} is a
closed set, and since r is translation-invariant, ev oint of X is a
closed set. .@3 rtﬂ X = 'ﬁ OW@QJ
Next we show that addltmn and scalar multlplsgat n are con-
tinuous. Let U be a neighborhood of 0in X. Then
e o)l—a 0+0=0

(1) UsVip,n)o 0 Vipn, n)90
for some py, ..., p,, € Z and some positive integers ny, ..., 1. Put
(2) V=Vp,2n)n-n Vip,, 2n,).

Since every p € 2 is subadditive, V + V < U. This proves th:® :ddi-
tion is continuous. (?)

Suppose now that x € X, a 1s a scalar, and U and V ¢re as
above. Then x € sV for some s > 0. Putt =s/(1 + |x]|s). If y Ex«]-{'V
and |8 — a| < 1/s, then T xX->X

Py — ax = Py — x) + (B — a)x (<) [l

which lies in % |
[BItV + | —a|lsVceV+ VU ﬁJé‘\I.}U‘ |

since |fflt<1and V is balancegﬁThis proves that scalar mul. clica-
tion is continuous.

Thus X 1s a locally convex space. The definition of V(p, n* shows
that every p € 2 is continuous at 0. Hence p is continuous or X, by
(b) of Theorem 1.34.

Finally, suppose E < X 1s bounded. Fix p € 2. Since V(p ':isa
neighborhood of 0, £ < kV(p, 1) for some k < co. Hence p(x) < % for
every x € E. It follows that every p € 22 1s bounded on E.

Conversely, suppose E satisfies this condition, U is a neiy;*;hor-
hood of 0, and (1) holds. There are numbers M; < oo such tha: p; <
M; on E (I < fgm) If n>M;n, for 1 <i<m, it follows that

NN

E < nU, so that E 1s bounded. e

&
(D (<6 5t <M ) 5 Dot e
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§(A) is contained in the closed unit ba.ll of A*. We endow ﬂ.( w1th the

relative weak™ topology, and cal #he t olngm space §2(A) the char
space, or spectrum, of A. —51@;\ ) Zb- td(bs%&& gﬁ z{fhz/ﬂ’

abehan Banach algebra, then Q(A) is a Inca.Hy p(A(
A is unital, thep.§}(A) is compact.

1.3.5. Theorem. If A 1s
compact Hausdorff space.

Proof. It is easily chefked that 2(A) U {( 1s weak* closed in the closed
unit ball S of A*. Sinfe S is weak* compact (Banach—-Alaoglu theorem),
Q(A)U {0} is weak* ¢ mpact, and therefore, 2(A) is locally compact.

If A is unital, the 1 d 1n S and thus compact.

O
Note that 2( A) may & eth lgis( !l the 32 vfl jtj— 0, for example

Suppose that A is an abelian Banach algebra for which the space P.ﬁ
is non-empty. If a € A, we define the function a by X C’% X

5:0l4Y < B, vrvela). AL Sei-fw)

Clearly the topology on Q(A) is the smallest one making all of the functions

@ continuous. The set {r € Q(A) | [r(a)| > €} is weak* closed in the closed

unit ball of A* for each € > 0, and weak* compa*'t by the Banach-Al

theorem. Hence, @ € Co(2(A)). : ; ..__.)'(_ = T {a .._)T(ﬁ ? T((@ >i.
We call @ the Gelfand transform of a. = W- C\) ¢ ‘>
Although the following result is very important, its m is easy, be-

cause we have already done most of the work needed to demonstrate it.

