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c’* remf‘ J rej number s ysrem is{R'{ with two symbols, o«c and — o0, adjoined,
“and with the obvipus ordering. If —o0 < a < b < oo, the interval [a, b] and the

segment (a, b) are defined to be Hggfg S 400 'E'»ﬁ@ Va
[a, b] = {x: a-::x-a:é?@'h{ab] {x:a <x <b).

We also write 3' COMP%(
[a b) = {x:a <x <b}, {“b]_{xa{x{b%wguc!m

If Ec[—o, o] and E # &, the least upper bound (supremum) and great-
est lower bound (infimum) of E exist in [ — o0, c0] and are denoted by sup E and
inf E.

Sometimes (but only when sup E € E) we write max E for sup E.

The symbol
| fX—;YWwaUgD; X!

means that f is a function (or mapping or transformation) of the set rﬁmto the set

Y; 1e., f assigns to each x € X an element f(x) e Y. f Ac X a
image of A and the inverse image (or pre-image) of B are

f(A) = {y: y = f(x) for some x € A},
f7(B) = {x:f(x) € B}. '

Note that f ~!(B) may be empty even when B # .

The domain of fis X. The range of fis f(X).

If f(X)=Y,fissaid to map X onto Y.

We write f ~ (), instead of '~ '({y}), for every y € Y. If f ~(y) consists of at
most one point, for each y € Y, fis said to be one-to-one. If f is one-to-one, then

£~ 'is a function with domain f(X) and range X.
If 1 X*—» and_,g < X, it is customary to write sup,.g f{x) rather
than sup f(E). " TR

Iff: X— Yand g: Y— Z, the compos:te funcnon g of 3(' deﬁned by

the formula
(g o f)x)=glf {xn (x E E Iq)

(a) A collection 7 of subsets of a set X is said to be a topology in X if © has
the following three properties: )(-z.]dt b, f‘:'& o R M 0N

(i) Jerand X e =. f‘i‘?’r{u},{a,b}, X} %PPV\ b.g_a

m) fVetfori=1,....n,then V., n Vo, n---n V, e ﬁ'n.




(iii) If {V,} is an arbitrary collection of members. of 7 (finite, countable, or
uncountable), then | J, V, € 7.

(b) If 7 is a topology in X, then X is.called a topological space, and the
members of t are called the open sets in X.

(¢) If X and Y are topological spaces and if fis a mapping of X into Y, then
fis said to be continuous provided that £~ (V) is an open set in X for -
everyopenset Vin Y.

1.3 Definition

(a) A collection 9N of subsets of a set X i1s said to be a g-algebra in X if M
has the fnlI?m g pmpertms

s
(11) If Ae A e I, where A€ is the complement of A4 relative to

(111) IFA =X, A,andif 4, e Mforn=1,2,3,...,then 4 € .

(b) If M is a o-algebra in X, then X is called a measurable space, and the
members of M are called the measurable sets in f‘ v ﬂ)fvf

(c) If X is a measurable space, Y is a topological space, ¢and fis a mapping
of X into Y, then f is said to be measurable provided that f (V) is a
measurable set in X for every open set V in Y.

1.4 Comments on Definition 1.2 The most familiar topological spaces are the
metric spaces. We shall assume some familiarity with metric spaces but shall give
the basic definitions, for the sake of completeness.

A metric space is a set X in which a distance function (or metric) p is defined,

with the following properties: f\ " )( x)(,_.:,T.R‘

(@) 0< p(x, y) < o for all xand y € X.
{b] p(x, y) = 0ifand only if x = y.

() p(x,y)=p(y,x)forall xand y € X.

(d) plx, y) < p(x, z) + p(z, y) for all x, y,and z € X.

Property (d) 1s called the triangle inequality.

If xeX and r > 0, the open ball with center at x and radius r is the set
1} € X: P{’C, ) < I‘} i )

If X 1s a metric space and if t is the collection of all sets £ = X which are
arbitrary unions of open balls, then 7 is a topology in X. This is not hard to
verify; the intersection property depends on the fact that if x € B, n B,, where
B, and B, are open balls, then x is the center of an open ball B< B, n B,. We
leave this as an exercise.
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open segments (a, b). In the plane R?, the open sets are those which are unions of
open circular discs.

Another topological space, which we shall encounter frequently, is the
extended real line [ — oo, oc]; its topology i1s defined by declaring the following
sets to be open: (a, b), [ — 20, a), (a, oo ], and any union of segments of this type.

1.6 Comments on Definition 1.3 Let ) be a g-algebra in a set X. Referring to
Properties (i) to (ii1) of Definition 1.3(a), we immediately derive the following

facts.

(@) Since J = X° (i) and (i1) imply that ¢ € 9.

(b) Taking A,,; = A,,, ="'+ = & in (iii), we see that|4, uu
eMif A, eMfori=1,...,n

(c) Since

Uy oo
fn- (D). Gose

M is closed under the formation of countable (and also finite) intersec-
tions.
(d) SinceA—B=B"n A, wehave A — BeMif 4 e Mand B € M.

The prefix o refers to the fact that (i) 1s required to hold for all countable
unions of members of 9. If (i) is required for finite unions only, then M is called
an algebra of sets.

1.7 Theorem Let Y and Z be topological %}ac .
UOUS. - L\n -~

.\
(a) If X is a topological space, if f: @f& co
h: X — Z is continuous. 5
(b) If X is a measurable space, if f: X —\¥¥is
h: X — Z is measurable. )

Proor If V is open in Z, then g~ '(V) is open in Y, an

[
h='(V)=f"Yg (V).
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If fis measurable, it follows that h~'(V) is measurable, proving (b). /1
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1.8 Theorem Let u and v be real measurable functions on a mxft#ag‘abfe space
X, let ® be a continuous mapping of the plane into a top&fog:cc@pac Y -éﬂﬁ

define

h(x) = ®(u(x), v(x))
forx e X. Thenh: X— Y is measurable.

*
PrOOF Put f(x) = (u(x), v(x)). Then f maps X into the plane. gmce h fD °
Theorem 1.7 shows that it is enough to prove the measurability of f. T

If R is any open rectangle in the plane, with sides parallel to
then R is the cartesian product of two segments I, and gi ,and £ad€

fTUR) = () N oo (),

which is measurable, by our assumption on u and v. Every open set V in the
plane i1s a countable union of such rectangles R;, and since

f_l'[V) =f_1(6 Rz‘) e ‘C)f_l(RI)s

i=1

——

f~Y(V) is measurable. /I
1.9 Let X be a measurable space. The following propositions are corollaries of
Theorems 1.7 and 1.8: tl(:.} 4 ﬂ(’( ,
(@ If f= u+iv, where u and v are real measurable functions Mﬂft fisa _
complex measurable function on X, :F(’Jf). & €L6e) 19('#)'5
This follows from Theorem 1.8, with ®(z) = z. /== /7 /
) If f=u+ ivis a complex measurable function on X, then u,v, and | f | are real
measurable functions on X. uf!); e g_;} B
This follows from Theorem 1.7, wnh g(z) = Re (z2), Im (2), | z].

f-' {c]? If fand g are complex measurable functions on X, then so are [ + g and fg.
For real fand g this follows from Theorem 1.8, with

2 ) D, t)=s+1 .

and P(s, 1) = st. The complex case then follows from (a) and (b).
(d) If E_is a measurable set in X and if

if xe E —

1
XE(""‘)={0 if x ¢ E

thon v 1o a4 woaceurahls fimeatrian
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This is obvious. We call yy the characteristic function of the set E. The
letter y will be reserved for characteristic functions throughout this book.
(e) If fis a complex measurable function on X, there is a complex measurable
function o« on X such that |a| = 1land f=a|f].

Proor Let E = {x: f(x)= 0}, let Y be the complex plane with the origin
removed, define @(z) = z/|z| for z € Y, and put

a(x) = o(f(x) + x(x)) (x € X).

If xeE, alx)=1;if x ¢ E, a(x)=f(x)/| f(x)|. Since ¢ is continuous on Y
and since E is measurable (why?), the measurability of a follows from (¢), (d),
and Theorem 1.7. /1]

We now show that g-algebras exist in great profusion.

1.10 Theorem If % is any collection of subsets of X, there exists a smallest
a-algebra IMM* in X such that F < IN*.

This 9N* 1s sometimes called the o-algebra generated by # . —

ProOF Let Q be the family of all g-algebras 9 in X which contain & . Since
the collection of ali subsets of X is such a g-algebra,  is not empty. Let IN*
be the intersection of all M € Q. It is clear that % < IN* and that IM* lies in
every o-algebra in X which contains #. To complete the proof, we have to
show that 9* is itself a g-algebra.

If A, eM*forn=1,23,...,and if M e Q, then 4, € M, so | ] 4, € M,
since M is a g-algebra. Since | | 4, € M for every M € Q, we conclude that
) A, € M*. The other two defining properties of a g-algebra are verified in
the same manner. /11

1.11 Borel Sets Let X be a topological space. By Theorem 1.10, there exists a
smallest o-algebra 2 in X such that every open set in X belongs to 4. The
members of 4 are called the Borel sets of X.

In particular, closed sets are Borel sets (being, by definition, the complements
of open sets), and so are all countable unions of closed sets and all countable
intersections of open sets. These last two are called F_’s and Gj's, respectively,
and plav a considerable role. The notation is due to Hausdorff The letters F and



G were used for closed and open sets, respectively, and o refers to union (Summe),
0 to intersection (Durchschnitt). For example, every half-open interval [a, b) is a
G; and an F_ in R".

Stnce 4 is a g-algebra, we may now regard X as a measurable space, with the
Borel sets playing the role of the measurable sets; more concisely, we consider the
measurable space (X, #). If f: X— Y is a continuous mapping of X, where Y is
any topological space, then it is evident from the definitions that /= (V) € # for
every open set V in Y. In other words, every continuous mapping of X is Borel
measurable.

Borel measurable mappings are often called Borel mappings, or Borel func-
tions.

1.12 Theorem Suppose M is a o-algebra in X, and Y is a topological space.
Let fmap X into Y.

(a) If Q is the collection of all sets E = Y such that {~Y(E) € M, then Q is a
o-algebra in Y.

(b) Iffis measurable and E is a Borel set in Y, thenf ~'(E) € M.

() If Y =[—o00, 0] and f *((a, 20]) € M for every real a, then f is measur-
able.

(d) If f is measurable, if Z is a topological space, if g: Y— Z is a Borel
mapping, and if h = g = f, then h: X — Z is measurable.

Part (c¢) is a frequently used criterion for the measurability of real-valued
functions. (See also Exercise 3.) Note that (d) generalizes Theorem 1.7(b).

PROOF {a) follows from the relations

S (Y)=X,
fFUYY -A) =X —f YA,
and T A A U )=f"YA)uf YAy v -

To prove (b), let Q be as in (q); the measurability of f implies that Q
contains all open sets in Y, and since Q is a g-algebra, Q contains all Borel
setsin Y.

