clear,clc, close all %% data=xlsread('seeds.xlsx'); Total_Run= ;n= ;Sampling_Num= ;Sampling_iter= ;k= ; Max_iter=1; Accuracy_Proposed=zeros(Max_iter,4);Index_Proposed=zeros(Max_iter,4);Accuracy_Original=zeros(Max_iter,4);Index_Original=zeros(Max_iter,4); for iter=1:Max_iter [Data_Base_Model,Data_Bootstrap] = Real_dataset(data,Total_Run,n,Sampling_Num,Sampling_iter,k); %% Parameters...................................................... K= ; % Number of Classes Pi= ;u= ;epsilon= ; % General Parameters C= ; beta= ; mu= ; eta= ; % there is no output for eta more than 2! degree= ; % Kernel degree Ic= ; % Stop Criterion for j=1:5 % type='Linear'; % Kernel Types: Linear, polynomial, RBF, Tanh %% Model Selection % model=['Proposed';'Original']; % Models: Proposed, Original for i=1:2 if j==1 type='Linear'; elseif j==2 type='polynomial'; elseif j==3 type='RBF'; elseif j==4 type='Tanh'; end switch i case 1 % Proposed model='Proposed'; data = Data_Bootstrap{1,1}; [f1,f2,class,macc,index, Accuracy,f1max,f2max] = SVM(data,K,type,Ic,Pi,u,epsilon,C,beta,mu,eta,degree,model,j,iter); % Proceeding both Accuracy_Proposed(iter,j)=macc; Index_Proposed(iter,j)=index; % figure(j) % plot(Accuracy,'r') % plot(f1max,f2max,'ro') case 2 % Original model='Original'; data = Data_Base_Model{1,1}; [f1,f2,class,macc,index, Accuracy,f1max,f2max] = SVM(data,K,type,Ic,Pi,u,epsilon,C,beta,mu,eta,degree,model,j,iter); % Proceeding both Accuracy_Original(iter,j)=macc; Index_Original(iter,j)=index; %figure(j) % hold on %plot(Accuracy,'b') %figure(3),legend('Proposed','RSSVM') % plot(f1max,f2max,'bo') end end end end %% Main Setting=[Pi, u, epsilon, C, beta, mu, eta, degree]; Mixed_Proposed=[]; Mixed_Original=[]; for kernel_number=1:4 Mixed_Proposed=[Mixed_Proposed, Accuracy_Proposed(:,kernel_number),Index_Proposed(:,kernel_number)]; Mixed_Original=[Mixed_Original, Accuracy_Original(:,kernel_number),Index_Original(:,kernel_number)]; end Mixed_Proposed=[Setting;Mixed_Proposed]; Mixed_Original=[Setting;Mixed_Original]; xlswrite('Mixed_Proposed', Mixed_Proposed); xlswrite('Mixed_Original', Mixed_Original); disp('finished') %% Real dataset function code...................................................... function [Data_Base_Model,Data_Bootstrap] = Real_dataset(data,Total_Run,n,Sampling_Num,Sampling_iter,k) %UNTITLED2 Summary of this function goes here % Detailed explanation goes here % Total_Run=1; % Total iteration(r) % n=150; % Dimension of each creation Data_Base_Model{Total_Run}={}; Data_Bootstrap{Total_Run}={}; for ij=1:Total_Run %% Ba Jaygozari- ya 11, 12 % darand ya 13 , 14 %data1 = DatasetCreatorIris(n); % sakhtegi %data = sortrows(data1, size(data1, 2)); % Ta inja baraye dataye sakhtegist khatte 11 , 12 %D=load('IrisTrain.mat'); %real Mahalle dataset %data=D.data_6July; % Real data SamplingData=data(:,1:size(data,2)-1); Data_Base_Model{ij}=data(:,1:size(data,2)); %% R1,R2,R3 r1=0;r2=0;r3=0; for i=1:size(data,1) if data(i,end)==1 r1=r1+1; elseif data(i,end)==2 r2=r2+1; elseif data(i,end)==3 r3=r3+1; end end %% % k=3; % Number of classes % Sampling_iter=25; % Number