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C*-Algebras and
Hilbert Space Operators

2.1. C*-Algebras = GGS -9)0-5 eg
We begin by defining a nymber of eeneepte that make eenee in any

algebra with an involution. GI a-}b Xﬁ

An involution on an algebra\A is a conjugate-linear ma.p a — a* on
A, such that a** = a and (ab)* 5 b*a* for all a,b € A. The pair (4, %) is
called an involutive algebra, or & *-algebra. If S is a subset of A, we set
S* = {a* | a € 5§}, and if §* = S we say S is self-adjoint. A self-hdjoint
subalgebra B of A is a *-subalgebra of A and is a *-algebra when endowed
with the involution got by restriction. Because the intersection of a family
of #-subalgebras of A is itself one, there is for every subset S of A a smallest
*-algebra B of A containing S, called the *-algebra generated by S.

If I is self-adjoint ideal of A, then the quotient algebra A/I is a
*-algebra with the involution given by (a + I)* = a* + I (a € A).

We define an involution on A extending that of A by eettlng (a, \)* =
(a*,\). Thus, A is a *-algebra, and A is a self-adjoint ideal in A 3
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An element a in A is self- edjamt tian'if @ = d%.L For each
a € A there exist umque hermitian elements 6;¢c € A such that a = b+ ¢
(b= 3(a+a*)and c = 3:(a—a*)). The elements a*a and aa* are hermitian.

The set of hermltla.n elements of A is denoted by A,,

We say a is normal if a*a = aa*. In this case the *-a.lgebra. it generates
is abelian and is in fact the linear span of all a™a*", where m,n € N and
n+m>0.

An element p is a projection if p = p* = p°.
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(a*)”™! = (a~1)*. Hence Aonany a € A,
1“"\\_ “i‘ U[a'@@: {Ae C|Xeo(a)}.

An element u igA-isaynitary if u*u = wu* = 1. If u*u = 1, then u is

adjoints, that is, p(a*) = (p(a))* (a € A), then ¢ is a *-homomorphism.
If in addition ¢ is a bijection, it is a *-isomorphism. If p: A — B is a
*-homomorphism, then ker(y) is a self-adjoint ideal in A and @(A) is a
*-subalgebra of B.

An automorphism of a *-algebra A is a *-isomorphism ¢: A — A. If A
is unital and u is a unitary in A, then

Adu:A - A, aw— uau”,

is an automorphism of A. Such automorphisms are called inner. We say
elements a,b of A are unitarily equivalent if there exists a unitary u of A
such that b = uau*. Since the unitaries form a group, this is an equivalence
relation on A. Note that o(a) = o(b) if a and b are unitarily equivalent.

A Banach *-algebra 1s a *-algebra A together with a complete submul-
tiplicative norm such that-||a*|| = ||a|| (a € A). If, in addition, A has a unit
such that |[1]| = 1, we call A a unital Banach *-algebra.

A C*-algebra is a Banach *-algebra such that

L .
R a*all = llal®  (a € A). 1)
ﬂ{med x-subalgebra of a C*-algebra is obviously also a C*-algebra. We

1
shill therefore call a closed *-subalgebra of a C*-algebra a
If a C*-algebra has a unit 1, then automatically ||1f , because
I1]I'= ||11*1]| = ||1]|?. Similarly, if p is a non-zero projection, then ||p|| = 1. -
If u is a unitary of A, then ||u|| = 1, since ||u]|® = ||[u*u|| = ||1|| = 1.
CT,forif A € f.r(u%, then A1 ﬁ o(u~1) = o(u*), so |A| and
i TSI
hé seemingly mild requirement on a C*-algebra in Eq. (1) is in fact
very strong—far more is known about the nature and structure of these

algebras than perhaps of any other non-trivial class of algebras. Because
of the existence of the involution, C*-algebra theory can be thought of as
“infinite-dimensional real analysis.” For instance, the study of linear func-
tionals on C*-algebras (and of traces, ¢f. Section 6.2) is “non-commutative
measure theory.”



2.1.1. Ezample. The scalar field C is a unital C*-algebra with involution
given by complex conjugation A — A.

2.1.2. Ezample. If  is a locally compact Hausdorff space, then Cy({2) is
a C*-algebra with involution f — f.
Similarly, all of the following algebras are C*-algebras with involution

given by f — f:

(a) €°(S) where S is a set;

(b) L*°(2, u) where (2, u) is a measure space;
(c) Cp(2) where (2 is a topological space;

(d) Boo(S2) where {2 is a measurable space.

2.1.3. Exzample. If H is a Hilbert space, then B(H) is a C*-algebra. We
shall see that every C*-algebra can be thought of as a C*-subalgebra of
some B(H) (Gelfand-Naimark theorem). We defer to Section 2.3 a fuller
consideration of this example.

2.1.4. Ezxample. If (Ajx)rea is a family of C*-algebras, then the direct
sum @pA) is a C*-algebra with the pointwise-defined involution, and the
restricted sum @°A, is a closed self-adjoint ideal (cf. Exercise 1.1).

2.1.5. Example. If {2 is a non-empty set and A is a C*-algebra, then
£°(Q, A) is a C*-algebra with the pointwise-defined involution. This of
course generalises Example 2.1.2 (a). If (1 is a locally compact Hausdorff
space, we say a continuous function f:{) — A vanishes at infinity if, for
each € > 0, the set {w € Q | [|f(w)|| = €} is compact. Denote by Co(£2, A)
the set of all such functions. This is a C*-subalgebra of £°(£2, A).

Tllowmg easgesult has a surprising and important corollary:
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E heorem. Ifa is a self-adjoint element of a C*-algebra A, then
r(a

= =0 ~
ol =P T o
Proof. Clearly, ||a?||"= ||a||?, and therefore by induction ||a? | = la||?",
Sl la™][*/™ = lim, ||ﬂin||”2“ lafl.
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orollary. There is at most one norm on'a * making it

C*-algebra. ’ '
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Proof. If||.||; and ||.||; are norms on a x-algebra A making it a C*-algebra,
then

lall? = |la*a|l; = r(a*a)= sup [A] (j=1,2),
A A€o(a*a)

so [lalls = |lall2- ‘”f'“‘dﬂ' 5'4TL “([ %ﬁ’ VP "‘"Vm

2.1.3. Lemma. Let A be a Banach a.fgebra endowed with an involution
such that ||a||* < ||a*a|| (a € A). Then A is a C*-algebra. S—

Proof. The inequalities ||al|? < ||a*a| < ||la*||||la|| imply that ||a| < ||a*||
for all a. Hence, ||a|| = ||a*||, and therefore ||a||* = ||a*a]l. 0

We associate to each C*-algebra A a certain unital C*-algebra M(A)
which contains A as an ideal. This algebra is of great importance in more
advanced aspects of the theory, especially in certain approaches to K-theory.

A double centraliser for a C*-algebra A is a pair (L, R) of bounded
linear maps on A, such that for all a,b € A

L(ab) = L(a)b, R(ab)=aR(b) and R(a)b= aL(b).

For example, if ¢ € A and L., R. are the linear maps on A defined by
L.(a) = ca and R.(a) = ac, then (L., R.) is a double centraliser on A. It

is easily checked that forallce A M [IC b\|<l|c1||]lall-)$u.‘)llclpﬂ <Tar—

cll = su c b}
lell = "&"p I b” ||e.||{ ”C"’ "C C é‘%-\lfﬂ
e

and therefore ||L.|| = ||Rc]| = ||¢]|.

2.1.4. Lemma. If (L, R) is a double centraliser on a C*-algebra A, then
LIl = [[R]|-

Proof. Since |[aL(b)|| = ||R(a)b|| < [[R]/[|al[[[b]], we have

ILCO)|| = sup [[aZ(®)| < [IR]|2]];

llall<1

and therefore || L|| < [|R||. Also, |[R(a)b]| = [[aL(B)|| < ||L]|||]l[|5]| implies
|[R(a)[| = sup [[R(a)d]| < [L|l[|all,
bl

and therefore ||R|| < |L||. Thus, ||L|| = ||R||. O
If A is a C*-algebra, we denote the set of its double centralisers by



M A). We deline the norm ol the double centraliser (L, i) to be ||L|| =
¥y to check M(A) is a closed vector subspace of B(A) @ B(A). —

6 i 0 Bauad SppQ
dijM)@ R(A) Undet (T )1

mﬁ;
If (L1, Ry) and (L9, Ry) € M(A), we define their product to be /@_
-,

Z.
(L1, R1)(L2, R2) = (L1 L2, RaRy). ;f%

Straightforward computations show that this product is again a double
centraliser of A and that M(A) is an algebra under this multiplication.

If L: A — A, define L*: A — A by setting L*(a) = (L(a*))*. Then L*
is linear and the map L — L* is an isometric conjugate-linear map from
B(A) to itself such that L** = L and (L, L;)* = LjL;. If (L, R) is a double
centraliser on A, sois (L, R)* = (R*,L*). It is easily verified that the map
(L, R) — (L, R)* is an involution on M(A).