1.3.6. Theorem (Gelfand Representation). Suppose that A is an
abelian Banach algebra and that 2(A) is non-empty. Then the map

is a norm-decreasing homomorphism, and __ ‘?ﬂE}l . S“EYOM (f' ﬁ
. '——"""_'-—_'-_ﬁ ry

A — Co(QU(A)), a+— a,
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If A is unital, o(a) = a(Q2(A)), and if A is nﬁ Z:um'tal, o(ay=.a(QA))U{0},
for each a € A. {'Z d\) . Eﬂfﬂ)}@ Tj = Pﬁh((}%

Proof. By Theorem 1.3.4 the spectrum J a) is the range of a, together
with {0} if A is non-unital. Hence, r(a) = ||@||co, which implies that the
map a + @ is norm-decreasing. That this map i1s a homomorphism is easily

checked. a

The kernel of the Gelfand representation is called the radical of the
algebra A. It consists of the elements a such that r(a) = 0. It therefore
contains the nilpotent elements. If the radical is zero, A is said to be
semasimple.

In a general algebra an element whose spectrum consists of the set {0}
1s said to be quasini

Let a,b be commuting elements of an arbitrary Banach algebra A.
Then r(a + b) < r(a) + r(b), and r(ab) < r(a)r(b). To see this, wé
may suppose that A is unital and abelian (if necessary, adjoin a unit
and restrict to the c é:%d subalgebra generated by 1,a, and b). Then

r(a + b) = |(a + b))l lalloo + ||b||m = r(a) + r(b) by Theorem 1.3.6.
Similarly, r(ab) = ||( < ||a||m||b||m = r(a)r(b). Direct proofs of the
first of these inequalities (that 1s, where, the Gelfand esentation is not
invoked) tend to be messy. 4; “ < Il ﬂ'\" “‘f“‘?

The spectral radius is neither Bub d1t1ve nor subm t1phcat1ve in gen-
eral: Let A = M;(C) and suppose

=(g g}) and b=({1) g)
Then r(a) = r(b) = 0, since a and b have square zero, but r(a + b) =
r(ab) = 1.

The interpretation of the character space as a sort of generalised spec-
trum is motivated by the following result.

1.3.7. Theorem. Let A be a unital Banach algebra generate 1 and
an z&ment a. Th is abelian and the map

f: Lo
a: Q(A) — a(a), T +— 1(a),
cve of, 1o “‘-,,";ﬂ" ~ w:ﬁﬁ 2'@?“

Proof. It is clear that A is abelian and that a 1s uous _]t:ctl C)
and because ()(A) and o(a) are compact Hausdorff spaces, a is therefore a )
homeomorphism. O@y,-gé

m *%% 4 11t . . . B L T EEeRT, e ri T e T L N i T /P-



10 lUUsLl ol uillo, COLLIUCL LIIC UloC alpthDla A. 11 < 1o 1w Callullicdl fU
generator, then since o(z) = D, we have (A) = D by Theorem 1.3.7.
In this case if f € A, then f(A) = f(A), so the Gelfand transform is the

identity map.

1.4. Compact and Fredholm Operators

This section is concerned with the elementary spectral theory of oper-
ators. We begin with the simplest non-trivial class of operators, the com-
pact ones, a class that plays an important and fundamental role in operator
theory. These operators behave much like operators on finite-dimensional
vector spaces, and for this reason they are relatively easy to analyse.

A linear map u: X — Y between Banach spaces X and Y is compact
if u(S) is relatively ¢ act in Y, where S is the closed unit ball of X.
Equivalently, u(S) is totally bounded. In this case u(S) is bounded, and

therefore, u is bounded. T N
ereiore, u 1s bounde - U(S') (0 :’JC+

If X,Y are w spaces, we denote by B(X,Y) the vector space
of all bounded line aps from X to Y. This is a Banach space when
endowed with the operator norm. The set of all compact operators from X

to Y is denoted by K(X,Y).

The proof of the following is a routine exercise.

1.:@601‘61‘11. Let X andY be Banach spaces and u € B(X,Y). Then

the\follewing conditions are equivalent:

(1) u is compact;

(2) For each bounded set Dm X, the set H(E) 1s relatively compact in Y';

(3) For each bounded sequence (:l:,-, ) in X, the sequence (u(z,)) admits a
subsequence that converges in Y.

