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Abstract² This paper presents an online solution to the 

infinite-horizon linear quadratic tracker (LQT) using 

reinforcement learning. It is first assumed that the value 

function for the LQT is quadratic in terms of the reference 

trajectory and the state of the system. Then, using the quadratic 

form of the value function, an augmented algebraic Riccati 

equation (ARE) is derived to solve the LQT.  Using this 

formulation, both feedback and feedforward parts of the 

optimal control solution are obtained simultaneously by solving 

the augmented ARE. To find the solution to the augmented 

ARE online, policy iteration as a class of reinforcement learning 

algorithms, is employed. This algorithm is implemented on an 

actor-critic structure by using two neural networks and it does 

not need the knowledge of the drift system dynamics or the 

command generator dynamics. A simulation example shows 

that the proposed algorithm works for a system with partially 

unknown dynamics. 

Key words: linear quadratic tracker, reinforcement learning, 
policy iteration, algebraic Riccati equation. 

I. INTRODUCTION 

The linear quadratic tracker (LQT) problem is concerned 
with the design of an optimal control law such that the output 
of a linear system follows a reference trajectory. The 
optimality is achieved by minimizing a quadratic 
performance index. In contrast to solutions to the linear 
quadratic regulator (LQR), which require solving an 
algebraic Riccati equation (ARE), traditional solutions to the 
LQT consist of solving an ARE and a noncausal difference 
equation simultaneously [1]. The ARE is solved to find the 
feedback part of the optimal controller and a noncausal 
difference equation is solved to find the feedforward part of 
the optimal control. This is an offline design procedure that 
requires full knowledge of the system dynamics. 

Reinforcement learning (RL) [2]-[5], as a class of 
machine learning methods, has been effectively used to seek 
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solutions to the optimal regulator problem [6]-[13]. In 
particular, a class of RL algorithms called policy iteration 
(PI) is used to solve the LQR [14]. PI techniques start with 
an admissible control policy and then successively alternate 
between policy evaluation and policy improvement steps 
until converge to the solution of the ARE. On the other hand, 
because of additional complexity caused by computing the 
feedforward term in the LQT, to our knowledge, RL 
techniques have not been used to solve the LQT. 

This paper develops RL algorithms to solve the infinite-
horizon LQT for discrete-time systems. First, it is assumed 
that the LQT value function is quadratic in the state of the 
system and the reference trajectory. Then, based on this 
quadratic form, we derive a Bellman equation and an 
augmented ARE whose solution gives solution to the LQT. 
Finally, the LQT Bellman equation is used to develop a 
policy iteration algorithm to solve online the LQT. This 
algorithm is implemented as an actor-critic structure by using 
two neural networks. A simulation shows that the LQT 
problem can be solved online without requiring knowledge 
of the full system dynamics or reference trajectory dynamics. 
Convergence to the optimal control solution of the LQT is 
verified.  

The rest of the paper is laid out as follows. Review of the 
standard solution for the LQT is given in Section II. An 
alternative approach for formulating the infinite-horizon 
LQT in a causal manner is presented in Section III. In 
Section IV we develop offline and online PI algorithms to 
solve the LQT. In Section V, neural network is used to 
approximate value function and control input. The 
simulation results of applying the RL algorithms to find the 
optimal controller are presented in Section VI.      

II. LINEAR QUADRATIC TRACKER AND REVIEW OF ITS 

STANDARD SOLUTION  

In this section, the linear quadratic tracker (LQT) 
problem for discrete-time (DT) systems and its standard 
solution are presented [1]. 

Consider the linear time-invariant discrete-time (DT) 
system in the form of 
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                             (1)  

where n

k
x R�  is the measured state, m

k
u R� is the control 

input, p

k
y R� is the output and A, B and C are constant 

matrices with compatible dimensions. 
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The objective for the LQT problem is to find the optimal 

control sequence, 

k

u , so as to make the linear system (1) to 

track a reference trajectory 
k

r  in an optimal manner.  

This can be obtained by minimizing the finite-horizon 
performance index 

               
� � � �

� � � �
1

1

2

1

2

T

k N N N N

N
T T

i i i i i i

i k

J y r E y r

y r Q y r u Ru
�

 

 � �

ª º� � � �¬ ¼¦
              (2)   

where 0tE , 0tQ and R > 0  are symmetric matrices.  

The standard solution of the finite-horizon LQT problem 
is given as 
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where 1�kv is acquired with solving difference equation 
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Note that the first term of the control input (3) is a 

feedback control part that depends linearly on the state of the 

system and the second term is a feedforward control part that 

depends on the reference trajectory. The standard solution of 

the LQT is noncausal because it is needed to solve for kv  

backwards in time using (4).  