2.1.5. Theorem. If A is a C*-algebra, then M(A) is a C*-algebra under
the multiplication, involution, and norm defined above.

Proof. The only thing that is not completely straightforward that has to
be checked is that if T = (L, R) is a double centraliser, then ||T*T]||
IT|?. If [lall < 1, then ||L(a)|[* = [|(L(a))*L(a)|| = ||L*(a*)L(a)]
la*R*L(a)|| < [|[R*L|| = [|T*T]|, so

ITII* = sup [IL(a)* < IT*T|| < ITI*,

llall<1
and therefore ||T*T|| = ||T|3. O
The algebra M(A) is called multiplier algebra of A.

The map
A— M(A), a— (L4, R,), —

is an isometric *-homomorphism, and therefore we can, and do, identify A
as a C*-subalgebra of M(A). In fact A is an ideal of M(A). Note that
M(A) is unital (the double centraliser (id 4,id 4) is the unit), so A = M(A)
if and only if A is unital.
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2.1.6. Theorem. If A is a C*-algebra, then there is a (necessarily unique)
norm on its unitisation A making it into a C*-algebra, and extending the
norm of A.

Proof. Uniqueness of the norm is given by Corollary 2.1.2. The proof
of existence falls into two cases, depending on whether A is unital or non-
unital.

Suppo st that A has a unit e. Then the map ¢ from A to the
direct sum ﬂt e C*-algebras A and C defined by p(a,A) = (a + Ae, A) is
a *-isomorphism, Hence, one gets a norm on A making it a C*- a.lgehra. by
setting [|(a, M2 [l9(a, Ml

Now suppose A has no unit. If 1 is the unit of M(A), then ANC1 = 0.
The map ¢ from A onto the C*-subalgebra A @ C1 of M(A) defined by
setting @(a, A) = a 4+ Al is a *-isomorphism, so we get a norm on A making
it a C*-algebra by setting ||(a, A)|| = |l¢(a, A)|. O

If Ais a C*-algebra, we shall always understand the norm of A to be
the one making it a C*-algebra.

Note that when A is non-unital, M(A) is in general very much bigger
than A. For instance, it is shown in Section 3.1 that if A = Cy(Q2), where
{1 is a locally compact Hausdorff space, then M(A) = Cy(2).

If ¢: A — B is a *-homomorphism between *-algebras A and B, then
it extends uniquely to a unital *-homomorphism tp A — B.
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2.1.7. Theorem. A *-homomorphism ¢: A — B from a Bana

A to a C*-algebra B is necessarily norm-decreasi ”%"-{\ oY ﬂf’(ﬁlﬁf‘ifat

Proof. We may suppose that A, B p are unital (by going to A, B, and

@ if necessary). If a € A, then of £ o(a), so [leal? = ||lela) ¢(a)] =
llp(a*a)|| = r(p(a*a)) < r(a*a) < Jl6%a|| < ||a||®. Hence, |p(a)]| < [lall. O

2.1.8. Theorem. Ifa is ermitian element of a C*-algebra A, then
o(a) C R. Zod; e'}* f_To_”

Proof. We may suppose that A is unital. Since e'® is unitary, o(e**) C T.
If)A€ o(a)and b= Y ;7 i"(a—A)" " /n! then e'* —'* = (e'*~M_1)e'* =
(a — A)b ince b commutes with @, and sineg g — A is non-invertible,
e — et on-invertible. Hence, e** € T, ah erefore A € R. Thus,

“)CR—'FPrﬁno‘imnﬁﬂ -l’hmg’(a*- @) :
2.1.9. Theorem. If T is a character on a C*-algebra it preserves
adjoints. W owa "F‘faw A Onto (f

Proof. If a € A, then a = b+ ic where b,c are h rmltlan elements of
A. The numbers 7(b) and 7(c) are real because the in o(b) and &
iT(e)) = 7( 0O

respectively, so 7(a*) = 7(b—ic) = T(b) — 31"({:) = (78]

The character space of a un§£ab&r@anach algebra is non- ty
so this is true in particular for unital abelian C*-algebras. However, t
are non-unital, non-zero, abelian Banach algebras for which the character

space is empty. Fortunately, this cannot happen in the case of C*-algebras.
Let A be a non-unital, non-zero, abelian C*-algebra. Then A contains a
non-zero hermitian element, a say. Since r(a) = ||a|| by Theorem 2.1.1, it
follows that there is a character r on A such that |r(a)| = ||a|| # 0. Hence,
the restriction of 7 to A is a non-zero homomorphism from A to C, that is,
a character on A.

We shall now completely determine the abelian C*-algebras. This re-
sult can be thought of as a preliminary form of the spectral theorem. It
allows us to construct the functional calculus, a very useful tool in the
analysis of non-abelian C*-algebras.

2.1.10. Theorem (Gelfand).{IfA Is a non—zha.n C*-algebra, th

the Gelfand representation Tirgd ‘]’
v n § C\_&h W Sppp mPY A



by Theorem 1.3.6. If r € Q(A), then ¢p(a*)(r) = r(a*) =
*(7), so ¢ is a *-homomorphisin. Moreover, ¢ 1s isomet-
ric, since T(a)l[2 = llp(a)*w(a)ll = llp(a*a)]| = rg@%a)\= [la*al| = [la]’.
Clearly, then, a closed *-subalgebra of Cy({R) séparating the points
of (2(A), and hav e property that for any r € {2 ere is an element
a € A such that p(a)(r) # 0. The Stope—Weterstrass theorem 1mp11es

therefore, that (A) = Co (5 QO\C)
Let S be a subset of a C*- gebra A>~The algebra gemerated by S

by C*(a) the C*-subalgebra generated by S. If a is a normal, then C*(
is abelian. Similarly, if A is unital and a normal, then the C*-subalgeb
generated by 1 and a i1s abelian.

is the smallest C*-subalgebra of A containing S. If § = {a}, we deno@
M

Observe that r(a) = ||a]| if @ is a normal element of a C*-algebra (apply

Theorem 2.1.10 to C*(a)). j[% n:’ &C—e} < M@)-—

The following result is import

2.1.11. Theorem. Let B be a C*subalgebra of a umt ré C*-algebra A

containing the unit of A. Then
— . _—

op(b) = o.4(b) (b€ B).
B A n

‘We are now going to set up the functional calculus, for which we need
to make two easy observations:

If :Q — ' is a continuous map between compact Hausdorff spaces {2
and ', then the transpose map

:C(Q') = C(Q), f— f6,

is a unital x-homomorphism. Moreover, if  is a homeomorphism, then 6°
is a *-isomorphism.

Our second observation is that a *-isomorphism of C*-algebras is nec-
essarily isometric. This is an immediate consequence of Theorem 2.1.7.
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and suppose that z is the inclusion map of o(a) in C. Then there is a unique
unital *-homomorphism @: C(o(a)) — A such that ¢(z) = a. Moreover,

1s isometric and im(y) is the C*-subalgebra of A generated by 1 &ﬂi@

P e ———
Proof. Denote by B the (abelian) C*-algebra generated by 1 an

and let ¥: B — C({(B)) be the Gelfand representation. Then % is a
*-isomorphism by Theorem 2.1.10, and so is @*: C(o(a)) — C(£2(B)), since
a:§(B) — o(a) is a homeomorphism. Let ¢:C(o(a)) — A be the co
position ¥~ 'at, so ¢ is a *x-homomorphism. Then ¢(z) = a, since p(z)
p~1(@%(z)) = ¥~'(a) = a, and obviously ¢ is unital. From the Stone-
Weierstrass theorem, we know that C'(o(a)) is generated by 1 and z; ¢ is
therefore the unique unital *-homomorphism from C{e(a)) to A such that
w(z) = 1.

It 1s clear that ¢ 1s isometric and 1m(yp) = B. O

As in Theorem 2.1.13, let a be a normal element of a unital C*-algebra
A, and let z be the inclusion map of C{(o(a)) in C. We call the unique
unital *-homomorphism : C(e(a)) — A such that ¢(z) = a the functional
calculus at a. If p is a polynomial, then ¢(p) = p(a), so for f € C(o(a)) we
may write f(a) for ¢(a). Note that f(a) is normal.

Let B be the image of ¢, so B is the C*-algebra generated by 1 and
a. If 7 € (B), then f(71(a)) = 7(f(a)), since the maps f — f(r(a)) and
f — 7(f(a)) from C(o(a)) to C are *-homomorphisms agreeing on the
generators 1 and z and hence are equal.

2.1.14. Theorem (Spectral Mapping). Let a be a normal element of

a unital C*-algebra A, and let f € C(o(a)). Then ‘
Tin .«}'ﬂd [N Eﬂm d&

=10 glo)afr ay, T A}
Moreover, if g € C(o(f(a))), then ”

abelion

Proof. Let B be th
{r(f(a)) | 7 € UB)

If C denotes t

(g0 f)(a) = g(f(a))

*-subalgebra generateqd by 1 and a. Then a'( =
f(r(a)) | 7 € Q(B)} = f(o(a)).