To prove (c), let Q be the collection of all E = [ — o0, o] such that
f~YE) e M. Choose a real number «, and choose a, < a so that o, — « as
n— oo, Since (x,, c0] € Q for each n, since

[—o0,x) = G [—o0, 0,]= G (s 007"
n=1 n=1

arrd c1rveses Fal chmtrre that T 360 a3 e alevalra 11 comes Fhat T o crm sl = 03 Tha o0 v e
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1s then true of
(o, B) =[—o00, B) N (a, 0].

Since every open set in [ —oo, oo] is a countable union of segments of the

above types, Q contains every open set. Thus f1s measurable.
To prove (d), let V < Z be open. Then g (V) is a Borel set of Y, and

since
h='(Vy=f"Yg " (V)
(b) shows that h~ (V) € M. I/
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1.8 Theorem Let u and v be real measurable functions on a mxft#ag‘abfe space
X, let ® be a continuous mapping of the plane into a top&fog:cc@pac Y -éﬂﬁ

define

h(x) = ®(u(x), v(x))
forx e X. Thenh: X— Y is measurable.

*
PrOOF Put f(x) = (u(x), v(x)). Then f maps X into the plane. gmce h fD °
Theorem 1.7 shows that it is enough to prove the measurability of f. T

If R is any open rectangle in the plane, with sides parallel to
then R is the cartesian product of two segments I, and gi ,and £ad€

——

fTUR) = () N oo (),

which is measurable, by our assumption on u and v. Every open set V in the
plane i1s a countable union of such rectangles R;, and since

f_l'[V) =f_1(6 Rz‘) e ‘C)f_l(RI)s

i=1

f~Y(V) is measurable. /I
1.9 Let X be a measurable space. The following propositions are corollaries of
Theorems 1.7 and 1.8: tl(:.} 4 ﬂ(’( ,
(@ If f= u+iv, where u and v are real measurable functions Mﬂft fisa _
complex measurable function on X, :F(’Jf). & €L6e) 19('#)'5
This follows from Theorem 1.8, with ®(z) = z. /== /7 /
) If f=u+ ivis a complex measurable function on X, then u,v, and | f | are real
measurable functions on X. uf!); e g_;} B
This follows from Theorem 1.7, wnh g(z) = Re (z2), Im (2), | z].

f-' {c]? If fand g are complex measurable functions on X, then so are [ + g and fg.
For real fand g this follows from Theorem 1.8, with

2) D(s, 1) = s + ¢
and ®(s, 1) = st. The mmplex case then follows from (a) and {b
d IfE.i ameaaumbfe set in X and if O/a’/ /5’97//
' g = TV
- }J { ) =/ f_ A&vﬁ -

s
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This is obvious. We call y; the {:ha\rrg.%noﬁpéuﬂn !f
letter ¥ will be reserved for characteristic functions throughout this bnnk
(e) If f is a complex measurable function on X, there is a complex measurable

functiowwen X such that || = land f=a|f]. {?fl\ _ﬁ(

—4 x o

Py e T
I X)=©

:f(x)= 0}, let Y bé the complex plane with the origin

e{z]=zf|z|fnrzelf',and put ),] &ég
M@ a(x) = (£ (x) + 2(x) =(x € XFLE 9(¢_ E

| ﬂ o
If xe E, alx)=1; if x ¢ &XM{IJL Since ¢ 18 c(n Lnunus on Y

and since E is measurable (why?), the measur;zlg\ﬁy of a follows from (c), (d),
and Theorem 1.7. . = 11/
ors 7-e'%

We now show that g-algebras exist in great profusion. %
- %) =A0) JH0) _

1.10 Theorem If % is any collection of subsets of X, there exists a smallest

ag-algebra M* in X such that F < iﬂ;\

This IN* 1s sometimes called the Jgigebra ﬁenemred by #.

Proor Let Q be the family of all g-algebras Y1 in X which contain & . Since
the collection of all subsets of X is such a g-algebra,  is not empty. Let IN*
be the intersection of all M € Q. It is clear that # < IM* and that 9N* lies in
every o-algebra in X which contains #. To complete the proof, we have to
show that 9* is itself a g-algebra.

If A, eM*forn=1,23,...,and if Me Q, then 4, € M, so | ] 4, € M,
since M is a og-algebra. Since U A, € M for every M € , we conclude that
| ) 4, € M*. The other two defining properties of a o-algebra are verified in
the same manner. Vi

1.11 Borel Sets Let X be a topological space. By Theorem 1.10, there exists a
smallest c-algebra 2 in X such that every open set in X belongs to #. The
members of 4 are called the Borel sets of X.

In particular, closed sets are Borel sets (being, by definition, the complements
of open sets), and so are all countable unions of closed sets and all countable
intersections of open sets. These last two are called F_'s and Gj's, respectively,
and plav a considerable role. The notation is due to Hausdorff The letters F and



G were used for closed and open sets, respectively, and o refers to union (Summe),
0 to intersection (Durchschnitt). For example, every half-open interval [a, b) is a
Gz and an F_ in R".

Stnce 4 is a o-algebra, we may now regard X as a measurable space, with the
Borel sets playing the role of the measurable sets; more concisely, we consider the
measurable space (X, #). If f: X— Y is a continuous mapping of X, where Y is
any topological space, then it is evident from the definitions that /= (V) € £ for
every open set V in Y. In other words, every continuous mapping of X is Borel
measurable.

Borel measurable mappings are often called Borel mappings, or Borel func-
tions.

1.12 Theorem Suppose M is a r-algebra in X, and Y is a topological space.
Let fmap X into Y.

(a) If Q is the collection of all sezs E < Y such that ~Y(E) € M, then Q is a
o-algebra in Y.

(b) Iffis measurable and E is a Borel set in Y, thenf ~'(E) € M.

() If Y =[—o00, o] and f *((, 20]) € M for every real a, then f is measur-
able.

(d) If f is measurable, if Z is a topological space, if g: Y— Z is a Borel
mapping, and if h = g = f, then h: X — Z is measurable.

Part (¢) is a frequently used criterion for the measurability of real-valued
functions. (See also Exemise 3) Note t@at (d) generalizes Theorem 1.7(b).

PROOF {a ) follows frﬁgn% the re ati?l( ﬁj FZ’,;J: Cm u{’ ( A
)&
ey

fiy)=x

Y —a)=X f"{A}, AG.S‘Z
and FHA U A0 )=f A U f Ay U
To prove (b), let Q be as in (q); the measurablhty of f1 1mp s tha
contains all open sets in Y, and since Q 1s a algebr.m Borel

setsin Y. € g__(}__ C'-.SL, HEB’

To prove (c), let Q be th cullectmn of all Ec[— oc:
f~YE) e M. Choose a real number «, and choose a, < a so that a,— « as
n— oo, Since (x,, c0] € Q for each n, since

[—o0,0) = CJ [0, a]= G (s 0T
n=1 n=1
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1s then true of
(o, B) =[—o00, B) N (a, 0].

Since every open set in [ —oo, oo] is a countable union of segments of the

above types, Q contains every open set. Thus f1s measurable.
To prove (d), let V < Z be open. Then g (V) is a Borel set of Y, and

since
h='(Vy=f"Yg " (V)
(b) shows that h~ (V) € M. I/
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1.13 Definition Let {a,} be a sequence in [ — o0, oo], and put

by =sup {ay, Oy Biynsee} (k=1,2.3...) (1)
and
B =in[ {blﬂ bz, ba, ...}. {2)
We call g the upper limit of {a,}, and write
B = lim sup a,. (3)

The following properties are easily verified: First, b, = b, = b; =", so
that b, — B as k— oo ; secondly, there is a subsequence {a, } of {a,} such that
a, — P as i— oo, and f is the largest number with this property.

The lower limit 1s defined analogously: simply interchange sup and inf in
(1) and (2). Note that

lim inf @, = —lim sup (—a,). (4)
L Bl » ] n—=+ oo
If {a,} converges, then evidently
lim sup a, = lim inf @, = lim a,. CWI’V‘} ? ) (5)
n—+oo n=+an n—* a0 .

Suppose {f,} is a sequence of extended-real functions on a set X. Then
sup f, and lim sup f, are the functions defined on X by

(sup f.,)(x] = sup (), 6)
(Iim supj;,){x] = lim sup (f(x)). (7)

If
f(x) = lim f(x), (8)

the limit being assumed to exist at every x € X, then we call f the pointwise
limit of the sequence {f, }.

1.14 Theorem If f,: X — [ — o0, o0] is measurable, forn =1, 2, 3, ..., and
g=supf,, h=limsupf,

nz1 n— o



then g and n are measurapie.

PROOF g !((«, oo]@u,‘f: « /7 (e, 2©]). Hence Theorem 1.12(c) implies that
g 1s measurable. The same result holds of course with inf in place of sup, and
since

h = inf {sup fl},
k=1 Lizk

it follows that h is measurable. I/

Corollaries

(a) The limit of every pointwise convergent sequence of complex measurable
functions is measurable.

(b) Iffand g are measurable (with range in [ — o0, «0]), then so are max {f, g}
and min {f, g}. In particular, this is true of the functions

= max £,0} and f~ = —min {f, 0}.
.ﬁ-n-F f o o e}'
1.15 The above functio and are call the positive and negative parts of f.
We have |f|=f" + /" , a standard representation of f as a
difference of two nonne fur{ cms w1th a certain minimality property:

’ﬁ(’:n) Vac

Proposition If f = q—hql(}andhzﬂ thenf* <gandf~ < h.

PROOF f < g and 0 < g clearly implie [ max {f,0} <g. /1l

. , ,ZuEfxé Dy O IF Jo950 then
Simple Fun ions ', ﬂ.} D;ﬁ%(g (E)IHJ l}' qu) o ﬂhhﬁﬁm'}ﬂq

1.16 Definition A complcx function s on a measurable spaoe: X whose range
consists of only finitely many points will be called a simple function. Among
these are the nonnegative simple functions, whose range i1s a finite subset of
[0, o0). Note that we explicitly exclude oo from the values of a simple func-
tion.

If ay, ..., a, are the distinct values of a simple function s, and if we set

A; = {x: s(x) = a;}, then clearly 8

s= ) & Xa>
i=1

X

where v, is the characteristic function of 4., as defined in Sec. 1.9(d).



It is also clear that s is measurable if and only if each of the sets A; 1s

measurable. !
ne n_ﬁgamﬂ
‘/”_\\ N

1.17 Theorem Let f: X — [0, oo] be measurable. T here exist simple measur-

able functions s, on X such that Pn'; v I'S{ — m \\'D

{{'I] {}SSI ESzﬂ"' Ef
(b) s,(x)— f(x)as n— o, for gvery x € X.