It follows easily fmm ThEDI‘Em 1 4.1 that K(X,Y) is a vector subspzz)()

of B(X,Y). Also, if X' 5 X 5 %Y % Y’ are bounded linear m pi H
Banach spaces and u i1s compact, then wu and uv e com ce
fﬁ K(X,X) is an ideal in B(X) 7 Ue ((K) ? U\%Q X)

Mz IIEM 2 WIT L 1“ anmvs:bs
é&ozﬂm IfX 12& anach Hcel mﬂ{ ;l.') B(X Jfand Dnlyy éf

Lx.q Hﬁn f ST G sanc'ﬁc:g—; V{l’ UxX ) hay Conv. &

den t-es the closed unit ball of X, then K(X ) =8(X) < idx
is mmpact <> S 18 compact < X is finite- dlmensmna.l 0O
1.4.3. Theorem. If X,Y are Banach spaces, then K a closed

vector space of B(X,Y).

L o D . b B e TR LR I I, Tty ML £ .. T R e L LR P S, "HI o) PO R R U RN RSl e g L ey
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operator u in B(X,Y), then u is compact. Let S denote the closed unit
ball of X and let ¢ > 0. Choose an integer N such that ||juy — ul| < /3.
Since un(S) is totally bounded, there are elements z;,...,z, € S, such
that for each 7 in S, the inequghty |lun(z) —un(z;)|| < e/3 holds for some

index j. Hence,

[u(z) — u(z;)|| < [lu(z) —un(z)|| + lun(z) —un(z;)|| + lun(z;) — ulz;)]]
<ef3+¢€/3+¢€/3=c€.

Thus, u(S) is totally bounded, and therefore, u € K(X,Y). O

Recall that a linear map u: X — Y is of finite rank if u(X) is finite-
dimensional and that rank(u) = dim(u(X)).

If X and Y are Banach spaces and u € B(X,Y) is of finite rank, then
u € K(X,Y). This is immediate from the fact that the closed unit ball of
the finite-dimensional space u(X) is compact.

It follows from this remark and Theorem 1.4.3 that norm-limits of
finite-rank operators are compact, and it is natural to ask whether the con-
verse is true. This is the case for Hilbert spaces, as we shall see in the next
chapter, but it is not true for arbitrary Banach spaces. P. Enflo [Enf] has
given an example of a Banach space for which there are compact operators
that are not norm-limits of finite-rank operators.

If u: X — Y is a bounded linear map between Banach spaces, we define

its transpose u* € B(Y*, X"*) by u*(r) =t o u. )\H-PY C
tzm

1.4.4. Theorem. Let X,Y be Banach spaces and let u E K(X,Y). Then
w* € R¥YY, X%y,
Proof. Let S be the closed unit ball of X and let £ > 0. Since u(S) is
totally bounded, there exist elements z;,...,r, in 5, such that if z € S,
then ||u(z)—u(z;)|| < €/3 for some index :. Definev € B(Y*, C™) by setting
v(r) = (tu(z1),...,7u(zy)). Since the rank of v is finite, v is compact, and
therefore v(T') is totally bounded, where T is the closed unit ball of Y*.

Hence, there exist functionals 7;,...,7, In T, such that if 7+ € T, then
|v(7) — v(7;)|| < €/3 for some index j. Observe that
lo(r) = v(ry)ll = max u*(r)(z:) - u*(ry)(za)l

Now suppose that z € S. Then ||u(z) — u(z;)|| < €/3 for some index ¢, and
lu*(T)(xi) — u*(7;)(zi)| < /3. Hence,

lu*(+ M x2Y — u* (M2 < lu*(+¥Mz2) — u* (M + lu* (7Y z:) — u* (M)

o mfx-}



+|H(T( ) ﬂ( )( )|
< E/3+£/3+E/3 E.
It follows that ||u*(7)—u*(7;)|| < ¢, so u* 13 totally bounded there-
fore u* is compact. -h} S‘
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