¥-subalgebra generated by 1 and f(a), then C C B
and for any r € {B) its restriction r¢ is a character on C'. We therefore

have ((go f)(a)) =g f(T(ﬂ}D«— s'{'-"c(f( ,)— fc(g }jﬂ))) = T(Q (£(a)))-,
Hence, (g o f)(4) = 9(f(a)). [hne YN J TO e PP SHudemly,
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2.1.15. Theorem. Let §2 be a compact Hausdorff space, and for each
w € 2 let 6, be the character on C(f1) given by evalution at w; that is,
bw( f) = f(w). Then the map

Q— QC(N)), wrb,,

1§ a hommeomorphism.

Proof. This map is continuous because if (wy )rea is a net in {2 converging
to a point w, then limaea f(wa) = f(w) for all f € C(§1), so the net (., )
is weak* convergent to &,. The map is also injective, because if w,w' are
distinct points of {2, then by Urysohn’s lemma there is a function f € C(Q2)
such that f(w) =0 and f(w') = 1, and therefore &, # 8...

Now we show surjectivity of the map. Let 7 € Q(C(f2)). Then M =
ker(r) is a proper C*-algebra of C({?). Also, M separates the points of (2,
for if w,w’ are distinct points of (), then as we have just seen there is a
function f € C(1) such that f(w) # f(w'), so ¢ = f — 7(f) is a function in
M such that g(w) # g(w'). It follows from the Stone—Weierstrass theorem
that there is a point w € § such that f(w) = 0 for all f € M. Hence,
(f = r(fH))(w) =0, so f(w) = 1(f), for all f € C(£2). Therefore, v = &...
Thus, the map is a continuous bijection between compact Hausdorff spaces
and therefore is a homeomorphism. O
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2.2. Positive Elements of C*-Algebras

In this section we introduce a partial order relation on the hermitian
elements of a C*-algebra. The principal results are the existence of a unique
positive square root for each positive element and Theorem 2.2.4, which
asserts that elements of the form a*a are positive.

2.2.1. Remark. Let A = Cy(2), where {2 is a locally compact Hausdorff
space. Then A,, is the set of real-valued functions in A and there is a
natural partial order on A,, given by f < g if and only if f(w) < g(w) for
all w € . An element f € A is positive, that is, f > 0, if and only if f 1s
of the form f = §g for some g € A, and in this case f has a unique positiv {
square root in A, namely the function w — +/f(w). Note that if f = f w
can also express the positivity condition in terms of the norm: If t € R,
then f is positive if ||f — t| < t, and in the reverse direction if || f|| < ¢
and f > 0, then ||f — t|| £ {. We shall presently define a partial order on
an arbitrary C*-algebra that generalises that of Cy({2), and we shall obtain
similar, and many other, results.

If B has a unit e not equal to the unit 1 of A, then for any b € B and
A € C\ {0} invertibility of b+ X in A is equivalent to invertibility of b+ Ae
in B, so -:I‘_,q_(b] = Uﬂ(b) U {U}

From these observations and Theorem 2.1.11, it is clear that for any
C*-subalgebra B of a C*-algebra A we have og(b) U {0} = 0 4(b) U {0} for

all b € B. i = —
(+/%)
| An element a of a C*-algebra A is m:fa is hermitian and o(a) C
R+ We write a > 0 to mean that a is positive, and denote by AT the set
Tof 1 positive elements of A. By the preceding observation BT = BN A* for J
any C*-subalgebra B of A. <

If S is a non-empty set, then an element f € £°°(S ) is positive in the
C*-algebra sense if and only if f(z) > 0 for all z € S, because o( f) is the

I DY - & I - . L & .Y O = T . T . T T & S DY i i
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space, then f € Cy(f2) is positive if and only if f(w) > 0 for all w € 0.

If a is a hermitian element of a C*-algebra A observe that C*(a) is the
closure of the set of polynomials in @ with zero constant term.

2.2.1. Theorem. Let A be a C*-algebra and a € A*. Then there exists
a unique element b € A" such that b? = a.

Proof. That there exists b € C*(a) such that b > 0 and b* = a follows

from the Gelfand representation, since we may use it to identify C*(a)

with Cp(f2), where ( is the character space of C*(a), and then apply Re

mark 2.2.1, @
Suppose that ¢ is another element of At such that ¢*> = a. As ¢

commutes with a it must commute with b, since b is the limit of a sequence

of polynomials in a. Let B be the (necessarily abelian) C*-subalgebra of A

generated by b and ¢, and let ¢: B — Cy(£2) be the Gelfand representation

of B. Then ¢(b) and ¢(c) are positive square roots of ¢(a) in Cy(2), so by

another application of Remark 2.2.1, ¢(b) = ¢(c), and therefore b=c. 0O

If Ais a C*-algebra and a is a positive element, we denote by a'/? the
unique positive element b such-that b® = a.

If ¢ is a hermitian element, then c? is positive, and we set |¢| = (¢2)/2,
ct = 1(J¢| + ¢), and ¢~ = 3(|c| — ¢y~ Bsing the Gelfand representation of
C*(c), it is easy to check that |c|, ﬁd c\” are positive elements of A such

that c=¢t — ¢~ and ete™ = 0.
2.2.2. Remark. If a 1s a hermitian element of the closed unit ball of a
unital C*-algebra A, then 1 — a? € At and the elements

u=a+1v1—a? and v=a—1V1—a?

are unitaries such that a = %(u + v). Therefore, the unitaries linearly span
A. a result that is freauentlv nseful.

2.2.2. Lemma. Suppose that A is a unital C*-algebra, a is a hermitian
element of A andt € R. Then, a > 0 if ||a—t|| < t. In the reverse direction,
if ||la]| £t and a > 0, then |la —t|| < t.

Proof. We may suppose that A is the (abelian) C*-subalgebra generated
by 1 and a, so by the Gelfand representation A = C(o(a)). The result now
follows from Remark 2.1.1. 0

It is immediate from Lemma 2.2.2 that At is closed in A.

2.2.3. Lemma. The sum of two positive elements in a C*-algebra is a
nositive element.



Proof. Let A be a C*-algebra and a, b positive elements. To show that
a+b > 0 we may suppose that A is unital. By Lemma 2.2.2, ||a—||al||| < ||al
and [[b—[[o][]| < [|5]], so [[a+b—[lal[—[le]l]| < lla—Ialll[+/>—[[oll] < [lall+I[b]]
By Lemma 2.2.2 again, a + b > 0. O

2.2.4. Theorem. Ifa is an arbitrary element of a C*-algebra A, then a*a
is positive. v

Proof. First we show that a = 0 if —a*a € A*. Since o(—aa*)\ {0} =

o(—a*a) \ {0} by Remark 1.2.1, —aa* € At because —a*a € A*. Write

= b + ic, where b,c € A,,. Then a*a + aa* = 2b? + 2¢%, so a*a =

2b% + 2¢® — aa* € A*. Hence, o(a*a) = R* N (—R*) = {0}, and therefore
lall? = lla*al| = r(a*a) = 0.

Now suppose a is an arbitrary element of A, and we shall show that

a*a is positive. If b = a*a, then b is hermitian, and therefore we can write

b=2>bt—b". If c = ab™, then —c*c = —b~a*ab™ = b~ (bt — b )b~ =
() € AT, so ¢ = 0 by the first part of this proof. Hence, b~ = 0, so
a*a=b% € AT, 0

If Ais a C*-algebra, we make A,, a poset by defining a < b to mean
b—a € AT. The relation < is translation-invariant; that is, a < b =
a+c<b+cforalla,bce A,. Also,a <b=ta <tbforall t € Rt and
a<b&e —a> —b.

Using Theorem 2.2.4 we can extend our definition of |a|: for arbitrary
a set |a| = (a*a)'/?.

We summarise some elementary facts about A* in the following result.

2.2.5. Theorem. Let A be a C*-algebra.

(1) The set A* is equal to {a*a | a € A}. ‘?%
(2) Ifa,b€e Ay, and c € A, the < *ac < c"be. 0< O\G

(3) n‘@a < b, then |ja|| < ||b
(4) If A1s unital and a,b are poSitive invegtibje elements, then a <
-1 e |
0 Ftaia ™, &?0?)0:@ 7 -_7,

Proof. Conditions (1) and (2) are implied by Theprem 2.2.4 and the exist-
ence of positive square roots for positi To prove Condition (3)
we may suppose that A is unital. The inequality b < ||b|| is given by the
Gelfand representation applied to the C*-algebra generated by 1 and b.
Hence, a < ||b]|. Applying the Gelfand representation again, this time to
the C*-algebra generated by 1 and a, we obtain the inequality ||a| < ||.