S

ProorF Put é, =27" To%ahgi?fositive integer n and each real number ¢ cor-
responds a unique integer k = k,(¢) that satisfies ké, <t < (k + 1)d, . Define

()0, f0<t<n
"”'{ if n<t< oo M)
Each ¢, 1s then a Borel function on [0, c0],
t—o, <o)<t if0<t<n, (2)

O0<gp, <@, <<t and ¢,t)—=t as n— oo, for every te [0, co]. It
follows that the functions

Sy =@nof 3)
satisfy (a) and (b); they are measurable, by Theorem 1.12(d). e

Elementary Properties of Measures
1.18 Definition

(@) A positive measure 1s a function y, defined on a o-algebra 91, whose range
is in [0, oc] and which is countably additive. This means that if {4,} is a
disjoint countable collection of members of IR, then -

7 @ﬁl 139015’\*

To avoid trivialities, we shall also assum that u(A) < oo for at least one
A € IR.
(b) A measure space is a mcasurable space whic hag a posﬂwe measure
defined on the g-algebra of its measurable sets.
(¢) A complex measure is a complex-valued countably additive function
defined on a o-algebra.

(1)

>< Note: What we have called a positive measure is frequently just called a
measure: we add the word “ positive ” for emphasis. If u(E) = 0 for every E € IR,



then u 1s a positive measure, by our definition. The value oc is admissible for a
positive measure; but when we talk of a complex measure u, it is understood that
u(E) is a complex number, for every E € 9. The real measures form a subclass of
the complex ones, of course.

1.19 Theorem Let pu be a positive measure on a o-algebra . Then

_ ug AL ) AP
(a) u(@)=0. Y Ly 4?} y

(b) A, & - O A)=uA)+- +uA)ifA,,..., A, are pairgise disjoint
_ members of IN.
= T implies p(A B)if Ae M, Be M.
LX) WA= WA) asn—0 if A = i1 An, An € M, and

M’? A ':E“,I-—-L-\C)q AjcA,c Ay, B:A[j(&_
0 i iy S N(B): (H)+ ( /‘})
“ale) M@-—*;&(A)asn-—rmgle= n=1 A,.,A..eiﬂt,’% EM(B-A)
PHUQ :[ﬂ }) A, DA, DAy TR
’ XAl

o
=y R o ;ﬁ ) 5
ﬂllﬂr\)* L nd',lx ) is finite. ) f?\ =
( ﬂ*‘?]:ﬁ% c 4&’_*9? /B
As the proof will show, these properties, with the exceptio (¢), also hold
for complex measures; (b) 1s called finite add%iry; (c)1s called monotonicity.
'R

P) = fh)=0 Visy

20 M@)=r®o
(@) Take A € M so that fi(4) sDgo, and rJake A; = A and Bfly =" =

& in 1.18(1). " File Yam o .
(b) TakeA,,, = A,{q P/ Q%ﬁﬁ 1}13(1%}{(Af) 3 )+5= t)
(¢) Since B=A u (B — A) and A n (B — A) = J, we/see that (b) implies
HB) = u(A) + (B — A) = p(A). '
(d) Put By=A,,and put B,=A,— A, _,forn=2,3,4,.... Then B, € I,
U+ UB,,and 4 =), B;. Hence

PROOF

Now (d) follows, by the definition of the sum of an infinite series.
(¢) PutC,=A, — A,. ThenC,=cC,c Cy -+,

wC,) = u(Ay) — p(4,),
x A, — A =] C,, and so (d) shows that

HA,) — (A) = (A, — A) = lim x(C,) = p(A4,) — lim p(A4,).

- ey s & ]



This implies (e). /I

1.20 Examples The construction of interesting measure spaces requires some
labor, as we shall see. However, a few simple-minded examples can be given
immediately:

(@) For any E = X, where X is any set, define u(E) = oo if E is an infinite set,
and let u(E) be the number of points in E if E is finite. This u is called the
counting measure on X.

(b) Fix xo € X, define wE)=1 if xo € E and w(E) =0 if xo ¢ E, for any
E < X. This g may be called the unit mass concentrated at x,.

(c) Let u be the counting measure on the set {1, 2, 3,...},let A, = {n,n + 1,
n+2,...). Then () 4,=& but p(4,)= oo for n=1, 2, 3, .... This
shows that the hypothesis

WA,) < o

is not superfluous in Theorem 1.19(e).

)'%?3(’; ey 4] i
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Integration of Positive Functions
In this section, 9N will be a ¢-algebra in a set X and u will be a positive measure
on M.

1.23 Definition If s: X — [0, o0) is a measurable simple function, of the form

W " 43 1
= Ar:*&({'{l}) -
where o, ..., &, are the distinct valdes of s (compare Definition 1. Iﬁcj.i and if
E € M, we define SSJ}‘ ol )'TJ\ A » 2"(&})
il ;

r 7/9
Jls du = E o; u(A; N E). ; (2)
E i=1 _

Y

\ *!}'{{AJ
The convention 0 - oc =0 15 used here; it may happen that «;, = 0 for some i
and that u(4; n E) = 0.

Iff: X — [0, o] is measurable, and E € YN, we define

ffdﬁ—supjsdn, (3)
0{3 -
the supremum being taken over all 51mple measurable functions s such that

I
The left member of (3) is called the Lebesgue integral of f over E, with
respect to the measure u. It is a number in [0, oc ], _—
Observe that we apparently have two definitions for [, f du if fis simple,
namely, (2) and (3). However, these assign the same value to the integral,
since f 1s, in this case, the largest of the functions s which occur on the right
of (3).

1.24 The following propositions are immediate consequences of the defimitions.
The functions and sets occurring in them are assumed to be measurable:

(@) If0<f<g,then [; fdu < [pgdp. o
) fAcBandf=0,then |, fdu< s fdp.

(c) Iff=0andcisaconstant,0 < c < o0, then d )
—

.[cfdyzcjfdp.-' X
E E



(@) Iff(x)= Oforail x € E, then g [ du = 0, even if W(E) = 0.
(e) IfuE)=0, then |¢ f du =0, even if f(x) = cc for every x € E.
(f) Iff= 0, then [g fdu= [x xzf dp.

This last result shows that we could have restricted our definition of integra-
tion to integrals over all of X, without losing any generality. If we wanted to
integrate over subsets, we could then use (f) as the definition. It is purely a
matter of taste which definition is preferred.

One may also remark here that every measurable subset E of a measure
space X is again a measure space, in a perfectly natural way: The new measur-
able sets are simply those measurable subsets of X which lie in E, and the

measure is unchanged, except that its domain is restricted. This shows again that
as soon as we have integration defined over every measure space, we automati-

cally have it defined over every measurable subset of every measure space.

1.25 Proposition Let s and t be nonnegative measurable simple functions on X.
For E € IR, define

o(E) = .f s du. (1)
E

Then ¢ is a measure on 9. Also

J{S+I}dp=fsdp+jtdp. (2)

(This proposition contains provisional forms of Theorems 1.27 and 1.29.)

ProoF If s is as in Definition 1.23, and if E|, E,, ... are disjoint members of
M whose union is E, the countable additivity of u shows that

o(E) = E oy u(4; N E) = ; o ;lﬂ{-‘d*i N E,)

i=1

=2 Y o uA; N E)= ) o(E,).

r=1i=1 r=1

Also, () = 0, so that ¢ is not identically co. >&

L Sanp 4 4 FEREOEE [F s | (TR ST, | Fa , MERPER T, (et A N e e ol e o~ et Al
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B; = {x:t(x) = B;}. f E; = A, n B;, then

J‘ (s + 1) dp = (o; + Bu(E)

and J sdu+ ’[ tdp = oy W(E;j) + B W(E;).

Thus (2) holds with E;; in place of X. Since X is the disjoint union of the sets
E; (1 <=i<n, 1 <j<m), the first half of our proposition implies that (2)
holds. /1

We now come to the interesting part of the theory. One of its most remark-
able features is the ease with which it handles limit operations.

1.26 Lebesgue’s Monotone Convergence Theorem Let | f,} be a sequence of
measurable functions on X, and suppose that

(@ 0<fi(x) <folx)< - < oo forevery x € X,
(b) fAx)— f(x) asn— «, for every x € X.

Then [ is measurable, and

J‘f,,d,u—rj.fdu as n— oo,
b X
PROOF Since | f, < | f,+1, there exists an « € [0, o0 ] such that

jﬁd}:—-r& as n— oo, (1)

By Theorem 1.14, f'is measurable. Since f, <f, we have | f, < | f for every n,
so (1) implies

. < f fdu. @
:

Let s be any simple measurable function such that 0 <s <f letc be a
constant, 0 < ¢ < 1, and define

E, = {x:f(x) = cs(x)} (n=1,2,3 :.) (3

Each E, is measurable, E, c E;c E;=---, and X =| ) E,. To see this
equality, consider some x € X. If f(x) =0, then x € E,; if f(x) > 0, then
cs(x) < f(x),since ¢ < 1; hence x € E_ for some n. Also



Jﬁdﬁzj.f,.d#z:cjsdu n=123...) (4)
X En En

Let n— oo, applying Proposition 1.25 and Theorem 1.19(d) to the last inte-
gral in (4). The result is

a=c J.s dp. (5)
X
Since (5) holds for every ¢ < 1, we have
o= fs du (6)
X
for every simple measurable s satisfying 0 < s < f, so that
x> ff du (7)
X
The theorem follows from (1), (2), and (7). /1]

1.27 Theorem If j,: X — [0, o0] is measurable, forn=1,2,3,...,and
=Y f(x (xeX), (1)
n=1

then
J;f du = ;l Lfn dp. 2

ProOF First, there are sequences {s;}, {s/} of simple measurable functions
such that si—f, and s'—/f,, as in Theorem 1.17. If s, =35, + 5!, then
s;— f1 + />, and the monotone convergence theorem, combined with Propo-
sition 1.25, shows that

J.U‘] +fz)d#=jf1 dﬂ"’ffz dy. (3)
X X X

Next, put gy =/, + - + fv. The sequence {gy} converges monotoni-
cally to f, and if we apply induction to (3) we see that

N

fgy du= Y ffu du. (4)



JX

Applying the monotone convergence theorem once more, we obtain
the proof is complete.
¥ P 91@C 14
1.

_ If we let u be the counting measure on a muntahle set, Theorem Is a
statement about double series of nnnnegatwe real numbers (which can of'course

be proved by more elementary means) <°{ Se 1§ oY o aﬁjgﬁ bo..,]
3 ;K >/'»: Qq xelD)

;= Dforiand j=1, 2, 3
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Integration of Positive Functions

In this section, 9t will be a ¢-algebra in a set X and u will be a positive measure
on M.

1.23 Definition If s: X — [0, oc) 1s a measurable simple function, of the form

- L;%Ims {1}

where «,, ..., a, are the distinct values of s (compare Definition 1.16), and if
E € M, we define

fs du= Y a,uA, r E) @)
sdu=

i=1

The convention 0 - oc = 0 is used here; it may happen that «; = 0 for some 7
and that u(4; N E) = .
If f: X — [0, oo] is measurable, and E e 9N, we define

f Jdp = sup (S du, 3)
E

oE

the supremum being taken over all simple measurable functions s such that
0<s<f

The left member of (3) is called the Lebesgue integral of [ over E, with
respect to the measure . It 1s a number in [0, o0].