 In [1], it was shown that the optimal value of the 

performance index using control (3) on the interval > @Nk,
 
is 

given by 
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where the signal kw  satisfies the backward recursion  
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The infinite-horizon LQT problem is the concern of this 
paper. In the infinite-horizon case N tends to infinitely. Then 
the performance index (2) for fixed control policies becomes 
the value function 
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where 
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i i i i i i i
U C x r Q C x r u Ru � � �  

In the infinite-horizon case, the Riccati recursion (7) 
becomes the algebraic Riccati equation (ARE) 
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Sufficient conditions for existence of a solution T
S S >0 

to the ARE are as follows. 

Assumption 1. The pair � �,A B is stabilizable and the pair is 

� �,A QC observable [1]. 

The control gains (5) and (6) become constants  
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Then the control input is 
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With 
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Finally, the optimal value of the performance index is given 
by the value function 
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III. CAUSAL SOLUTION TO THE LQT PROBLEM  

This section presents the new results of this paper.  First, 
it is assumed that the value function of the LQT problem can 

be expressed as a quadratic form in terms of 
k

x  and 
k

r . 

Then, a Bellman equation and an augmented LQT ARE are 
given based on this value function. This structure is used in 
Section IV to solve online the LQT using RL.  

The following assumptions are required. 

Assumption 2. The reference trajectory for the LQT 
problem is generated by  

                                    1k k
r F r�                                   (18) 

It is assumed that the command generator dynamic F in (18) 
is Hurwitz. 
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The augmented system is performed Based on the system 
dynamics (1) and the reference trajectory dynamics (18) as 
following  
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where the augmented state is 
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Assumption 3. For the infinite-horizon LQT problem, under 
Assumption 2, the value function (10) can be written as 
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for any fixed stabilizing policy 
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for some symmetric P > 0.  

On the basis of (10) we have 
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which yields the LQT Bellman equation 

   

� �

� � � � � �1 1

,

1 1
,

2 2

k k

T T

k k k k k k k k

V x r

C x r Q C x r u Ru V x r� �

 

� � � �
   (24) 

Using (21) in (24), we obtain the LQT Bellman equation in 
terms of value function kernel matrix P 
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Define the LQT Hamiltonian 
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or equivalently 
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The next theorem shows how the LQT problem can be 
solved in a causal manner using an augmented ARE. 

Theorem 1. ARE for causal solution of the LQT  

Under Assumptions 2 and 3, the optimal policy for the LQT 
problem is  
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satisfies the augmented LQT ARE 
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Proof. A necessary condition for optimality [1] is  
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Substituting (19) and (32) in Bellman equation (25), results
 

in LQT ARE (31). 
The next result shows that the standard LQT in Section II is 
equivalent to the causal LQT formulation in Theorem 1. 

Corollary 2. Relation between standard LQT and causal 
formulation for LQT 

In the infinite-horizon LQT, the standard LQT solution (11)-
(15) and its value function (16) , (17)�are equivalent to the 
LQT solution in Theorem 1 and its value function (21) with      
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Proof. Putting (19) , (20) and (33) in (32), gives   

  � � 1

11 11 12

T T T

k k k
u R B P B B P A x B P F r

�
ª º � � �¬ ¼             (37) 

By comparing (14) and (37), the standard control input and 
casual control input  are equivalent if (34) and (35) are 
satisfied. Also, using (34) and (35) in (16) and equating the 
value functions (16) and (21), gives (36). In the standard 

LQT, S � kv  and kw  are obtained by the ARE (11) and the 

difference equations (15) and� (17), respectively. In the 
following, it is shown that if (34)-(36) are satisfied, the same 
equation as (11),� (15)� and (17) are obtained by causal 
solution of the LQT. by expanding the LQT ARE, the upper 
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left-hand and upper-right hand sides of the LQT ARE 
become 
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Equation (39) is equal to the ARE (11) provide that (34) is 
satisfied and (39) is equivalent to (15) provided that (35) is 
satisfied. 

The time signal 
tw  in the standard value function 

satisfies (17). By expanding the LQT ARE, the lower right-
hand side of it becomes 
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where is equal to (17) if (36) is satisfied.
.
  

IV. SOLVING THE LQT PROBLEM ONLINE USING 

REINFORCEMENT LEARNING 

In this section, the LQT problem is solved using RL based 
on new formulation of the LQT problem in Section III.  

The augmented LQT Bellman equation (25) for an 

arbitrary stabilizing gain 
1K  becomes  
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which is a Lyapunov equation. 
Instead of directly solving the LQT ARE (31) to obtain 

optimal control input, Lyapunov equation (41) can be solved 
iteratively. Two iterative PI algorithms are provided as 
follows.  

Algorithm 1. Offline Lyapunov iteration  

Select a stabilizing initial control policy 1K . 

1. Policy evaluation 
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2. Policy improvement 
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This algorithm is implemented offline and the system 

dynamics � �1,T B  are required to solve (42). It is an 
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iteration algorithm must be suitably initialized to converge.  

The next algorithm uses the LQT Bellman equation (25) 
to   solve the LQT online. 

Algorithm 2.  Online policy iteration  

Select a stabilizing initial control policy 1K . 