To prove Condition (4) we first observe that if ¢ > 1, then c is invertible

and ¢~! < 1. This is given by the Gelfand representation applied to the
E Tt elagukbrmea agdoncoratard bar 1 amd 2 WNesss a4 « B o= 1 — ﬂ_lfzﬂ_n_lfz il
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a~12ha-1/2 = (q “/2amH/2)1 < 1, that is, a!/2b~1a1/2 < 1. Hence,
p—1 < (a 1;"2)-1(&1{2) e s n

2.2.6. Theorem. Ifa,b are positive elements of a C*-algebra A, then the
inequality a < b implies the inequality a'/? < b'/2,

Proof. We show a? < b = a < b and this will prove the theorem. We
may suppose that A is unital. Let ¢ > 0 and let ¢,d be the real and
imaginary hermitian parts of the element (¢ + b+ a)(t + b — a). Then

=3((t+b+a)(t+b—a))+(t+b—a)(t +b+a))

= t2 + 2tb + b° — a®

>8P,
Consequently, ¢ is both invertible and positive. Since 1 + e~ 1/2de=1/2 =
¢~ /%(c+id)c™/? is invertible, therefore c + id is invertible. It follows that
t + b — a is left invertible, and therefore invertible, because it is hermitian.
Consequently, —t ¢ o(b — a). Hence, o(b —a) C R*, so b — a is positive,
that is, a < b. O

It is not true that 0 < a < b = a? < b? in arbitrary C*-algebras. For
example, take A = M,(C). This is a C*-algebra where the involution is

given by
(a ﬁ)‘ (& "I)
v 6 o)

Let p and q be the projections

(10 gk a
r=(a o) = a-i(i 1)

Then p < p+g¢, but p2=p£(p+q)2=p+q+pq+q;a, since the matrix

T

3 2
g+pg+gp=3 (2 1)

has a negative eigenvalue.
It can be shown that the implication 0 < a < b = a? < b? holds only
in abelian C*-algebras [Ped, Proposition 1.3.9].
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We shall need to view Hilbert spaces as dual spaces. Let H be a
Hilbert space and H, = H as an additive group, but define a new scalar
multiplication on H, by setting A.z = Az, and a new inner product by
setting (z,y). = (y,z). Then H,. is a Hilbert space, and obviously the
norm induced by the new inner product is the same as that induced by the .
old one. If z € H, define v(z) € (H.)"* by setting v(z)(y) = (y,z). = (z,y).
It is a direct consequence of the Riesz representation theorem that the map

viH — (H.)", z— v(z),

is an isometric linear isomorphism, which we use to identify these Banach

spaces. The weak* topol%)@n H is called the weak topology. A net @J’(H H_]
(zx)rea converges to a point ¥ in H in the weak topology if and only if !
(z,y) = limy(zx,y) (v € H). Consequently, the weak t0pology is wea.ker
than the norm topology, and a bounded linear map betwee spa

is necessarily weakly continuous. The importance to us of the weak topolo A
1s the fact that the closed unit ball of H is weakly compact (Banach-Alaoglu
theorem).

2.4.1. Theorem. Let u:H, — H; be a compact linear map between
Hilbert spaces H, and H,. Then the image of the closed unit ball -::rf H,
under u is compact. tdul o "_'_'Mﬂﬂ H

Proof. et~S be the closed unit ball of H,. It is weakly compact, a.nd
u is we @ tinuous, so u(S) is weakly compact and therefore weakly % 'G@Tﬁ

aées u(S) is norm-closed, since the weak topology is weaker than
the norm topology. Since u is a compact operator, this implies that u(3) J;
is norm-compact. o '-“"Xé’“

2.4.2. Theorem. Let u be a compact operator on a Hilbert space H.
Then both |u| and u* are compact.

Proof. Suppose that u has p-ola.t‘ decomposition u = w|u| say. Then
lu| = w*u, so |u| is compact, and u* |u|tg__,_, so u* is compact. O

3,3&\ cuey) e EBC

Cnrnllary If H is any Hilbert space, then K(H) is self-adjoint.

Thus, K(H) is a C*-algebra, since (as we saw in Chapter 1) K(H) is
a closed ideal in B(H).

An operator u on a Hilbert space H is diagonalisable if H admits an
orthonormal basis consisting of eigenvectors of u. Diagonalisable operators
are necessarily normal, but not all normal operators are diagonalisable,
For instance, the bilateral shift is normal (it is a unitary), but it has no

eigenvalues. ) 4 Q — [ J}..L L. A, ,].n..d.__
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H, then it is diagonalisable.

.

Proof. By Zorn's lemma there is a maximal orthonormal set E of eigen-
vectors of u. If K is the closed linear span of E, then H = K @ K, and
K reduces u. The restriction ug1: K+ — K+ is compact and normal. An
eigenvector of uy . is one for u also, so by maximality of E, the operator
ug 1 has no eigenvectors, and therefore o(ug.) = {0} by Theorem 1.4.11.
Hence, ||ugs| = r(ug+) (by normality) = 0, so K+ = 0. Thus, K = H
and E is an orthonormal basis of eigenvectors of u, so u is diagonalisable.O

2.4.4. Theorem. Ifu is a co?pact normal operator on a Hilbert space

If H is a Hilbert space, we denote by F(H) the set of finite-rank
operators on H. It is easy to check that F(H) is a self-adjoint ideal of

B(H).

2.4.5. Theorem. If H is a Hilbert space, then F(H) is dense in K(H).

Proof. Since F(H)™ and K(H) are both self-adjoint, it suffices to show
that if u is a hermitian element of K(H), then u € F(H)™. Let E be an
orthonormal basis of H consisting of eigenvectors of u, and let £ > 0. By |
Theorem 1.4.11 the set S of eigenvalues A of u such that |[A| > ¢ is finite.
From Theorem 1.4.5 it is therefore clear that the set S’ of elements of E ~
corresponding to elements of S is finite. Now define a finite-rank diagonal
operator v on H by setting v(z) = Az if z € §' and A is the eigenvalue
corresponding to z, and setting v(z) =0ifzr € E\ S'. It is ea,ml}r checked
that ||v — u|| < supyeq(u)\s [A| < €. This shows that u € F(H)_ + 0

b =

If z,y are ele ts of a Hilbert space H we define the operator r ® y
on H by G_/ }_. Y’ﬁ“‘“ H— H -~ & u 2
_j (z® V) = (= ube. [ SPCGY)
Clearly, ||z ® y|| = ||z]||ly||- The rank of z ®y is one if z and y are non-zero.

If z,z',y,y' € H and u € B(H), then the following equalities are readily

verified:

(z®@2)Ny®y')=(y,z' Nz @)
(zRy)* ' =y®=z
u(z@y)=u(r)®y
(z @ y)u =z Q@ u*(y).
S@ﬂ(?f@?\'k XS AP X-7A® X

The operator z ® = is a rank-one projection if and only if (z,z) = 1,



that is, z is a unit vector. Conversely, every rank-one projection is of the
form z ® r for some unit vector z. Indeed, if €;,..., e, is an orthonormal
set in H, then the operator E“ f:_, ® e; 1s the orthogonal projection of H
onto the vector subs]i‘l‘a.ce Ce, + . —

JHe; r&n( 2?@6

Ay

for some scalar 7(z) € C. It is readily verified that the map z — 7(2) is a
bounded linear functional on H, and therefore, by the Riesz representation
theorem, there exlsts y € H such that. T(z) = (2, y) for all z € H. Therefore,

@jw-u ne LPu) _Peup = Puku Pﬁ?@rm*@(m?

2.4.6. Theorem. If H is a Hilbert space, then F(H) is Jmearly spanned \lo ke

by the rank-one projections. @ (u}_)u 5 ('”"’_‘9 ‘{ 2 -ﬂmrl‘g

Proof. Letu € F(H) and we shall show 3t is  line n of rank-
one projections. The real and imaginary parts of u are in F(H), since F( 6
is self-adjoint, so we may suppose that u is hermitian. Now u = ut —u™,
and by the polar decomposition |u| € F(H), so u* and u™ belong to F(H).
Hence, we may assume that u 2 0. The range u(H) is finite-dimensional, ‘% L
and therffaie it is a Hilbert space space with an orthonormal basis, e;,.. ?H =Y P

range, then u = ¢ ® y for some y € H. For if z € H, then u(z) = T[z];ro

say. Le uzf- E ., SO P 15 the projection of H onto u(H). Then
% = ”2 ‘ﬁ( i _,%; ® z;, where z; = u'/?(e;). Now
T; = some unit vector fJ and scalar Aj, so u = 2;;1 A2 F; ® £,

and smce the operators f; ® f; are rank-one projections we are done. O

2.4.7. Theorem. If H is a Hilbert space and I a non-zero ideal in B(H),

then I contains F(H). F(mg I _::) I:(F‘—)E_I :) K(H) g-—f

Proof. Let u be a non-zero operator in I. Then for some z € H we have
u(z) # 0. If p is a rank-one projection, then p = y ® y for some unit
vector y € H, and clearly there exists v € B(H) such that vu(z) = y (take
v = (y ® u(z))/||u(z)||?, for instance). Hence, p = vu(z ® z)u*v*,so p € I
as u € I. Thus, I contains all the rank-one projections and therefore by
Theorem 2.4.6 it contains F(H). O X
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map

Adu:K(H) — K(H'"), v~ uvu®,

is a *-isomorphism. In fact, all *-isomorphisms between K(H) and K(H")
are obtained in this way:

2.4.8. Theorem. Let H and H' be Hilbert spaces and suppose that the
map p: K(H) — K(H') is a *-150:1101})}11511] Then thepe exists a umt‘?ry (9
e

u: H — H' such that ¢ = Ad u. Fﬂr)-ﬁ)?ﬂ’) {7 [U)-:C. (
Let £ be a y compact Hat?ﬁf space.’ sﬁnr w 8 dﬂ1:1@1‘.#.;%}""‘35E O

T. the charactér on Cy({1) given by evaluation at w: Tu(f) flw). I
Wi,...,wy are distinct points of 1, then 7,,,..., 7., are linearly indepen-
dent. Forif A7, + -+ Ap7,, = 0 and we fix ¢, then by Urysohn’s lemma
we may choose f € Co(2) such that f(w;) = 1 and f{u_,) = 0 for j # i. ?{L’J )-)

Hence, 0 = 7 A;f(w;) = LlCY - ;i
It follows thlat if Co(R2) 1s ﬁmte dlmin ; Xthin 9,} ;‘Jsiig:im e)HfGCOd 'fffl.!))_ﬁ
From this observation we show that Q;Iﬂions linearly span an }:F{
abelian finite-dimensional C*-algebra. We may suppose the algebra is of the
form Cy(§2) by the Gelfand representation. Then {2 is finite and therefore
discrete, so the characteristic functions of the singleton sets span Cy({2).
Suppose now that A is an arbitrary finite-dimensional C*-algebra. It
is linearly spanned by its self-adjoint elements, and they in turn are linear

combinations of projections by what we have just shown, so it follows that
A 1s the linear span of its projections.

If p is a finite-rank projection on a Hilbert space H, then the C*-algebra

A = pB(H)p is finite-dimensional. To see this, write p = }_°_ e; ® ¢j,

where €;,...,en € H. If u € B(H), then —
U, ®€,

pup = Z (ej @ e;Yuler ®ex) = D (ulex), e;)e; ® ex.

1,k=1 5Lk=1

Hence, A is in the linear span of the operators e; @ ex (j,k =1,... M:Qd
en U

therefore dim(A) < oo. u ngc k 1< Inven ]M_

A closed vector subspace K of H is invariant for a subset A C B(H) if
it is invariant for every operator in A. If A is a C*-subalgebra of B(H), it @
is sald to be irreducible, or to act irreducibly on H, if the only closed vector
subspaces of H that are invariant for A are 0 and H. The concept of irre-
ducibility is of great importance in the representation theory of C*-algebras

which we shall be taking up in Chapter 5. The following theorem gives a
nire connection between irrediicibility and the ideal of compact operators.



and will be needed in succeeding chapters.
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U =lMpoo Pt 11 4 € I'( 1), SINCE r'{ﬂj 18 dense 1n AT ). INOW 1T U € /5‘\_&}

F(H), there exist ;,...,Zm,¥1,...,ym in H such that Y rey Tk ® Y-
‘Hence, pnu = 3 ;- Pn(Zk) ® yk- Since lim,—.oo pn(z % for all z € H,

S e e e , gy

im [[pa(z6) ® ve — 74 ® wi —th NENEEN WE.

¥y - NPl J(F)f | ]:7 5Pm-|

Hence, lim, o pau = u.

Let A be an arbitrary C*-algebra and denote by A the set of all positive 7,
elements a in A such that ||a]| < 1. This set is a poset under the partial
order of A,,. In fact, A is also upwards-directed; that is, if a,b € A, then
there exists ¢ € A such that a,b < c. We show this: If a € A% then 1+a

|

is of course Invertlble in A, and a(l + a]‘ =1-(1+a)™". We clai@f____;vj L
v - H: ' 3 N '-" l- = *, — | i | ..~ ol ! it.':' __‘nl._-; ) 31) \ '.1..._,‘... 148 - 0 - I )4 )] \'xf’r
oy [ abeAtmdashea(l+d) < b1+ 5 HE T ()

Indeed, if 0 < a < b, then 1 +a < 1 + b implies (1 +a)™! > (1 +b)7%,
by Theorem 2.2.5, and therefore 1 — (1 +a)™! < 1 — (1 4 b)™!; that is,
a(l +a)”! < b1 + b))~ I, proving the claim. Observe that if a € A*,
then a(1 4 a)™! b@lﬂngs«m A (use the Gelfand representation applied tn
the C*-subalgebra generated by 1 and a). Suppose then that a,b are an
arbitrary pair of elements of A. Put a' = a(1 —a)™?, V' = b(l - b)?
and ¢ = (a' + &')(1 +a' + b')"'. Then c € A, and since @’ < a' + ¥, we
have a = a'(1 + a')™! < ¢, by (1). Similarly, b < ¢, and therefore A is

upwards-directed, as asserted.

3.1.1. Theorem. Every C*-algebra A admits an approximate unit. In-
deed, if A is the upwards-directed set of all a € A* such that ||a|| < 1 and

uy = A for all A € A, then (uy)aea_is an approximate unit for A (called the
canonical approximate unit). %
»”

Proof. From the remarks preceding this theorem, (u))xea is an increasing
net of positive elements in the closed unit ball of A. Therefore, we need
only show that a = lim, u)a for each a € A. Since A lmearly spans A,
can reduce to the case where a € A. ltd‘l\i a = ":ﬁ"

Suppose then that a € A and that € > 0. Let ¢:C*(a) — (Q} be
the Gelfand representation. If f = p(a), then K = {w € Q| |f(w)]| > €} is
compact, and therefore by Urysohn’s legama there is a continuous function
g:Q — [0,1] of compact support such that g(w) all w € K. Choose

§ > 0 su hﬁ\jlmdl—ﬁ{sw Yo =k
= (%irﬁgllﬂ € A and ||a — uy,a| Now sup 03%3{{;2:?1 gl{ ﬁ’;ﬁg

a.nd A > ).n Then l—uy<1- - Ung,s s%iz(l —uy)a < a(l -~ u;o)a Hence /rl'

s 0 Iy s . 1;"') . ] LEN




E=UAG||™ = JRI=Ux}""(L=u))" Gl S 1 —Ux) _Of »~— Jld i1~ uuan S T T

lla(1 — u;n}a" < ||{1 - | < e. ThlBIhDWS that ¢ = limy uja. 0 Y
o (U LN El{ <1’ le.;\) < | ;Hﬁ IRA‘) \s | %

3.1.1. Remark. lIf éx gebra A'is separa fhen it admitl en

proximate unit which is a sequence. For in this case there exist finite sets
Fi CFR C...CF, C...such that F = UL, F, is dense in A. Le
(ux)aen be any approximate unit for A. If ¢ > 0, and F,, = {a;,...,am
say, then there exist Ay,...,Am € A such that ||a; — a;u,|| < eif A > A,.
Choose A\; € A such that A\, > Ay,...,A,. Then |a — au,|| < ¢ for all
a € F,, and all A > A.. Hence, if n is a positive integer and € = 1/n, then
there exists A, = A € A such that ||la—al,|| < 1/nforall a € F,. Also, we
may obviously choose the A, such that A\, < A4, for all n. Consequently,
lim, .o |la — auy, || = 0, for all a € F, and since F is dense in A, this also
holds for all a € A. Therefore, (uy_ )32, is an approximate unit for A.

3.1.2. Theorem. If L is a closed left ideal in a C*-algebra A, then there L
1S an increasing net (uy)aea of positive efeﬁents in the closed unit ball of
L such that a = hmf‘&i‘t:ui% ELNLX EL*-—)H&ELI b=ga G)b /
Proof. Set B = LNL*. Since B is a C*-algebra, it a.dmhiis an?éi:mxxmate \lj,
unit, (uy)aea say, by Theorem 3.1.1. If @ € L, then a*a € B, s0o 0 =

limy a*a(l — uy). Hence, lim, ||a — au,||? = lim, ||(1 — up)a*a(l — u;)“ < bl‘l-n*
lim) ||a*a(1 — u,)|| = 0, and therefore lim, ||[a — au,| = 0.

In the preceding proof we worked in the unitisation A of A. We shall
frequently do this tacitly.

3.1.3. Theorem. IfI is a closed ideal in a C*-algebra A, then I 1s self-
adjoint and therefore a C*-subalgebra of A. If (ux)xea 1S an approximate
unit for I, th_en for each a € A

r’ UNEH =|la+1I| = liiu lla — uaa|| = liin lla — aux]|.

Proof. By Theorem 3.1.2 there is an increasing net (uy)yep of positive
elements in the clnsed unit ball of I such that a = lim, au, for all a € I.
Hence, a* = lim} \uxa”] so a* € I, because all of the elements u) belong to
Therefurﬂ, Iis self-a.d]mn"n <1 Ciolico

Suppose that (u))iea 1s an arbltrary approximate unit of I, that a € A,
and that € > 0. There is an element b of I such that ||a+b|| < |la+I||+¢/2.
Since b = limy u)b, there exists Ag € A such that [|[b — uxb|| < E/Z fﬂI’ all

A2 }.ﬂ, a.nd therefore A e
Ao Tl < lla—waall (= wa)a+B)l| + o —urbl] [ [ =528 /5L

% 7T <lla+ bl + 1o — uab| o o] ¢

oIl ¢ < ]|a+ I| +¢/2+¢€/2.