Observe that we apparently have two definitions for [, f dyu if f is simple,
namely, (2) and (3). However, these assign the same value to the integral,
since f is, in this case, the largest of the functions s which occur on the right
of (3).

1.24 The following propositions are immediate consequences of the definitions.
The functions and sets occurring in them are assumed to be measurable:

(@ If0<f<g,then|g fdu <|ggdu
(b) IfAc Bandf=0,then [, fdu< s fdu.

(¢) Iff=0andcis aconstant,0 < ¢ < oo, then

fcfdy = J‘fa’p.-'



(d) Iff(x) = 0forall x € E, then ¢ fdu = 0, even if l(E) = co.
(¢) If W(E) = 0, then |g fdp =0, even if f(x) = oo for every x € E.
(f) Iff=0, then [ fdu= [x xef du

ON

This last result shows that we could have restricted our definition of integra-
tion to integrals over all of X, without losing any generality. If we wanted to
integrate over subsets, we could then use (f) as the definition. It is purely a
matter of taste which definition is preferred.

One may also remark here that every measurable subset E of a measure
space X 1Is again a measurc space, in a perfectly natural way: The new measur-
able sets are simply those measurable subsets of X which lie in E, and the
measure 1§ unchanged, except that its domain 1s restricted. This shows again that
as soon as we have integration defined over every measure space, we automati-
cally have it defined over every measurable subset of every measure space.

1.25 Proposition Let s and t be nonnegative measurable simple functions on X.
For E € MM, define
4 S60)=

i=£§du. ~ - %ﬁ) (1)
E

Then @ is ameasure on IN. Also —

I{s+r]dp=fsdﬂ+ftdu. (2)
X X X

(This proposition contains provisional forms of Theorems 1.27 and 1.29.)

Sp o
Proor If s is as in Definition 1.23, and if E,. E,. ... are disjoint members of

IR whose union UE,t ountable aeiditivity of u shows that
. UE

! !. n ”;UE?‘ n a0
ﬁﬁ'{@ = 2 o (A, ﬁ@ = ; & Z. wAd; N E,) N

w
. h.ﬂE. - '
3 3 A, ,4) E,)= ) @(E,). (S:zﬁ:, 35 3
e r=.-l-j h‘ :

Also, o() = 0, so that ¢ is not identically oC.

A . ;
:Ssé)u :‘z‘*. H(Qfﬂﬂ l)
I\{ext, 'lqt@bqel as before, ]et ,&'1_, .. be the distinct values gf L, and le¢



D; = xi1x)=p;;. It £, = A; ¥ B;, then

'Sft'i‘@ltﬁ "X J-{s + 1) d@i + Bu(E ;)

Zﬂ UiQ(B.

1 7y 7
and f sdp + r t dp = o u(E;j) + B (E,). 55{'*— f’l'jt
Ey JEi; C—.' e

Thus (2) holds with E;; in place of X. Since X is the disjoint union af in 5'623 l?_
E; (1 < :‘ Jj £ m), the ﬁrst half of our p*opos:ttmn implies that (2)
holds. (g y_ﬁ

St 17 gﬁ i3

We now come to the interesting part of the theory. One of its most r arkt 17
able features is the ease with which it handles limit operations.

1.26 Lebesgue’s Monotone Convergence Theorem Let {f,] be a sequence of
measurable functions on X, and suppose that

(@ 0<fix)<fix)<-- < ooforevery x € X, m;}#t I)"’)‘a«j:nf}’}’
(b) fx) »fix)asn » o0, for cvery x € X. o
= oprEETT
4] I

Then [ is measurable, and
_[fndﬂ—*".fd}l as n— o.
X b

PROOF Since | f, < [ f, +1, there exists an « € [0, oo Jsuch that .

v[f,,dp—m ikl (1)

By Thfenrelm 1.14, f is measurable. Since f, < f, we have | f, < [ f for every n, —
so (1) implies Lﬁ#ﬂb{) <§_,,1}£ (?() - 1 L;{,,(K)
s o [ 73 wi " "
Pff==| rau @)
" X KJ o

Let s be any simple measurable function such that 0 < s <f, let ¢ be a

constant, 0 < ¢ < 1, and define { Ce m-]) P ) l}ié/

—

E, = {x: f(x) = cs(x)}T " (n .2 3. (3)
Each E, is measurableYE, « E,c E;<=---, and X =] E,. To see this
equality, consider some x € X. If f(x) =0, then x e El, if f(x) >0,
es(x) < f(x),since ¢ < 1; hence x € E, for some n. Also x

" [ ™



Jxﬁ'd“EJﬂ’d“?fCJSd“ rn=123...) (4)

e E
(onE, Eﬂ >cS)
Let n— oo, applying Prop and Theorem 1.19(d) to the last inte-

gral in (4). The result is

B.ﬁ L~ SSC;}’\ (5)

~5,
W <&

a:zfs du (6)
x

Since (5) holds for every ¢ < 1, we hav&

for every simple measurable s satisfying 0 < s < f, so that

x> Lf dn:&hfé;&.‘] M (7)

The theorem follows from (1), (2), and (7). 1/

1.27 Theorem Iff,: X — [0, o] is measurable, forn=1,2, 3, ..., and

109 = ¥ A o w
24 'u-\.. S
then NS

L.r’ dp = Zl qu dy. 2

PROOF First, there are sequences {si}, {s’} of simple measurable functions
such that si—f, and s —f,, as in Theorem 1.17. If s; = s; + s/, then

s;— f1 + /5, and the monotone convergence theorem, combined with Propo-
sition 1.25, shows that

J (fy + 1) du = '[fl du + j f2 dp. 3)
X X X

Next, put gy =f, +- -+ + fy. The sequence {gy} converges monotoni-
cally to f, and if we apply induction to (3) we see that

Lgn i z LJ; dii @ x
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the proof is complete. I
If we let u be the counting measure on a countable set, Theorem 1.27 is a

statement about double series of nonnegative real numbers (which can of course
- be proved by more elementary means):

Corollary Ifa; =0 foriandj=1,2,3,..., then

Z E“ﬁ= E E“
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1.28 Fatou’s Lemma Iff,: X — [0, oo] is measurable, for each positive integer

n, then
J (Iim infj],) du < lim infv[j; dpu. (1) =
X n-=*an n=an X .
Strict inequality can ocgur in {I), see Exerc' X = m’} %
" I
n
ProoF Put Ny %) H}K

}iah? -f l' gi(x) = ?ﬂf Ji(x) : - : :]L\..- f.,g(;?%ﬂ

The:I ink < fi, so that +'{'I n}K}gtxﬂ:h?' KH.; K "y K
’ \ af W 77 <if ~ :.yéxl,{ncmug -
gkdﬂ—Jfkdﬂ k=T, Ut _ii,f .-,m
o X X

Also, 0<g, <g, <---, each g, 1s measurable, by Theorem

gi(x)— lim 1inf f(x) as k — 0,"by Definition 1.13. The monotone conv
theorem shows therefore llt e left side of (3) tends to the left side of

k — o0. Hence (1) follows from (3). /I

1.29 Theorem Suppose f: X — [0, oc] is measurable, and

Gﬁo _HJCA )l) = oE)= Lfdu (E € M) (1)

Then @ is a measure on M, and -

[+~ [£)

for every measurable g on X with range in [0, o0]. -

PrROOF Let E;, Eoy Egy o bé dlSjmnt members whose union i1s E.

Observe that U
E L
e f Yﬁ Xe, f @ 3¢

and that _-;j"-PJ}'\
w{f*:"}*/* J.xaf du, fp(E i xz,f dy. @)

S50 (o d



It now follows from Theorem I.Z?V Eﬂ YA Ej'
P(E)= ) o(E)) (5)
=1

Since @() = 0, (5) proves that ¢ is a measure.

Next, (1) shows that (2) holds whenever g = y for some E € M. Hence
(2) holds for every simple measurable function g, and the general case follows
from the monotone convergence theorem. /1]

Remark The second assertion of Theorem 1.29 is sometimes written in the

form
2 do =fdp. 5 (6)

We assign no independent meaning to the symbols d¢ and dy; (6) merely
means that (2) holds for every measurable g = 0.

Theorem 1.29 has a very important converse, the Radon-Nikodym
theorem, which will be proved in Chap. 6.

Integration of Complex Functions

As before, u will in this section be a positive measure on an arbitrary measurable
space X.

1.30 Definition We define I'(u) to be the collection of all complex measur-

able functions fon X for which E ) —
X Lo, - [
r1f1d,u-=:oc:~f. ‘Ot"HH: ﬂ-’ib\'
JX m _-:Ul . -

Note that the measurability of fimplies that of | f |, as we saw'in Propo-
sition 1.9(b); hence the above integral is defined.

The members of L'(u) are called Lebesgue integrable functions (with
respect to u) or summable functions. The significance of the exponent 1 will
become clear in Chap. 3. - —

Ui
1.31 Definition If f = u/+ iv-where u and v are real measurable functions on
X, and if f € I}(u), we define ,_.._

jfdy:ju* d;t—fu‘dp—l—ijv*dy—iju_dpé (1)
I3 E E E E X

for every measurable set E. j
T T 4= s | Proe . 2R ., @ & % g & Y . T o .
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Sec. 1.15; v and v~ are similarly obtained from v. These-four functions are
measurable, real, and nonnegative; hence the four integfals on the right of (1)
exist, by Definition 1.23. Furthermore, we have u™ |u| < |f| etc., so that

each of these four integrals is finite. Thus (1) defines the—mﬁ%:al on the left as

a complex number. 2.
Occasionally it is desirable to define the integral of a measurable func-
tion fwith range in [ — o0, a0 ] to be

:')ﬁ-—- 'F- Lfdu = Lf* dp — Lf‘ du, (2)

provided that at least one of the integrals on the right of (2) 1s fimite. The left
side of (2) 1s then a number in [ —o0, oo ].

1.32 Theorem Suppose f and g € I'(u) and o« and B are complex numbers. Then
of + Bg € L(u), and

L(af+ﬁg)d#=ﬂLfd#+ﬁLgdﬂﬁ (1)

PrOOF The measurability of of + fg follows fro roposition 1.9(c). By Sec.

1.24 and Theorem 1.27, ("4 3 ma| <[] FFI<r| A1)
wam a3 I;{Ial F1+1B11gl) d

zlml.J I,r“lrtu+|1’f»'|‘J lg| dp < 0.

Thus af + Bg € L'(u). \-ém\(,_—r{ Emr '?.lé/

To prove (1), it 1s clearly sufficient to prove

_I{f+g)d#=:[‘;f#+J.gdu\ (2)
X“"“.h“'“"' X X

¢
Jx

and the general case of (2) will follow if we prove (2) for real fand g in L!(u).
Assuming this, and settmg +‘i}f+ g, we have

h=nt—n et —f gt —g X

and

(of) dﬂ=ﬂtJ.fd#} (3)



h* +f " +g =f"+g" +h". 4)
By Theorem 1.27,

Ih++jf‘+jg‘=ff++fg++fh‘, (5)
and since each of these integrals is finite, we may transpose and obtain (2).