of Samples % Sampling_Num=7; % Volume of Samples dimension=Total_Run*Sampling_iter*Sampling_Num; % Dimension of random numbers R1=randi(r1,1,dimension); R2=randi(r2,1,dimension); R2=R2+r1; R3=randi(r3,1,dimension); R3=R3+r1+r2; R=[R1,R2,R3]; % Creating all random numbers Sample_Matrix=zeros(1,size(SamplingData,2)); % Accelerating Sample_Mean=zeros(1,size(SamplingData,2)); % Accelerating m=0; for i=1:Sampling_iter*k m=(i-1)*Sampling_Num; for j=1:Sampling_Num m=m+1; Sample_Matrix(1,:)=Sample_Matrix+SamplingData(R(m),:); end Sample_Mean(i,:)=Sample_Matrix/Sampling_Num; Sample_Matrix=zeros(1,size(SamplingData,2)); end Sample_Mean(1:Sampling_iter,size(data,2))=1; Sample_Mean(Sampling_iter+1:2*Sampling_iter,size(data,2))=2; Sample_Mean(2*Sampling_iter+1:3*Sampling_iter,size(data,2))=3; Data_Bootstrap{ij}=Sample_Mean; end end %% Find vertices function code...................................................... function [V] = Find_V(K) %UNTITLED3 Summary of this function goes here % Detailed explanation goes here V=zeros(K,K-1); % Accelerating V(2,1)=1; % Assumption for j=3:K for k=1:j-2 m=0; % m is not a parameter, just helps us to calculate the summation easier for i=1:j-1 m=m+V(i,k); end V(j,k)=m/(j-1); m=0; for i=1:j-2 m=m+V(j,i)^2; end V(j,j-1)=sqrt(1-m); end end inputArg1 = V; end %% Finding class function code...................................................... function class = Find_class(f1,f2,dim) %UNTITLED2 Summary of this function goes here % Detailed explanation goes here class=zeros(1,dim); center=[0.5,sqrt(3)/6]; m1=sqrt(3)/3; m2=-sqrt(3)/3; for i=1:dim if f1(i)<=0.5 if f2(i)<=center(2) class(i)=1; elseif (f2(i)-center(2))/(f1(i)-center(1))>=m2 class(i)=1; else class(i)=3; end elseif f1(i)>0.5 if f2(i)<=center(2) class(i)=2; elseif (f2(i)-center(2))/(f1(i)-center(1))<=m1 class(i)=2; else class(i)=3; end end end end %% Finding E & F matrices code...................................................... function [outputArg1,outputArg2] = Find_E_F(K,V,dim,data) %UNTITLED Summary of this function goes here % Detailed explanation goes here E=zeros(K,K-1,K-1); F=zeros(K,K-1,K-1); for j=1:K-1 for i=1:K mm=0; for m=1:K if i~=m mm=mm+1; E(i,mm,j)=2*(V(i,j)-V(m,j))'; F(i,mm,j)=2*(V(i,j)^2-V(m,j)^2)'; end end end end % Assigning E_hat and F_hat based on data to their E and F arrays. E_hat=zeros(2*dim,dim,K-1); F_hat=zeros(2*dim,1,K-1); for j=1:K-1 for i=1:dim Ci=data(i,end); E_hat(2*i-1:2*i,i,j)=E(Ci,:,j); F_hat(2*i-1:2*i,1,j)=F(Ci,:,j); end end outputArg1 = E_hat; outputArg2 = F_hat; end %% Finding H & B matrices code...................................................... function [H,B] = Find_H_B(E_hat,F_hat,Kernel,e1,e2,epsilon,Pi,u,model) %UNTITLED2 Summary of this function goes here % Detailed explanation goes here switch model case 'Proposed' H= E_hat(:,:,1)*(Kernel+eye(size(Kernel,1)))*E_hat(:,:,1)' + ... E_hat(:,:,2)*(Kernel+eye(size(Kernel,1)))*E_hat(:,:,2)'; B= (F_hat(:,:,1)+((u-epsilon)*Pi + u)*e2) + (F_hat(:,:,2)+((u-epsilon)*Pi + u)*e2); %B= (F_hat(:,:,1)+epsilon*e2) + (F_hat(:,:,2)+epsilon*e2); case 