'
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|la* + Il| = limy ||a®* — upxa®|| = limy ||a — auy||. D i

3.1.2. Remark. Let I be a closed ideal in a C*-algebra A, and J a closed

ideal in I. Then J is also an ideal in A. To show this we need only show /.
that ab and ba arein J ifa € Aand bisa pomtwe element of J (since Jis (| ¢/
a C*-algebra, J* linearly spans J). If (ux)aea i an approximate unit for(y/ »
I, then 5'/? = limy ub'/? because b*/2 € I. Hence, ab = lim, au;b‘”bm o U A
so ab € J because b'/2 € J, aupb'/? € I, and J is an ideal in I. Therefore, | T

a*b € J also, so ba € J, since J is self-adjoint. h

3.1.4. Theorem. IfI is a closed ideal of a C*-algebra A, then the quotient
A/I is a C*-algebra under its usual operations and the quotient norm.

Proof. Let (uy)res be a approximate unit for I. If a € A and b € I, then

la + I]|* = liin la = aux||* (by Theorem 3,1.3) |
=lim |(1 - ux)a’a(l — u,)| (€™ _condition
< sup i1 — ua)(a®a +B)(1 —wa)ll +lm fI(1 — up)¥(1 — ua)
< |la*a + b +1i§n||b~—u;.,b|! —~
= [la*a + b]|. o

Therefore, ||a + I||* < ||a® a+I|| By Lemma.Z 1 3 A/I is a C*m.lgebra O

1 | i1
-.h.-}_. I |‘;.'1. - = -
| .- T | | s

3.1.5. Theorem. If p: A — B is an injective *-hﬂmﬂmorp}usm between
C*-algebras A and B, then ¢ is necessarily isometric.

Proof. 1t suffices to show that ||p(a)||? = ||a||?, that is, |¢(a*a)|| = ||a*a]l-
Thus, we may suppose that A is abelian (restrict to C(a*a) if necessary),
and that B is abelian (replace B by @(A)~ if required). Moreover, by
extending ¢: A — B to $: A — B if necessary, we may further assume that
A, B, and ¢ are unital. 3 b( Z(b)# 0
If 7 is a character on B, then 7 0 ¢ is one on A. Clea.rly the map /
rﬂfmc Q ﬂ]) —
- o' Q(B) — Q(A} r e

gy 1)
o [

is contindods. Hence, p(ﬂ(gd] is £, cause/[(fi} is mmpact%r(wrz)
and therefore ¢'(Q2(B)) is clos%::ll in Q(A) If o\(QUB)) # U A), then

Urysohn’s lemma there is a nOn®zeéro continuous\function f:Q(A4) — C
such that f vanishes on ¢ (Q{B)) By the Gelfand representa.tm f = a ‘3”
- = [}

¥ . I TR " TT - . _J—f\fﬁ\ i Fa




UL wllLIC e;emez&:i]n: 43, LICLILE, 1O Calll 7 T el L2 ), T ¥\ W) ) — LT V)= u.

Therefore, p(a :7'1 , 80 a = 0. But this implies that f is zem(e(a mn8r>a.d1c~ ?(@(%,u
tion. The only way to avoid this is to have ©'(Q2(B)) =.£2(A). Hence, for
'&ﬁo

eacha € 4, :n@”

lall = llallc = sup |r(a)] = sup |r(p(a)) ;\/Ilw(ﬂ)ll-

rEN(A) r€Q(B) ="
Flic)

3.1.6. Theorem. If p: A — B is a *-homomorphism between C*-algebras,
then ¢(A) is a C*-subalgebra of B.

Proof. The map

Thus, ¢ 1s 1sometric.

A/ker(¢) — B, a+ ker(p) — ¢(a),

is an injective *-homomorphism between C*-algebras and is therefore iso-

metric. Its image 1s ¢(A), so tl‘us space 1s necﬁasa.nly complete and therefore
CIUE'ed n B\‘* LY 'f.‘,m Iyl € " 2y xﬁ,,a 1% O
3 1 7. Thenrem Let B and I be respectwely a C*-subalgebra and a

closed ideal in a C*-algebra A. Then B +1 i is a C*—sub&fgehra of A.
R >CT {

Proof. We show only that B + I 1s cnmp]ete betause ‘the rest i# trivial.
Since I is complete we need only prove that the quotient (B + I)/I is
complete. The intersection BN I is a closed ideal in B and the map ¢ from
B/(BNI) to A/I defined by setting w(b+ BNI)=5b+1 (b€ B)isa _
*-homomorphism with range (B + I)/I. By Theorem 3.1.6, (B + I)/I is B4+1
complete, because it is a C*-algebra. B R s B e B

|
| LAWY l._--._1;

If,1,,...,I, are sets in A we deﬁne I, Iz n to be the closed lmea.r
span of all products @1az2 . ..an, where a; € I;. If I J are closed ideals in 4£7()
A, then INJ = IJ. The inclusion IJ C InJ is obvious. To show the) 0% 4
reverse inclusion we need only show that if a is a positive element of I N J, T o ’5]
then a € IJ. Suppose then that a € (INJ)*. Hence, a'/? € INJ. If U, el
(ux)xea is an approximate unit for I, then a = llm;[u;a”z)a”? and sinc Q? I by
uxa'/? € I for all A € A, we get a € IJ, as required. ¢ 1{]
Let I be a closed ideal I in A. We say I is essentialin A if al =0 = “Iny !
a = 0 (equivalently, Ja = 0 = a = 0). From the preceding observations \w
it is easy to check that I is essential in A if nly if INJ # 0 for all ‘ﬁ?q a
non- zero closed ideals J in ‘ ) . 6[_?

I - [ S . T A - - . T
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3.1.8. Theorem. Let I be a closed ideal in a C*-algebra A. Then thereis a
unique *-homomorphism p: A — M(I) extending the inclusion I — M(I).
Moreover, ¢ is injective if I is essential in A.

Proof. We have seen above that the inclusion map I — M(I) admits a
*-homomorphic extension w: A — M(I). Suppose that ¥: A — M(I) is
another such extension. If a € A and b € I, then p(a)b = p(ab) = ab =
Y(ab) = ¢(a)b. Hence, (¢(a) — ¥(a))l = 0, so p(a) = 3(a), since I is
essential in M(I). Thus, ¢ = .

Suppose now that I is essential in A and let a € ker(y). Then al =

La(I) = 0, so a = 0. Thus, ¢ is injective. O
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Hereditary C*-Subalgebras

A C*-subalgebra B of a C*- a.l ebra A is said to be hereditary if for G
a € At and b € BY the mf:quallty\. < b implies a € B. Obviously, 0 and ¥/}
A are hereditary C*-subalgebras of A, and any intersection of hereditary
C*-subalgebras is one also. The hereditary C*-subalgebra generated by a
subset S of A is the smallest hereditary C*-subalgebra of A containing S.

3.2.1. Ezample. If p is a projection in a C*-algebra A, the C*-subalgebra

pAp i egedlta.r}' For, assuming 0 < b < pap, then 0 < (1 — p)b(1 — p) <
1 Lp)pap(1 — p) = 0, so (1 — p)b(1 — p) = 0. Hence, |[p'/2(1 — p)|?> =
1—p)b(1—p) =D,sob1—p]—ﬂ Therefore,b pb EpAp
( =0 e Pl=o o bbP el bePb=PlP)
The correspondence between hereditary C*-subﬁge bras a.nd osed left
ideals in the following theorem is very useful.

3.2.1. Theorem. Let A be a C*-algebra.

(1) If L is a closed left ideal in A, then LNL* is a hereditary C*-subalgebra
of A. The map L — L N L* is a bijection from the set of closed left
ideals of A onto the set of hereditary C*-subalgebras of A.

(2) IfL,, L, are closed left ideals of A, then L, C Ly ifand only if LyNL] C
L2 N L.

(3) If B is a hereditary C*-subalgebra of A, then the set

L(B)={a € A|a*a € B}

is the unique closed left ideal of A corresponding to B.

Proof. If L is a closed left ideal of A, then clearly B = LN L* is a
C*-subalgebra of A. Suppose that a € A* and b € B* and a < b. By
Theorem 3.1.2 there is an increasing net (u))aea in the closed unit ball of
L* such that limy buy = b. Now 0 < (1—wur)a(l —uy) < (1—ur)b(l—uy),
s0 a2 —a1/uy | = [[(1-ux)a(1 = ux)] < (1-un)(L— )| < [[b—bus];
Hence, a'/? = limy a'/?u,, so a!/? € L, since u, € L (A € A). Therefore,
ti't E B, so B 1s hereditary in A.