That (3) holds if « > 0 follows from Proposition 1.24(c). It is easy to
verify that (3) holds if @« = —1, using relations like (—u)* = u~. The case
o = i1s also easy: If f = u + iv, then

Joforse et ool lon3

=fff- Jafit 1o e S+nden

Combining these cases with (2), we obtain (3) for any complex «. I/

1.33 Theorem If f e L'(u), then Vfﬂﬁ, MWIW;

Lfdu‘*_iLIﬂdﬂ.

ProoF Put z = |, fdu. Since z is a complex number, there is a complex

number «, with |a| = 1, such that 2z = |z |. Let u be the real part of of. Then

u<|af| = | f|. Hence Lozl 240

[ [

fdu | =« fd#*:“afdu/f Hdﬁ Jlfld#
B M‘Jimf .
The third of the aboife equalities hﬂlds/sm& ecedm ones show that
[ af du is real. ‘ éyu /1Y

1.34 Lebesgue’s Dominated Convergence Theorem Stppose { f,} is a sequence

of complex meas le functions on X such that

@),»J f(x) = lim f,(x) (1)
n—+aon >£

exists for every x € X. If there is a function g € I}(u) such that



| fix)] < glx) =123 ...; xeX), (2)
then f € L'(y),

limg;lfn —fldu=0, (3)

TN | 5 2 9»
S@_jﬁl J.f,. dt = _[fdﬂ it |+HE[<3 +§u

R=*o0

PRrROOF Since | f @ and f 18 measurable @{ﬂ) Since | f,—f| <
@atnu s lemma applies to the functio — | f — f|and yields

-.S-huh{ W"ft ﬂ 'D
g U [0 @i e o110 " J?n"”‘pf

o

L s
!'l‘:)iﬂm) {}#86(1 ?\{ ﬂ 2g du + lim 1nf( j | f, =11 d,u) \-E,\Sg
Ff:('x]] \/3(7(

[‘F) ! = JZQ du — lim sup J;lfn —fldp L\f}tﬁ

n=*o0

Since I 29 dﬁs finite, we may subtract it and obtain Q\\ g (?r *{ﬂ )QQ*{ %
" X¢
xw“ F]ﬂlthmsupJIf,.—fldnﬂﬂ- o y

E ]

If a sequence of nonnegative real numbers fails to converge to 0, then its
upper limit is positive. Thus (5) implies (3). By Theorem 1.33, applied to
fu — £, (3) implies (4). /11

not <Lidf 4] ok 4«41% {2dm

Q——"
k h}x ﬂ\_}m n"lbﬁ

~On-the ofbar g, Jca < J ? &‘o Q,thJ& it g
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1.35 Definition Let P be a property which a point x may or may not have.
For instance, P might be the property “f(x) > 0” if fis a given function, or it

might be * { f,(x)} converges " if { f,} is a given sequence of functions.
If u is a measure on a o-algebra Mt and if E € M, the statement E hn]&é

almost everywhere on E\” (abbreviated to “ P holds a.e. on E”) means that
there exists an N € 9 such that u(N) = 0, N = E, and P holds at every point
of E — N. This concept of a.e. depends of course very strongly on the given
measure, and we shall write “a.e. [u]” whenever clarity requires that thc

measure be indicated.
For example, if fand g are measurable functions and if ﬂ a E
{x f(x) # g(x)}) = (11

we say that f = g a.e. [u] on X, and weNinay wr:tcf~ g. ThlSI:
be an equivalence relation. The transitivity (f~ g and g ~ h’j 1l$5
1s a consequence of the fact that the union of two sets of theasure”Uh =.

measure 0.

Note that if f ~ g, then, for every E € I, Sgéﬂ—

Ifd# Jg dy.

To see this, let N be the set which appears in (1); then E=s
disjoint sets E — Nand E n N;on E — N,f= g, and y(E n

1.36 Theorem Let (X, M, u) be a measure space, let M* bﬁhe collection of all
E = X for which there exist sets A and B € M such that A= Ec B and
B — A) = 0, and define ({E) = u(A) in this situation. Then IM* is a o-algebra, ( -0
and ;ﬁs a measure on IM*. -
B<

This extended measure u is called complete, since all subsets of sets of

measure 0 are now measurable; the g-algebra IM* is called the p-completion of M.

1.38 Theorem Suppose {f,} is a sequence of complex measurable functions (S ° /k (B)' 0\
defined a.e. on X such that

.; | fal dp < 0. (n
Then the series
100 = 3 £ix) @
converges for almost all x, f € L'(u), and
Lfdﬂ = E: fdp. (3)
ProOF Let S, be the set on which f, is defined, so that u(S%) = 0. Put ¢(x) = ’ x

Y | ffx)],for x € S = [ S,. Then u(5%) = 0. By (1) and Theorem 1.27,
0 'y



J’m du < oo, (4)

If E={x€e8: ox) <}, it follows from (4) that u(E) = 0. The series (2)
converges absolutely for every x € E, and if f(x) is defined by (2) for x € E,
then | f(x)| < @(x) on E, so that fe L'(u) on E, by 4). If g, =f, + -+ + [,
then |g,| < @, g(x)— f(x) for all x € E, and Theorem 1.34 gives (3) with E in
place of X. This is equivalent to (3), since u(E*) = 0. il

1.39 Theorem

(a) Suppose f: X — [0, co] is measurable, E € M, and (¢ fdu =0. Thenf=0
a.e. on E.
(b) Suppose fe L'(u) and _[1: fdu=0forevery E€c M. Thenf=0a.e.0n X.

(c) Suppose [ e L'(u) and
_[fdu‘ =J-Ifld#-
X X

Then there is a constant & such that af = | [ | a.e. on X.

Note that (c) describes the condition under which equality holds in Theorem
33,

PROOF

(@) IfA,={xeE:f(x)>1/n},n=12273,..., then
1
‘F[A.EEJ fdusjfdp=ﬂ,
" A E

so that p(A4,) = 0. Since {x € E: f(x) > 0} = | ] 4,, (a) follows.

() Put f=u+iv, let E = {x: u(x) >0}. The real part of [ fdu is then
g u* du. Hence [g u™ du = 0, and (a) implies that u* = 0 a.e. We con-
clude similarly that

u =p* =p =0 ae.

(¢) Examine the proof of Theorem 1.33. Our present assumption implies that
the last inequality in the proof of Theorem 1.33 must actually be an
equality. Hence [(|f|— u)du=0. Since |f| —u =0, (a) shows that
| f| = u a.e. This says that the real part of «f is equal to || a.e., hence
of = |af | =| f | a.e,, which is the desired conclusion. i

1.40 Theorem Suppose pu(X) < oo, f€ L'(u), S is a closed set in the complex
plane, and the averages

|
A = fd
e f) NEJLI [

lie in S for every E € M with u(E) > 0. Then f(x) € S for almost all x € X.

Proor Let A be a closed circular disc (with center at « and radius r > 0, say)

g W g E
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is enough to prove that u(E) = 0, where E = f " '(A).
If we had w(E) > 0, then

1 1
del“ﬂtbﬁ L(f*ﬂ}d#|£m.|;|f—mfd#£h

which is impossible, since 4 ) € S. Hence u(E) = 0. I

1.41 Theorem Let {E,} be a sequence of measurable sets in X, such that
Y. u(E,) < . (1)
k=1

Then almost all x € X lie in at most finitely many of the sets E, .

Proof If A is the set of all x which lie in infinitely many E,. we have to
prove that u(A4) = 0. Put

gx)= 3 xg(x) (x€ X) (2)

k=1

For each x, each term in this series is either 0 or 1. Hence x € A if and only if
g(x) = co. By Theorem 1.27, the integral of g over X is equal to the sum in
(1). Thus g € L*{y), and so g(x) < o a.e. M

_ ( o,c 3 b ]“(N):b ++So

’ £ N=dx: For ~dC
i~gts Ve Fmedoole 9]

[a b) ab]

ﬁlﬂﬂ#ﬂ«w on [P S

Hat 1)

$o /“U“,:%fﬂ}) :}"(-{@afhzéﬂ{ﬁm:‘zo:ﬁ /

=)



1.35 Definition Let P be a property which a point x may or may not have.
For instance, P might be the property “f(x) > 07 if fis a given function, or it
might be “ { f,(x)} converges " if {f,} is a given sequence of functions.

If u is a measure on a o-algebra M and if E € I, the statement “ P holds
almost everywhere on E” (abbreviated to “ P holds a.e. on E”) means that
there exists an N € 9 such that u(N) = 0, N = E, and P holds at every point
of E — N. This concept of a.e. depends of course very strongly on the given
measure, and we shall write “ae. [u]” whenever clarity requires that the
measure be indicated. '

For example, if fand g are measurable functions and if

u{x: f(x) # g(x)}) = 0, (1)

we say that /= g a.e. [u] on X, and we may write f ~ g. This is easily seen to
be an equivalence relation. The transitivity (f~ g and g ~ h implies [~ h)
1s a consequence of the fact that the union of two sets of measure 0 has

measure 0.
Note that if f ~ g, then, for every E € IR,

J‘fd,u _ fg dii @
E E

To see this, let N be the set which appears in (1); then E is the union of the
disjoint sets E — Nand E n N;on E — N,f =g, and W(E n N) =

1.36 Theorem Let (X, YN, u) be a measure space, let M* be the collection of all
E = X for which there exist sets A and B € M such that A= Ec B and
(B — A) = 0, and define y(E) = u(A) in this situation. Then M* is a o-algebra,
and p is a measure on IM*.

This extended measure u is called complete, since all subsets of sets of
measure () are now measurable; the g-algebra M* is called the u-completion of M.

1.38 Theorem Suppose {f,} is a sequence of complex measurable functions
defined a.e. on X such that

Z Jlﬁld#{:ﬁ. (1

T hen the series

f) =} fx) (2)

converges for almost all x, f € L' (u), and

Bdu = "}i %ﬁ. dp. if (3)
E

ProOF Let S, be the set on which f is defined, so that u(S%) = 0. Put ¢(x) =
Y | fx)|,forx e S =) S,. Then p:[S‘] = (. By (1) and Theo? 1.27,

. . ﬂ(U&C )e'S ul




dug o, o7 Y 2 4)
J'wizglﬂ g |

If E={x€e8: olx) <o}, it follows from (4) that u(E° . The series (2)
converges absolutely for every x € E, and if f(x) is defi y (2) for x €E,
then | f(x)| < @(x) on E, so that fe L'(u) on E, by (4). If Gn = =fi+- " +fo

then |g,| < @, g.(x)— f(x) for all x € E, and Thenrem l 34 g;w:s (3) wnh E in

h
place of X This is equivalent to (3), since u(E°) = I ZS*Z {l
ﬁﬁ k™

1.39 Theoremn k¢1
(a) Suppose f: X — [0, co] is measurable, E € M, and_[,_: fdu=0. Thenf=0
a.e.on E.
(b) Suppose f € L'(u) and _[r: fdu=0forevery E€ M. Thenf=0a.e.0n X.
(¢) Suppose e I'(u) and _FF—:_. o

Lfd#‘ =L|f|dp. Butfo

Then there is a constant & such that af = | [ | a.e. on X.