1.  Policy evaluation 
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2.  Policy improvement 
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Policy iteration Algorithm 2 can be implemented online 

using Least-squares (LS) [16] using the data set 
k

X , 
1k

X �  

and 
k

U  measured along the system trajectory with 
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T
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k k k
X Q K R K XU  � .  

Note that in Algorithms 1 and 2, it is needed to knowing full 
knowledge of the system dynamics or command generator 
dynamics. In the next section, it is shown how to solve the 
LQT problem without knowing the system internal dynamics 
matrix T. 

V.  SOLVING THE LQT PROBLEM USING NEURAL NETWORK 

APPROXIMATION   

In this section, an actor-critic structure is given to implement 
Algorithm 2 online. It is well known that the neural networks 
(NN) can be used to approximate smooth function on a 
compact set [17]. Therefore, to solve the LQT problem 

� �XV  is approximated at each iterations by a critic NN 
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where L

Vj
RW �  is the critic NN weights and L is the number 

of hidden-layer neurons. The vector 
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 is the vector activation 

function.  

Using value function approximation (46), we can develop 
a PI algorithm that does not need the knowledge of the T in 
system dynamics (19). Using value function approximation 
to solve the Bellman equation (44) in policy evaluation step 
of Algorithm 2, the Bellman equation becomes  
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This is solved for the weights 
1�Vj

W using least mean square 

(LMS). For this step the dynamics � �
1

, BT  can be unknown 

as they are not needed. 

Note that the policy improvement step based on (43) or 

(45) requires full knowledge of the system dynamics � �
1

, BT . 

This problem is solved by introducing a second neural 
network for the control policy, known as the actor NN [18]. 
Therefore, introduce an actor parametric approximator 
structure   
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where M

Uj
RW �  is the actor NN weights and M is the 

number of hidden-layer neurons. The vector 
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activation function. 

After convergence of the critic NN parameters to 
1�Vj

W  in 

step 1 Algorithm 2, it is required to perform the policy 
improvement in step 2 Algorithm 2 
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To achieve this one may use an LMS algorithm. The weight 
update is therefore  
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where D  is a positive step size and m is the iteration number 

for the LMS algorithm. 

Remark 3. Note that in using two NNs to implement 
Algorithm 2, it is not necessary to know the system matrix T 

in (19). Only information about 
1B  is used to implemented 

Algorithm 2 step 2 using (50). 

VI. SIMULATION  

To illustrate the effectiveness of the proposed approach, 
a simulation example is provided. 

Consider the following linear discrete-time system  
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The open-loop poles are 1445.21 � z and 8445.21  z , 

so the system is unstable. The performance index is defined 
by (10) with Q = 6 and R= 1.  

The reference trajectory is given by 

                            kk rr 7.01  �                                 (52) 

The optimal value kernel matrix P is found by solving (31) 
to be 
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First, we use offline PI Algorithm 1 implemented as in 

(42) and (43). Fig. 1 shows that the P matrix parameters 

converge to their optimal values.  
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Fig. 2 shows that by applying control (43), the system 

becomes stable and the output ky  tracks the reference 

trajectory kr . The optimal control signal input is also shown 

in Fig. 3. 

Next, we use online PI Algorithm 2 implemented as in 
(44) and (45). PE was ensured by adding a small probing 
noise to the control input and reference trajectory. Fig. 4 
shows that the P matrix parameters converge to their optimal 
values. 
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for offline PI Algorithm 1 
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Comparing this P matrix with the 

P matrix, it is seen that 

the online PI Algorithm 2 converges to the optimal 
controller. 

Finally, it is shown that using two NN as in Section V 
allows one compute the optimal value and control online 
without knowing the system matrix T.  

The optimal P matrix for this problem by solving the 

ARE (31) is (53). Optimal control 
k

XKu
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It is known that for the LQT the value is quadratic in 
terms of the augmented state of the system and control is 
linear. Therefore, we select linear activation functions for the 
actor NN and quadratic polynomial activations for the critic 
NN. The approximation of control is given by (48), where 

u
W  the weight vector of actor NN  is  
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The value function is approximated as (46), where 
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weight vector of the critic NN given by  
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That P matrix parameters (53) are related to weights of value 
function as follows  
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 The value function weights converge to 

>

@5001.70281.267284.25
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The control input converge to 

> @0515.00191.12001.0 �� 
u

W  

Comparing value function weights with the P

  matrix, it 

is seen that the proposed algorithm converges to the optimal 
controller. Also the control weights converge to the optimal 
control as expected. 

VII. CONCLUSION 

In this paper, an alternative formulation for the LQT 

problem was proposed. On the basis of this formulation, the 

LQT problem was solved by using a LQT ARE. The ARE 

equation is solved by using a reinforcement learning 

algorithm implemented on an actor-critic structure online 

and without requiring the drift system dynamics or the 

command generator dynamics. The simulation example 

confirmed the validity of the tracking scheme.   
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