5ol !> Suppose now that L;,L; are closed left ideals of A. It is evident
q‘.hat Ly C L, = LinNnLY C LyNL;. To show the reverse implication,
suppose that Ly N L} € LyN L3 and let (ux)xea be an approximate unit for
LiNL},anda € Ll. Then lim, |la —auy||? = limy [|(1 —ua)a*a(l —uy)|| <
limy ||la*a(l — uy)|| = 0, since a*a € Ly N L}. It follows that limy auy = a.
Therefore, a € Ls, since uy € L; N L} C L,. This proves Condition (2}

Now let B be a hered1ta,ry C*-subalgebra. of A and let L L(B).

T om T ri s T el & a TN ra O Y sl & B T % s 4 s T %T - ™



Gt Ly, leT00) |47 0) =470 ldT-0)7d—0) |d—0)=2d AT a0 0 C D,
soa+be L. Ifa€ Aandbe L, then (ab)*(ab) = b*a*ab < ||a||?b*b € B,
so ab € L. Similarly, L is closed under scalar multiplication. Thus, L is
a left ideal, and it is obviously closed, since B is closed. If b € B, then 13,
b*be B,sobe L. Hence, BC LNL*}JIf0<be LNL* thenbz"ﬁ" (“
so b € B, and therefore L N L* C B. {Hence, LN L* = B. This prmres

Ccﬂldi‘lt_ion (3), and Condition (1) follows {:a gL-a,ﬁ nECB 7‘

e )2 86
3.2.2. Theorem. Let B be a C*-subalgebra of a C*- algebra A. Then
is hereditary in A if and only if bab' € B for all b,b' € B and a € A.

rcz?"”

Proof. If B is hereditary, then by Theorem 3.2.1 B = L N L* for some

closed left ideal L of A. Hence, if b, € B € A, we have b(ab’') € L
and v (a*b*) € L, so bab' € B. €l"&S X'e - Gl
Conversely, suppose B has the property that bab’ or all b,b' € B

and a € A. If (ux)aea is an approximate unit for B and a € A%, b € B,

and a < b, then 0 < (1 —uy)a(l —ux) < (1 —uy)b(1l — uy), and therefore

|at/? — ]fzu;.," < ||61/% — b'/%uy||. Since b/ = limy b'/2uy, therefore,
1-" = hmla /2y, so a = limy uyauy € B. Thus, B is hereditary.

6o 1= 11 ‘"Axﬂ-ﬂlﬂu;—u aE I

" Sa - ~Wal
3.2.3. Corollary. Every closed ideal of a C*-algebra is a hereditary

C*-subalgebra. B;Lng o Il g 'Oox\c)CL V-L\; Lték

Lisact % 4
3.2.4. Corollary. If A is a C*- afgebra, and a E A"‘ then (aAa)~ is th -ﬁg
hereditary C*-subalgebra of A generated by a
384 bords

O-I
'TD owing corollary is obvious.

o

routine. If (u))aea is an approximate unit for A, then a? = limy auya, so

Proof. The only thing we show 1s that a € ( a) : because e rest is @
a? € (aAa)~. Since (aAa)” is a C*-algebra, a = \/{? € (aAa)™ also. O

In the separable case, every hereditary C*-subalgebra is of the form in
the preceding corollary:

3.2.5. Theorem. Suppose that B is a separable hereditary C*-subalgebra
of a C*-algebra A. Then there is a positive element a € B such that
B = (aAa)".

Proof. Since B is a separable C*-algebra, it admits a sequential ap-
proximate unit, (un)?>, say (cf. Remark 3.1.1). Set a = Y .., un/2™
Then a € B*, so B contains (ada)”. Since u,/2" < a, and (aAa)~
is hereditary by Corollary 3.2.4, therefore u, € (ada)~. If b € B, then



b =limp—oo Unbup, and upbu, € (ada)™, so b € (aAa)~. This shows that
B = (aAa)". O

If the separability condition 1s dropped in Theorem 3.2.5, the result
may fail. To see this let H be a Hilbert space, and suppose that u is
a positive element of B(H) such that K(H) = (uB(H)u)". Ilf r € H,
then z ® z = lim,,_ o, uv,u for a sequence (v,) in B(H), and therefore z
is in the closure of the range of u. This shows that H = (u(H))™, and
therefore H is separable, since the range of a compact operator is separable
(¢f. Remark 1.4.1). Thus, if H is a non-separable Hilbert space, then the
hereditary C*-subalgebra K(H) of B(H) is not of the form (uB(H)u)~ for
any u € B(H)*.

3.2.6. Theorem. Suppose that B is a hereditary C*-subalgebra of a unital
C*-algebra A, and let a € A*. If for each € > 0 there exists b € B* such
thata£b+£, then a € B. 2'01)

Proof. Let ¢ > 0. By the hypothesis there exists b, € Bt such that
a<b+e? soa< (b + EF. Hence, (b +€) 'a(be +€)~" <1, and there-
fore ||(b. + ) a(b, + €)'|| < 1. Using the fact that 1 — b.(b. + &)~ =

e(b, +€)”", we get
T b\) 'Hum
||a”2 . ﬂlfzb;(b; 4 E)—IHE — E!Z "ﬂl‘ﬂ(b, +E)_1"2 -""f /of

= &?||(be + ) a(be +€)7" || byE 1§
< invertible,

Hence,
o a'/? = lim a'/2b, (b, + €)™, (S b0 & t>o

E—r0

and therefore also (n L-H:-_, %'— {-!-E) }O

1/2 _ 1: -1
g = !1_1.1'[1}(&, +¢€)” bea' El

by taking adjoints. Thus Wl
' o ‘9‘* sgatb%) srﬂ%@cf X

a = lim (b, +¢)” 'b.ab, (b, +e)‘

L.H.; 15 WV
Now b, (b, + €)~' € B, and therefore (b, + €)™ 'b.ab.(b. + )~ € B, since
B is hereditary in A. It follows that a € B. a

We briefly indicate the connection between the ideal structure of a
C*-algebra and its hereditary C*-subalgebras in the following results, but
we shall defer to Chapter 5 a fuller consideration of this matter.

3.2.7. Theorem. Let B be a hereditary C*-subalgebra of a C*-algebra P‘
l(ﬁ\[

A, and let J be a closed 1dea{’ i\?hen }j:{ere exists a closed ideal I of A
b VMo ALY,

I e T 4 vy o ¥
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Ng?t ol
Proof. Let .= AJA. Then I is a closed ideal of A. Since J is a
C*-algebra, JI&)J3, and since B is hereditary in A, we have BN I = BIB
(both of these assertions follow easily from the existence of approximate

3.2.2. Ezample. If H is a Hilbert space, then the C*-algebra K(H) is
simple. For if I is a closed non-zero ideal of K(H), it is also an ideal of
B(H) (cf. Remark 3.1.2), so I contains the ideal F(H) by Theorem 2.4.7,
and therefore I = K(H).

It is not true that C*-subalgebras of simple C*-algebras are necessarily
simple. For instance, if p, ¢ are finite-rank non-zero projections on a Hilbert
space H such that pg = 0, then A = Cp+ Cq is a non-simple C*-subalgebra
of the simple C*-algebra K(H) (the closed ideal Ap = Cp of A is non-
trivial).

3.2.8. Theorem. Every hereditary C*-subalgebra of a simple C*-algebra
1s sumple.

Proof. Let B be a hereditary C*-subalgebra of a simple C*-algebra A.
If J is a closed ideal of B, then J = B N I for some closed ideal I of A
by Theorem 3.2.7. Simplicity of A implies that I = 0 or A, and therefore
J=0or B. O

3.3. Positive Linear Functionals

For abelian C*-algebras we were able completely to determine the
structure of the algebra in terms of the character space, that is, in terms of
the one-dimensional representations. For the non-abelian case this is quite
inadequate, and we have to look at representations of arbitrary dimension.
There is a deep inter-relationship between the representations and the pos-
itive linear functionals of a C*-algebra. Representations will be defined and
some aspects of this inter-relationship investigated in the next section. In
this section we establish the basic properties of positive linear functionals.

If p: A — B is a linear map between C*-algebras, it is said to be
positive if p(A") C %@*’}‘ In this case ¢(Asq) € Bsa, and the restriction
map : A;g — B,, 1s increasing.

Every *-homomorphism is positive.

3.3.1. Ezample. Let A = C(T) and let m be normalised arc length

measure on T. Then the linear functional Ay Gy thg.m}lu?i ?]
N ¥
C(T) = C, fw /fdm, L’H‘%i~-n“h 1)

« 00, g < 4 2 A ow W [
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3.3.2. Ezample. Let A = M,(C). The linear functional /315 0 ':)<Pfx X}')nbiﬂ’

—>’(’a <{be 5% 0
097

is positive. It is called the trace. Observe that there are no non-zero
*-homomorphisms from M,(C) to Cifn > 1.

tr: A — C, (a._;)'—* Z&ﬁ,

Let A be a C*-algebra and 7 a positive linear functional on A. Then
the function ([l-

— C, (a,b) — 7(b*
is a positive sesquilinear form on A. Hence, 7(b*a (a*b)™ and |7(b*a)| E
r(a*a)'/?r(b*b)'/2. Moreover, the function a +— -r(a a)'/? is a semi-norm

on A. HM (\

Suppose now only that r is ﬁne&r functional on A and that M is
an element of R* such that |r(a)] < M for all positive elements of the
closed unit ball of A. Then 7 1s bounded with norm ||7| < 4M. We show
this: First suppose that a i1s a hermitian element of A such that [la| < 1.
Then at,a™ are positive elements of the closed unit ball of A, and therefore
|r(a)| = |r(a*)—7(a")|y< 2M. Now suppose that a is an arbitrary element
of the closed unit ball of/\4, so a = b+1c where b, c are its real and imaginary
parts, and ||b|[, ||¢]| £ 1 he:n |r(a)| = |1'(b) +ir(c)| < 4M.

siUa)] lZ{ﬂ)
3.3.1. Theorem. If r'is a p ive linear functional on a C*-algebra A,
then it is bounded.