Note that (c) describes the cnndnmn nder which equality holds in Theorem P i
33, Oa N 1
PROOF {Y : $ (’J% O]I = {X: '%‘»ﬂ}
-F"‘-u-h-—.,..-.-..-

@ I A, ={xeE:f(x)>1/n\nj1,23..., then A
A x-,—m# )

1y[4}5J fd;sQden=D )(i @&(A =0
" " As E '

so that p(A4,) = 0. Since {x € E: f(x) > 0} = | ] 4,, (a) follows.

(b) Put f_ u + iv, let E = {x: u(x) > 0}. The real part nf Jg fdu is then j’-F J-H-\-\'(\‘g'
‘II

fgu® du Hence jE u® du =0, and (a) implies that u* = 0 a.e. We con-

clude similarly that
u" =v =0 =0 a.e.
02|

(¢) Examine the proof of Theorem 1.33. Our present assumption implies that
the last inequality in the proof of Theorem 1.33 must actually be an — =

equality. Hence [(|f|— u)du=0. Since |f| —u =0, (a) shows that E + ('.,.—

| f| = u a.e. This says that the real part of of is equal to |af | a.e., hence :‘;u -\ A

of = |af | = | f] a.e, which is the desired conclusion. MW [ “"E
1.40 Theorem Suppose u(X) < oo, f€ '), S is a closed set in the complex
plane, and the averages

A = — d
) = AE) .ff Iz

lie in S for every E € MM with u(E) > 0. Then f(x) € S for almost all x € X. x

PIEIOF Let :‘_’s be a clnsed r:lr-::u]ar d:sc {w1th center at ® and radlus r :.- Cl say]

g S awom
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is enough to prove that u(E) = 0, where E = f " '(A).
If we had u(E) > 0, then f’\§ ‘ T S\“Ul'ﬂ‘j
—a)d ald
) du | AE) J‘ | f—aldup<

which is impossible, since 4 ) € S. Hence u(E) = 0. I

Hz{f}ﬂr!——

1.41 Theorem Let {E,} be a sequence of measurable sets in X, such that

E WE,) < oo. (1)

k=1

Then almost all x € X lie in at most finitely many of the sets E, .

Proof If A is the set of all x which lie in infinitely many E,. we have to
prove that y(A4) = 0. Put m BW

gx)= 3 xg(x) (x€ X) {2]

k=1

For each x, each term in this series is either 0 or 1. Hence x € A if and only if
g(x) = co. By Theorem 1.27, the integral of g over X is equal to the sum in
(1). Thus g € L*{y), and so g(x) < o a.e. M

L R i e
=° __
@ uu_:ﬁ A€ {%‘ U\(X)-fzﬂ‘}c{x: [ﬁw%ﬂ}ulﬁ U(KJ#O}

. To prod, Qet ?(@f,{x u(x)#-]U{x W0t = 3
‘ m SR = b < L(X)-Se uex) o

o e W < w(m#e}w
So Hr £ }},,,, He»aum 6.
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Topological Preliminaries

2.3 Definitions Let X be a topological space, as defined in Sec. 1.2,

(@) A set E c X is closed if its complement E is open. (Hence ¢ and X are
closed, finite unions of closed sets are closed, and arbitrary intersections
of closed sets are closed.)

(b) The closure E of a set E — X is the smallest closed set in X which con-
tains E. (The following argument proves the existence of E: The collec-
tion € of all closed subsets of X which contain E is not empty, since
X € Q; let E be the intersection of all members of ().)

(c) A set K < X is compact if every open cover of K contains a finite sub-
cover. More explicitly, the requirement is that if {V,} is a collection of
open sets whose union contains K, then the union of some finite sub-

collection of { V,} also contains K.
In particular, if X is itself compact, then X is called a compact space.
(d) A meighborhood of a point p € X 1s any open subset of X which contains
p. (The use of this term 1s not quite standardized: some use

“neighborhood of p” for any set which contains an open set containing
p)
() X is a Hausdorff space if the following 1s true: If pe X, g€ X, and p # g,
then p has a neighborhood U and ¢q has a neighborhood V such that
UnV=¢d
(f) X is locally compact if e point of X has a neighborhood whose
closure is compact. \3 & o € -::—t? (G -) NeS. ):[‘F*{ﬁ#r]
2.7 Theorem Suppose U is open in a locally compact Hausdorff space X, ~»
K < U, and K is compact. Then there is an open set V with compact cfasure

. KcVcVcUl. %&Tx hff
Rl e Howsdor sdmca-

2.8 Definition Let f bc a real (or extended-real) function on a topologi

space. If
qﬁ(@,"")} (x:f ) >} (qu Moo
is open for every real a, f is said to be lower semicontinuous. If
{(x:/(0) < a} - X 4o

G
is open for every real a, fls said to be upper semicontinuous. )( (o{ 00) ? 0|
N 1 . r .

. pr oy



(@) ‘Lhnaracleristic iunctions Ol open s€is are lower semicontinuous.™ .
(b) Characteristic functions of closed sets are upper semicontinuous.

The following property is an almost immediate consequence of the defini-
tions:

(c) The supremum of any collection of lower semicontinuous functions is lower
semicontinuous. The infimum of any collection of upper semicontinuous func-
1ioNns Is upper semicontinuous.

2.9 Definition The support of 3 complex function f on a topological space X
is the closure of the set { X6 X: T0x)d 0} . ‘A9

@ A\ 'Ffuz-‘sfk
| } r{x:f(.x);é{l}gx _%—;
(AN

The collection of all continuous complex functions on X whose sulf}fn is
compact is denoted by C.(X).
Obserce that C,(X) is a vector space. This 1s due to two facts:

(@) The support of f + g lies in the union of the support of f and the suppor
of g, and any finite union of compact sets is compact.

(b) The sum of two continuous complex functions is continuous, as are
scalar multiples of continuous functions.

e T

YT foa=edA9=o (4 M._u—:)x%supp@%)

Corollary The range of any fe C(X) is a compact subset of the complex

plane. UZ‘EEX ()tj-o -) (H?ﬁ' {0 -s"(x)G'F(K') = XC'F(‘OU\,CB

In fact, if K 1s the suppnrt ﬂffE C (X} then f(X) (K) @ If X is not
compact, the 1[( ), but 0 n not lE: in f(K), as n by asy amples.

2.11 Nutatmn n “thi apter I;he fﬂllﬂwmg conventions ﬁ 1l beﬁ.lsed The

notation

K<f (1)
will mean that K is a compact subset of X, that fe C(X), that 0 < f(x) < |
for all x € X, and that f(x) = 1 fo € K. The notation

%f\"ﬁ ' 4 M



L '\' | J ] L 1!“;

K
will mean that ¥ is open, that fe C(X), 0 <f< 1, and that thf: auppmt of f

_lies in V. The notation
O g K=<f<V 3)
will be used to indicate that both (1) and (2) hold.

2.12 Urysohn’s Lemma Suppose X is a locally compact Hausdorff space, V is
openin X, K < V,and K is compact. T hen there exists an f € C.(X), such that

K<f<V. (1)

2.13 Theorem Suppose Vy, ..., V, are open subsets of a locaily compact Haus-
dorff space X, K is compact, and

KcVu---ulV,.
T hen there exist functions h; < V(i = 1, ..., n) such that
hi(x)+ -+ h(x)=] (x € K). (1)

Because of (1), the collection {h,, ..., h,} is called aFmrtitian of um‘ty}:m K,
subordinate to the cover {V}, ..., V,}. o

The Riesz Representation Theorem

2.14 Theorem Let X be a locally compact Hausdorff space, and let A be a
positive linear functional on C_(X). Then there exists a c-algebra M in X which

‘contains all Borel sets in X, and there exists a unique positive mea.sure uon M
which represents A in the sense that m\"\) j\,_ C 0{
(@) Af= [y fduforeveryfe C(X), !\Héﬂ_'rﬂ

and which has the following additional properties: / -A-—(d%'!%)’ a(jbt "rACJ
(b) u(K) < oo for every compact set K = X. Pﬁf \'h"fﬁ -F >0 % A¥

¢) For ever M, we have 20
/) Forevry E e ’9‘3;?3 %aca-ﬂn:an&hfg.

wE) =inf {WV): Ec V,V open OH‘T’C/(

(d) The relation @V Nﬂ e !.7'7

H(E) = sup {u(K): K c E, K compact}4—~ .“?

reg

holds for euery open set E and for every E € M ?:th p{E] < o0.

P N T ey N T p— o~ o F w e



V/[Ej 1) L2 M, A = L, 0l glE) = U, LIREn A © Miimd hﬂ/‘\{ﬁ): 2

Let us begin by proving the uniqueness of u. If u satisfies (c¢) and (d), it is clear
that u is determined on M by its values on compact sets. Hence it suffices to
prove that u,(K) = p,(K) for all K, whenever g, and pu, are measures for which
the theorem holds. So, fix K and € > 0. By (b} and (c), there exists a V' = K with
Ha(V) < uy(K) + €; by Urysohn’s lemma, there exists an f so that K </ <V,
hence . |

Inf R ( _ /’—g
\ZFF}:?;IV)#HK) x,{d,ul J.fdﬁl J‘fd.u; X <'F<>(

-

< | avdu;= .uz{ V) < uy(K) + €.
"I'
Thus ux,(K) < u,(K). If we interchange the roles of x, and u,, the opposite
inequality is obtained, and the uniqueness of u is proved.
Incidentally, the above computation shows that (a) forces (b).

Construction of y and M
For every open sgt_V in X, defi
r every open in X, define ;‘-hc‘)lk? )(-(V} g F :R\é‘
@D p(V) = sup {Af:f <V}, (1)
If V; = V,, it is clear that (1) implies u(V)) < MVW
W(E) = inf {g(V): E < V, V open}, (2)

if E is an open set, and it is consistent with (1) to define wE) by (2), for every
EcX.
Note that although we have defined u(E) for every E — X, the countable

additivity of u will be proved only on a certain o-algebra M in X.
Let M be the class of all E = X which satisfy two conditions: u(E) < -, and

u(E) = sup {u(K): K < E, K compact}. (3) m

Finally, let M be the class of all E = X such that E n K € 9 for every compact ép
K. EnkCe Anfsn k)= o= El)

INV)ACY. 24 peY
operties Siaa ‘\Tl( ﬂ”} FN) 8?3'
that i 4Y < m‘mmd that

Proof th nd I have the vequired
£ (k)=o)

11 ierB2vident that i i€ monoatone 1e



p{E} = 0 implies E e Me and E € EUI Sl‘hus (e) hnlds and so due.s (c], by deﬁru-
tion.