'Original' H= E_hat(:,:,1)*(Kernel+e1*e1')*E_hat(:,:,1)' + ... E_hat(:,:,2)*(Kernel+e1*e1')*E_hat(:,:,2)'; B= (F_hat(:,:,1)+epsilon*e2) + (F_hat(:,:,2)+epsilon*e2); end end %% Dual function code...................................................... function [Data_Base_Model,Data_Bootstrap] = Dual_dataset(Total_Run,n,Sampling_Num,Sampling_iter,k) %UNTITLED2 Summary of this function goes here % Detailed explanation goes here % Total_Run=1; % Total iteration(r) % n=150; % Dimension of each creation Data_Base_Model{Total_Run}={}; Data_Bootstrap{Total_Run}={}; for ij=1:Total_Run %% Ba Jaygozari- ya 11, 12 % darand ya 13 , 14 data1 = DatasetCreatorIris(n); % sakhtegi data = sortrows(data1, size(data1, 2)); % Ta inja baraye dataye sakhtegist khatte 11 , 12 %D=load('IrisTrain.mat'); %real Mahalle dataset %data=D.data_6July; % Real data SamplingData=data(:,1:4); Data_Base_Model{ij}=data(:,1:5); %% R1,R2,R3 r1=0;r2=0;r3=0; for i=1:size(data,1) if data(i,5)==1 r1=r1+1; elseif data(i,5)==2 r2=r2+1; elseif data(i,5)==3 r3=r3+1; end end %% % k=3; % Number of classes % Sampling_iter=25; % Number of Samples % Sampling_Num=7; % Volume of Samples dimension=Total_Run*Sampling_iter*Sampling_Num; % Dimension of random numbers R1=randi(r1,1,dimension); R2=randi(r2,1,dimension); R2=R2+r1; R3=randi(r3,1,dimension); R3=R3+r1+r2; R=[R1,R2,R3]; % Creating all random numbers Sample_Matrix=zeros(1,size(SamplingData,2)); % Accelerating Sample_Mean=zeros(1,size(SamplingData,2)); % Accelerating m=0; for i=1:Sampling_iter*k m=(i-1)*Sampling_Num; for j=1:Sampling_Num m=m+1; Sample_Matrix(1,:)=Sample_Matrix+SamplingData(R(m),:); end Sample_Mean(i,:)=Sample_Matrix/Sampling_Num; Sample_Matrix=zeros(1,size(SamplingData,2)); end Sample_Mean(1:Sampling_iter,5)=1; Sample_Mean(Sampling_iter+1:2*Sampling_iter,5)=2; Sample_Mean(2*Sampling_iter+1:3*Sampling_iter,5)=3; Data_Bootstrap{ij}=Sample_Mean; end end %% SVM function code...................................................... function [f1,f2,class,macc,index, Accuracy,f1max,f2max] = SVM(data,K,type,Ic,Pi,u,epsilon,C,beta,mu,eta,degree,model,j,iter) %UNTITLED2 Summary of this function goes here % Detailed explanation goes here %Normalising data...................................... data(:,1:end-1)=data(:,1:end-1)/(max(max(data(:,1:end-1)))); realclass=data(:,size(data,2)); dim=size(data,1); V=Find_V(K); % V matrix A=data; A(:,end)=[]; % Removing Label Column e1=ones(size(A,1),1);e2=ones(2*size(A,1),1); % Vector e Kernel = My_Kernel(A,dim,degree,mu,beta,type); [E_hat,F_hat]=Find_E_F(K,V,dim,data); % producing E and F matrices for E_hat and F_hat. [H,B]=Find_H_B(E_hat,F_hat,Kernel,e1,e2,epsilon,Pi,u,model); % Algorithm 2 ................................. [f1,f2,class,Accuracy,f1max,f2max] = Algorithm2(K,dim,Ic,eta,H,B,C,Kernel,E_hat,realclass); % Output [macc,index]=max(Accuracy); SIMplot(f1max,f2max,realclass,model,dim,j,iter); end %% Kernel functions code...................................................... function Kernel = My_Kernel(A,dim,degree,mu,beta,type) %UNTITLED3 Summary of this function goes here % Detailed explanation goes here