Since the proof of the other assertions is rather long, it will be convenient to
divide it into several steps.

Observe that the positivity of A implies that A is monotone: f < g implies
Af < Ag. This is clear, since Ag=Af+ Alg —f) and g — f= 0. This monot-
onicity will be used in Steps Il and X. \“‘;‘;f‘

-

sTeP1 IfE,, E,, E,, .. arearbitrary subsets of X, then

p(G E,-) < 3 uE) @
i i=1

ProoF We first show that

Sw EVUV
WV, O V) < 1Y) + ulVy) j?ff'-%w P

if ¥, and V, are open. Choose g < ¥; v V,. By Theorem 2.13 there are func-
tions h, and h, such that h, < V; and h,(x) + h;(x} =1 for all x in the
support of g. Hence h;g < V., g = h,g + h;, g, and so
h‘..a my -ﬁ)ﬂi- o I M (V)"S
oy S A9 =Alhig) + Alhag) < ulVi) + u(V3) QV(é)
Since (6) hold's for every g < V; u V,,(5) follows.

If u(E;) = oo for some i, then (4) is trivially true. Suppose therefore that
u(E;) < oo for every i. Choose € > 0. By (2) there are open sets ¥}, o £, such

tha M(E)=ind (V)
V)< pE)+27%€¢ pli=1,23,..), I\
“Ywﬂorw cm;“s., JFCV Ulf Sn; Skwfcav

Put ¥V = | JT ¥, and choose f< V. Smuefh suppc:;t' we see that

f<Vyu--u¥forsomen A 1nduogﬁ n to (5), we thergfore obtain
iE) F=2¢

{l:rr-

v u V) suVy)+ +u(ﬂ( E,u(E)+e

Since this holds for every f < V,and since | | E; ¢ V, it follows that

,u(U E,) <u(V)< Y WE) + €

i=1 ?Iﬁl



WNICN Proves (&), sincc € was aroirary. . < [

Nalz I hXn BeX ane Co«ﬁﬁ)i'ﬁm&; »
AUB.

G~ AUB. S A%Q@& BE o, Hemee
adli'“l"{«} ﬁ“-:-y{c’m;
30{%‘?\“, é\m; B¢ UC'Q
m M) g
fore AB<= G [

k:;; ke



STEP I If K is compact, then K € My and _
WK) = inf (A K <f).  %€K>T00=)0d (D
- * P d‘-*)'rfy

This implies assertion (b) of the theorem.

| ﬁl .
ProofF If K<fand O0<a<, let V,= {x: f(x)::-u} hcnK lf;, and
ag < fwhenever g < V,. Hence b‘x éﬁ)@()_dgw “’ (ﬁ}

WK) < plV,) = sup {Ag: g < V} s ‘ﬂfl-\/tq e.-\/pk

Let «— 1, to conclude that &Yy "ﬂ‘%%ﬁgﬁ ) )
p. ———~—-—~...-'-—'"ﬂ-_..—-—)' :
O | S M oo HOZNZ00 . ) 4R ®

. B . 3 i
Thus u(K) < co. Since K evidently satisfies (3), K € M. (A
If € > 0, there exists V o K with (V) < u(K) + €. By Urysohn’s lemma,
K < f< V for some f. Thus

Af < u(V) < p(K) + ¢,
which, combined with (8), gives (7). /11

STEP (Il Every open set satisfies (3). Hence MMy contains every open set V with

an<a. Ki)=euplui st V3

Proor Let a beqrnumber such that & < ,u{ﬂ There exists an f<< V' with

a< A.If Wis an 'hich contains the support K of f, then f< W,
hence Af < ;;(W] p(K). This exhibits a compact K = V with
a < p(K), so that (3) holdsTor V. /11

STEP IV Suppose E = Uf";, E; where E, E,, E,, ... are pairwise disjoint members

of M. Then (5}—6 </‘<(’<
(9)

an

u(E) = ‘;ZL#(EJ-

If, in addition, yEy < oo, then also E € M. W /_&,,)
N

Proor We first show that
; A KE
WK, O Ky) = p(K,) + uK,) 1 (101

,\f

if K, and K, are disjoint compact sets. Choose € > 0. By Urysohn's lemma,
there exicte fe C (Y)Y such that fixi=1 on K. fivi=0 on K. and



D i ™

{] -c:f{ I_B}r Step II lhare c:usts;_g; such that o /u('()umg, /\ﬁf
K,uK;<g and Ag<ulK, uK,;)+e H4

02 Note that K, <fg and K, < (1 —f)g. Sinc is linear, it follows from (8)

“ that
}M(K]'F#Kﬂ{ﬁ(.@)‘f'ﬁlﬂ —J9) = Ag < uK, v K)) +e

we € was arbitrary, (10) follows now from Stepﬁ )‘(K U K) gﬂ(KW)

If u(E) = oo, (9) follows from_Step 1. Assume therefore that JE) < oo,
and choose € > 0. Since E; € M, there are compact sets H, c E, with

&)< T
ﬂé{?__ ﬂg(}(‘) © u(H) > WE) -2 (i=1,23,...). (11)
Putting k =H, v - U H, and using induction on (10), we obtain

c€ - cEK=IHS : : ;
7 " ionlE) 2K, Qm\m) > Y HE) - zzlf’ﬂ/dfhz)

Since (12) holds for every n and every € > ,thiE;t side of (9) is not smaller
Step

than the right side, and so (9) follows from ]ll... F) > lL( € 3__&
But if y(E)< and € >0, {9],§h0ws that 7 w3k ,‘}4

M )luZJ( 3 l'E'ﬁ<; 3NVM},Nh'*M (ejww
TP ﬁf%i}g g}{, <E’%#(E) “: Z,H(E] + € j" }“(E; )(13)

for some N. By (12) it follows that p(E) < p(Ky) + 2e, 3#5%]1:? %&ﬁhgt E
satisfies (3); hence E € M. ly I/

STEP V If E€ My and € > 0, there is a compact K and an open V such that
KcEcVandyV —-K)<e.

ProoF Our definitions show that there exist K < E and V o E so that

13 JKLE; u(E)-£
NN ) L Y, AR

um-:
Since V — K is open, ¥V — K € ETHF, by Step III. Hence.mphes that

AT
K uv_k <V MOV-K)= (VJj‘((lo

STEP V1 If A € Meand B Mg, then A — B, A u B,and A n B belong 10 M plE)L00




PROOF If € >0, Step V shows that there are sets K; and V; such that

KiycAcV,K;cBcV;,and yV; — K)) <efori=1, 2. Since
2
A—BcV, - — K,) v (K U(I’E—KJ@

’:){ }(590 3 5 []4)
%: K, — V; is a compact subset of A — B, (14) shows that A — B satisfies
(3),so that 4 — B € ;. ,

Since A U B=(A4 — B) u B, an application of Step IV shows that
AuBeMe.SinceAnNB=A— (A — B), weals%&ﬁnt&IﬂF 1

K=axe UA-&xek
STEP VII M is a o-algebra in X which contains all Borel sets.
-?Xe"ﬁ wek 5;4 ﬂk
PROOF Let K be an arbitrary compact set in X. EB iy DA€
IfAeMthen A " K=K —-(4 nK), sn? A A I@mhdlﬂ'ere?fde Of
two members of # . Hence A° n K € My, and we conclude: A € IM implies
A‘e*.m aBUHUH %v{(ﬂ.
Next, suppose 4 = | T A4;, where each 4; ¢ M. Put B, = A m K,and 7

HUM* O (4 A K) =B, v UB,) (=234, ..) (15)?_?,,

Then'{B,} is a disjoint sequence of members of My, by Step VI, and
A n K= |JT B,.Itfollows from Step IV that 4 n K € M. Hence 4 € M.
Finally, if C 1s closed, then C n Kés compact, hence C n K € M;, so
C € M. In particular, X € M.
We have thus proved that I is a g-algebra in X which contains all
closed subsets of X. Hence M contains all Borel sets in X, 1]/

STEP VIl IR, cansism of precisely those sets E € I for which u(E) < 0.
T <{ECK etk g |
This Implles assertion (d) of thé theo M {Ecx BW(G
ProoF If E € My, Steps II and VI ly that E n K € W for every
compact K, hence E € M. So7 )< rl ?')ﬂ L (EX

Conversely, suppose E € "R and u(E) < oc, and choose € > 0. There is an
open set V = E with u(V) < oo; by I1I and V, there is a compact K < V with

= K) < ¢ Since E n K € M, there is a compact set H < E N
" MlE R, < PEYY IHE ~ K) < uH) + ¢,




e - f—m— . - v -
~Since E = (E n K) u (V — K), it follows that BV &)+ < oo
3 ME) < WE N K) 4 p(V — K) < u(H) + e,
which implies thal EeM;. / /]

STEP IX i IS a measure on E?‘“SLPI((H) MJ S0 ,}[(E )‘(E)
e .
pUE, ):mcy‘ff e ME, )=oo
ﬂﬁ(ﬂﬂ\l)&}i Su-»\jl}- A AV

This proves (a), and completes the theorem

Xmmﬂ ‘k(JA "‘(’”v)
Proor Clearly, it is enough tegrprove this for real f Alsn it is enon /\Tf
prove the inequality —@__,

A< J.fd,u (16)
X

STEP X For every fe C.(X), Af= [y fdp.

for every real f € C (X). For once (16) is established, the linearity of A shows

that
ii%rcc (KXY red

A= A(—f) < f(—f) dp = — jf it e mn({;cﬂi

which, together with (16), shows that equality holds in (16). gﬂ YGHI—C. \,

Let K be the support of a real f = C(X), let [a, b] be an interval t&fllcl‘?'\
contains the range of f (note the Corollary to Theorem 2.10), choose € > 0,
and choose y;,fori=0,1, ..., n,so that y, — y;,_, < €and b’

3“;% &%J'%{a-:yl <w=b "E“*‘H“‘}(l?}

Put M )Cf)(h“ *h)>-n -tlo y
Ei={x:yi-y<fx)sytnK (i=1 n)ﬁ-/\,t)}



Since f is continuous, f is Borel measurable, and the sets E; are thcréqu\\
disjoint Borel sets whose union is K. There are open sets V; o E;such that

MY < ME)+S  (i=1.um) (19)

and such that f(x) < y; + € for all x € V,. By Theorem 2.13, there are func-
tions h; < ¥; such that Y h, =1 on K. Hence f=}_ h; f, and Step II shows
that

HK) < AQ h) =}, Ah;.