Kernel=zeros(dim,dim); switch type case 'Linear' % Linear Kernel = A*A'; case 'polynomial' % polynomial for i=1:dim for j=1:dim Kernel(i,j)=(A(i,:)*A(j,:)'+1)^degree; end end case 'RBF' % % RBF for i=1:dim for j=1:dim Kernel(i,j)=exp((-mu*norm(A(i,:)-A(j,:),2)^2)); end end % case 'Tanh' % Tangent hyperbolic for i=1:dim for j=1:dim Kernel(i,j)=tanh(mu*A(i,:)*A(j,:)'+ beta); end end case 'Laplace' % Laplace for i = 1:dim for j = 1:dim Kernel(i, j) = exp(-mu * norm(A(i, :) - A(j, :), 1)); end end end %% Plots code...................................................... function []= ShowPlot(f1,f2) %UNTITLED Summary of this function goes here % Detailed explanation goes here figure() plot(f1,f2,'o') for i=1:41 plot(f1(i),f2(i),'ro') hold on end for i=42:81 plot(f1(i),f2(i),'go') hold on end for i=82:120 plot(f1(i),f2(i),'bo') end %hold off xlabel('f_1'),ylabel('f_2') pause(0.01) x=[0.5, 0.5, 0.75, 0.5, 0.25]; y=[0,sqrt(3)/6, 0.433, sqrt(3)/6, 0.433]; plot(x,y,'--'); % [macc,index]=max(Accuracy); end %% Plots code......................................................
An Error occurred while handling another error:
yii\web\HeadersAlreadySentException: Headers already sent in  on line 0. in /var/www/html/prof-homepages/vendor/yiisoft/yii2/web/Response.php:366
Stack trace:
#0 /var/www/html/prof-homepages/vendor/yiisoft/yii2/web/Response.php(339): yii\web\Response->sendHeaders()
#1 /var/www/html/prof-homepages/vendor/yiisoft/yii2/web/ErrorHandler.php(136): yii\web\Response->send()
#2 /var/www/html/prof-homepages/vendor/yiisoft/yii2/base/ErrorHandler.php(135): yii\web\ErrorHandler->renderException()
#3 [internal function]: yii\base\ErrorHandler->handleException()
#4 {main}
Previous exception:
yii\web\HeadersAlreadySentException: Headers already sent in  on line 0. in /var/www/html/prof-homepages/vendor/yiisoft/yii2/web/Response.php:366
Stack trace:
#0 /var/www/html/prof-homepages/vendor/yiisoft/yii2/web/Response.php(339): yii\web\Response->sendHeaders()
#1 /var/www/html/prof-homepages/vendor/yiisoft/yii2/base/Application.php(656): yii\web\Response->send()
#2 /var/www/html/prof-homepages/vendor/faravaghi/yii2-filemanager/models/Files.php(696): yii\base\Application->end()
#3 /var/www/html/prof-homepages/vendor/faravaghi/yii2-filemanager/controllers/FilesController.php(484): faravaghi\filemanager\models\Files->getFile()
#4 [internal function]: faravaghi\filemanager\controllers\FilesController->actionGetFile()
#5 /var/www/html/prof-homepages/vendor/yiisoft/yii2/base/InlineAction.php(57): call_user_func_array()
#6 /var/www/html/prof-homepages/vendor/yiisoft/yii2/base/Controller.php(180): yii\base\InlineAction->runWithParams()
#7 /var/www/html/prof-homepages/vendor/yiisoft/yii2/base/Module.php(528): yii\base\Controller->runAction()
#8 /var/www/html/prof-homepages/vendor/yiisoft/yii2/web/Application.php(103): yii\base\Module->runAction()
#9 /var/www/html/prof-homepages/vendor/yiisoft/yii2/base/Application.php(386): yii\web\Application->handleRequest()
#10 /var/www/html/prof-homepages/backend/web/index.php(16): yii\base\Application->run()
#11 {main}