Since h; f < (y; + €)h;, and since y, — € < f(x) on E;, we have

Z Alh; f) < Z (y: + €)Ah;

i=1
= i(rm + y; + Ak — | a f‘,ﬂh
i=1 i=1

< i_zll(lﬁl + yi + €LUE) + €/n] — |a| u(K)

E —f}p(E}+ZE,u(K}+ Z|ﬂi+h+f}
=1 l-l

——

ﬂjfdn—l—e[2p(K}+|a|+b+E].
X

Since € was arbitrary, (16) is established, and the proof of the theorem is
complete. I/

Regularity Properties of Borel Measures

2.15 Definition A measure u defined on the ¢-algebra of all Borel sets in a
locally compact Hausdorff space X is called a Borel measure on X. If p 1s
positive, a Borel set E — X is outer regular or inner regular, respectively, if E
has property (c) or (d) of Theorem 2.14. If every Borel set in X is both outer
and inner regular, u is called regular.
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2.8 Definition Let f be a real (or extended-real) function on a topological

space. If g } %“ (x} HQ
i T . £ .
é(&lm)) = {x:f(x) > o} { . 5{*?’?[(70)“( -*L}J % )
is open for every real «, fis said to be lower semicontinuous. If

Ix:f(x) < a} SH-P-'F”'";"-' IS(*S

; ) T4 ] i L
1s open for every real =, f is said to be upper semicontinuous. - ’
So Ar¢ &,

A real function is obviously continuous if and only if 1t is both upper and

lower semicontinuous.
The simplest examples of semicontinuity are furmished by characteristic func-
tions:

(@) Characteristic functions of open sets are lower semicontinuous.
(b) Characteristic functions of closed sets are upper semicontinuous.

The following property is an almost immediate consequence of the defini-
tions:

(c) The supremum of any collection of lower semicontinuous functions is lower
semicontinuous. The infimum of any collection of upper semicontinuous func-
tions is upper semicontinuous.

5.8 The Banach-Steinhaus Theorem Suppose X is a Banach space, Y is a
normed linear space, and {A,} is a collection of bounded linear transformations
of X into Y, where = ranges over some index set A. Then either there exists an

l Ao&“ A o

1Al < M

'Lg

‘for every o € A or

sup | A, x| = o0 (2)
ze d

for all x belonging to some dense G;in X.

ProOF Put
@(x) = s | Ag x| (x € X) (3)
and let
V={xtox)>n (=123..) 4)

Since each A, is continuous and since the norm of Y is a continuous function
on Y (an immediate consequence of the triangle inequality, as in the proof of
Theorem 4.6), each function x — | A, x| is continuous on X. Hence ¢ 1s lower



scmiconiinuous, and cacn ¥, 15 OpCI.

5.6 Baire’s Theorem If X is a complete metric space, the intersection of every

countable collection of dense open subsets of X is dense in X. g X
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3.1 Definition A real function ¢ defined on a segment (a, b), where
—oo < a < b < oo, is called convex if the inequality

ol(l — A)x + Ay) < (1 — Aelx) + Ae(y)

holds whenevera < x < b,a<y<b,and0 < i < 1. k OFM'\!M ,m;lﬂrm

e
3.2 Theorem If ¢ is convex on 61 bl then © is continuous on (a, b).

3.4 Definition If p and g are positive real numbers such that p + q = pg, or

equivalently P> | > = ( = 1)‘ J

1.1
—+-=1, M)

P 4q
then we call p and g a pair of conjugate exponents. It is clear that (1) implies
l < p<ooandl < g < oo. An important special caseis p = g = 2.
As p— 1, (1) forces g— o0. Consequently 1 and o0 are also regarded as a
pair of conjugate exponents. Many analysts denote the exponent conjugate
to p by p’, often without saying so explicitly.

3.5 Theorem Let p and g be conjugate exponents, | < p< 0. Let X be a
measure space, with measure p. Let [ and g be measurable functions on X, with

in [0, oc]. Th ~
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and

ifp 1/p B /1#"\
{J;(f + gy dﬂ} < {Lf g d#} + {Lﬂ" du} . (2)

ProoF Let A and B be the two factors on the right of (1). If A =0, then f=0
a.e. (by Theorem 1.39); hence fg = 0 a.e., s0 (1) holds. If 4 > 0 and B = oo, (1)

i1s again trivial. So we need consider only the case 0 < 4 < o0, 0 < B < o0,
Put I o oo R

G=%. f 3
This gives rf _:;.,SF?_;FJ‘?P:: ‘%P‘ £l F(’:{fe%

‘JFFd,u ‘JG“'d,u=l.
X X

If x e X is such that 0 < F(x) < oo afid 0 < G(x) < o¢, there are real
numbers s and ¢ such that F(x) = &75G(x) = % Since 1/p+ 1/g =1, the
convexity of the exponential function implies that

&Mz p” ‘es-i-q e (3)
It follows that P )
F(x)G(x) < p~*F(x)? + ¢~ *G(x)* (6)

for every x € X. Integration of (6) yields -

-~

JFGdu-_f.p"+q_l=1 (7)
X

by {4); inserting (3) into (7), we obtain (1). \ E 5] -ﬁjfa <’AB

To prove (2), we write
(f+gP=f(+a" " +g - (f+9F " (8)

Holder’s inequality gives

1ip Lig
J-f' (F+ g EUJ”'} {JUW g?l“"”"} : (9) i l ‘
Let (9) be the inequality (9) with f and g interchanged. Since (p — 1)g = p‘?/__- )D a(
addition of (9) and (9') gives

forwrsffunf A"+ {47} oo

Clearly, it is enough to prove (2) in the case that the left side is greater x\;
than 0 and the right side is less than 0. The convexity of the function t* for

0 < t < o0 shows that . H
(13 et SR 2



Hence the left side of (2) 1s less than oo, and (2) follows from (10) if we divide
by the first factor on the right of (10), bearing in mind that 1 — 1/g = 1/p.
This completes the proof. i

The I7-spaces

In this section, X will be an arbitrary measure space with a positive measure u.

3.6 Definition It‘a Ip< oo and if f1s a complex measurable function on X, .5 . l}—]-
define k-/ )-"g
l/p
uto= {10 4 oS U
X

and let I?(u) consist of all f for which /{64): &Q
I1£1, < . ) &t
We call | /]|, the IP-norm of f. '00 A

If 4 is Lebesgue measure on R*, we write IP(R¥) instead of IP(u), as in ln[ml

Sec. 2.21. If u is the counting measure on a set A4, it is customary to denote
the corresponding [P-space by £°(A), or simply by £%, if A is countable. An
mlp u‘%

element of ## may be regarded as a complex sequence x = {£,},and

I, = {fl §,I"'}”P. o CM&%Q

3.7 Definition Suppose g: X — [\U%C?K])IS measurable. Let § be the set of all }1 ig@&r

real a such that >d
G )<o( 0L,
#{mn-ﬂ = g (u ne) {1}

IfS=.put 8= oo If S # &, put § = inf S. Since cjj(ag i U{} Oﬂ%)
“ﬁL

an
6.9 = O (51 =) J_

and since the union of a countable collection of sets of measure 0 has
measure 0, we see that f € §. We call § the essential supremum of g. _I _? (ﬂ)

If fis a complex measurable function on X, we define | f|| , to be the
essential supremum of | f|, and we let L®(u) consist of all f for which
| fll o < oo. The members of [*(u) are sometimes ca]l?l essentially ounded J “"' ;’X

measurable functions on X. ‘lf f 1S b& H\tﬂ “

LS
It follows from this definition that the mequai!t}" |f[x]| < / holds for almost all ﬂ :l "' }\ S]ﬁ-{#
sk Ll mﬁf(:\ ;4055 T2 Thm) /?/fﬁw,l N

\Y\

33d Theorem If p}md qlﬂrf CG;}HQHIE expﬂnents .21 <p< o0, r.md :ffE IP()
and g € IHy), then fg € L'(u), an {’“‘(k )GS ')b! )
Ifoly <1f1,lgl,.  Gog, S ﬁl#S:ML /;%/
)

i
@ €

ProoF For 1 < p < a0, (1) 1s simpl er & equality, applied to | f| and
lg|. If p = oo, note that ﬁ(nﬂ ']
Ivﬂ AN

| fx)g(x) Azl oL



for almost all x: integrating (2), we obtain (1). If p = 1, then g = oo, and the
same argument applies. I

3.9 Theorem Suppose 1 < p < o0, and fe IP(u), g € [P(y). Then f+ g € [P(p),
and

1+ gl, < IAH, + Ngl,. (1)
Proor For 1 < p < oo, this follows from Minkowski’s inequality, since
-|'|f+§|’dﬂ‘if{|f|+lﬂl]’d#
For p=1 or p=oc, (1) is a trivial consequence of the inequality
If(;g|;|f|+|ggl|r\|’ l)-'ﬁ'l’ﬂl 45 q*‘ﬂ( [H_‘_gﬂfw /
| <t ne. = 14110, < TN,

positive measure L.
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3.11 Theorem IF(u) is a complete metric space, for 1 < p < oo and for every LF' IS _*.L.L

positive measure p.

ProoF Assume first that 1 < p < co. Let { f,} be a Cauchy sequence in IP(u). &J

There is a subsequence {f, },n, < n, < -+, such that 0 Hl Y Q
| <27 =523 (1) M
Put @1%! .
~ el 1 0= T fues = Ju @ 2 W) 3"’?%
Hﬂkiafl“{'g Q. $,£< [ e——

Smc: ff)'holc;s,'thc inkowski inequality shows that ||g,|, <. for k = 1

2, 3, .... Hence an application of Fatou’s le ves 8” } 3 )C
2 %

particu[ar. g(x) < oo a.e., so that the series
S (x) + ;EU'"”{I} — Julx) (3) “‘-ﬁ] adh S‘ ﬂ -

converges absolutely for almost every x € X. Denote the sum of (3) by f(x),
for those x at which (3) converges; put f(x) =0 on the remaining set of

; P
measure zero. Since I@ —o A, =
RIS
fn + Z (fmﬂ _)rm] =fru'r

i=1 (4) ~E::,ﬁ Q“& 4%

fix) = lim f (x) a.e. (5)

i=o

we see that

Having found a function f which is the pointwise limit a.e. of { f }, we
now have to prove that this f is the [f-limit of {f,}. Choose € > 0. There
such that | f, = f,ll, <€ifn> N and m > N. For every m > N,
eriima shows therefore that

o 1 Pd lim inf L €’, 6
“A/ xlf Jm P dp < il JIL. —Im|?dp < (6)
We conelade from (6) that f— f,, € If(u), henoe t a _)f ﬁ”ﬂ [since f=
(f = fu) + /). and finally that | f = f,|,— 0 as m— oco. This completes the
proof for the case 1 < p < w.

In I*(u) the proof is much easier. Suppose {f.} is a Cauchy sequence in
[*(u), TeT A, and B, , be the sets where | fi(x)| > ||fil, and where
| flx) = fx)| > || f, = full o, and let E be the union of these sets, for k, m,
n=123,.... Then u(E) = on the complement of E the sequence { f,}

converges uniformly to a bounded fugctlon f. Define f(x) = 0 for x € E. Then
fe L"’EME and | f, —fll,—0 ahb
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