Proof. If r is not bounded, then by the preceding remarks sup, 5 7(a) =
+oo, where S 1s the set of all positive elements of A of norm not greater
then 1. Hence, there is a sequence (a,) in S such that 2" < 7(a,) for all
n € N. Set a=>5 10 ,an/2" soa € At. Now 1 < 7(a,/2") and therefore
N < E“ o T(On 28y = #( :':ul an/2") < 7(a). Hence, 7(a) is an upper
bound for the set N, which is impossible. This shows that 7 i1s bounded. O

3.3.2. Theorem. If r is a positive linear functional on a C*-algebra A,
then 7(a*) = 7(a)~ and |7(a)|* < ||7]|7(a*a) for all a € A.

- .
Proof. Let (ux)aea be an approximate unit for A. Then

r(a*) = li‘{nr(u"ul) = liinr(ula)_ = r{a)".



Also, |T(a)|” = lim) |r[u;a}| = suplT[uL]_rj_a a) = ||T)itia a).
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3.3.3. Theorem. Let 7 be a bounded linear functional on a C*-algebra
A. The following conditions are equivalent:

(1) 7 is positive.
(2) For each approximate unit (uy)aep of A, ||7]| = limy 7(uy).
(3) For some approximate unit (ux)aea of 4, ||‘rh lim), 7(uy).

ae @n N, <
Proof. We may suppose that ||r|| = 1. Flrst we show the 1mp1¥c§t;Ln ” ;}"'

(1) = (2) holds. Suppose that 7 is positive, and let (uy)rear be an ap-
proximate unit of A. Then (T(HJ\)A)AEJ& is an )mwlm.\l;’m__‘_ﬂ.sw
converges to its supremum, which is obviously not greater than 1. Thus el J(@
limy m(uy) < Now suppose “that @ € A and ||a]| < 1. Then |r(uxa)|? < J
T(u3)r(a*a) (u;)f(a a)“{’llm; T(uy), so |r(a) 2 < limy, r(u;..) ,I;lence
1 <limy 7(uy). Therefore, 1 = lim, 'r[u;,.) (2] {. U. "“A
That (2) = (3) is obvious. SUP -ﬂl‘m ? “-u -—"l i
Now we show that (3) = (1). ’% pose hat (ux)rea is an approxl
unit such that 1 = limy 7(uy). Let a be a self-adjoint element of A such

that |la|| < 1 and write 7(a) = a+i8 where a, § are real numbers. To show
that ‘T(ﬂ.) € R, we may suppose that § < 0. If n is a positive integer, then

Efﬁ' /—[|(5— znu;.t"“ s ||Ea‘ + mu;.)(a — inuy )| 9,?& (;ﬁ;{_}\;

~0z 'H" "’r"‘]q = |la*® + n*u} —in(aux — uaa)||
H ul..uuuﬂ € so. < 1+n?+nllauy —uaal,

o
S0
@ s |r[a—znu;)|m'/,1 + n? 4 n|laus — uaal).

However, limy 7(a — inuy) = 7(a) —in, and limy au) — uya = 0, so in the
limit as Ji — 00 we get "{-l-lﬁ

"(*P) N W ._|¢:1+:|Q—rn|2 <1% n?
The left-hand side of this mequa.llt; is a? + % — 2npB + n?, so 1f we can
and rearrange we get - % Ic <1mgﬂx{ llfn ,p }
15 —a. <, ;é>u

Since 3 is not positive and this inequality holds for all pusitive integers n
f must be zero. Therefore, T(a) is real if a is hermitian.

Now suppose that a is positive and ||a|| < 1. Then uy — a is hermitian
and ||luy—a| £1,s0 7(uy—a) < 1. But then 1—7(a) =limy r(uyr—a) <1,
and therefore r(a) > 0. Thus, 7 is positive and we have shown (3) = (1).0

3.3.4. Corollary. Ifr is a bounded linear functional on a unital C*-algebra,
then T is positive if and only if T(1) = |||

Proof. The sequence which is constantly 1 is an approximate unit for the
i Y b A Yo TVL . N0 D o
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3.3.5. Corollary. If r, 7" are po:s@we}hnear functionals on a C*-algebra,

then || + 7'l = Il + |I'll. & = — _~—NT+T i<uzu+uz 1)

Proof. If (ux)aea is an approximate unit for the algebra, then |7+ 7'|| =
limy(r + 7')(ua) = imy 7(un) + limy 7'(ux) = ||7]| + ||7']]- O

A state on a C*-algebra A is a positive linear functional on A of norm

one. We denote by S(A) the set of states of A. 09*1)@;1_

3.3.6. Theorem. If a is a normal element of a non-zero C*-algebra A, X
then there is a state r of A such tha 8- C(ﬂ(ﬂ ))

Proof. We may assume that a # 0. Let B be the C*-algebr&agmeratedo‘

by 1 and a in A. Since B is abelian and & is continuous on the compact “an ‘r@)
space {}(B), there is a character 7, on B suut:@at lall = ||a]lc = [T2(a)l. "
By the Hahn-Banach theorem, there is a bo linear functional r; on A
extending 7, and preserving the norm, so ||r;|| ="1. Since 71(1) = 72(1) = 1, lal|
71 is positive by Corollary 3.3.4. If r denotes the restriction of m tn\?[,-\), 1ig
then 7 is a positive linear functional on A such that ||al|,;= |r(a)|. Hence, ¢ "{(
I lllell = t*r(a)t = |la||, so ||| = 1, an th? reverse ine a,ht}f is obvious.

Therefore, 7 is a state qif‘.{iﬂ\{ "Z"H[ ’ ;{' g = "L' ﬁ)’ }Zl(d ]

3.3.7. Theorem. Suppose that T 1s a posﬂxve linear functmnai on a
C*-algebra A.

(1) For each a € A, r(a*a) = 0 if and only if (ba) = 0 for all b € A.
(2) The inequality

r(b*a*ab) < ||a*al|r(b*b)

holds for all a,b € A. t& K’Z(a& ) T(b }J)b

Proof. Condition (1) follows from the Ca &rz inequality.
To show Condition (2), we may suppose, usmg Condition (1), that
7(0*d) > 0. The function

p: A — C, ¢ 1(b"ch)/r(b*b),
is positive and linear, so if (u))xea is any approximate unit for A, then
el = hf] pluy) = lli'll‘]"(b upb)/T(b*b) = T(b*b)/T(b"b) = 1.

Hence, p(a*a) < ||a*al|, and therefore r(b*a*ab) < ||a*al||T(b*b). O

We turn now to the problem of extending positive linear functionals.

3.3.8. Theorem. Let B be a C*-subalgebra of a C*-algebra A and Sup-

ST Iy CPACH: DTt FL O T e . e 1R U, , S Y. £X. Dt N o | L g AL D R, R e [
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linear functional ' on A extending t such that ||7'|| = ||7||.

Proof. Suppose first that A = B. Define a linear functional 7' on A
by setting 7'(b+ A) = 7(b) + A||7|| (b € B, A € C). Let (ux)rea be an
approximate unit for B. By Theorem 3.3.3, ||7|| = limj 7(u)). Now suppose
that b € B and p € C. Then |7'(b + p)| = |limy 7(buy) + plimy 7(uy)| =
| lim 7((b + u)(ua))| < supy [|7][[|(6+ wuall < [I7[llIb+ pll, since [Juall < 1.
Hence, ||7'| < ||1"|| and the _reverse inequality is obvious. Thus, [|7'| =

||T|| = T'(l), so 7' is p051t1v~ﬂ b Corﬁlla.rjr 3.3.4. This proves the thmrem

the case ;

W (bt I ibsol B-{ny ¢
“ k T I 7(bs3)- T(b)ﬁ@

Now suppose that A is an prbitrary C*-algebra containing B as a.
C*-subalgebra. Replac‘mg B A by B and A if necessary, we may Z( J 'Z@
suppose that A has a umt 1 which lies in B. By the’Hahn—Banach theorem, +1 ’t"
there is a functional 7' € A* extending 7 and of the same norm. Since — |

(1) = 7(1) = ||=]| = ||7'[], it fol ws as before fro Corollat)y 3.3.4 that 7'
is positive. _[” A d, 8 ; ¢ ﬁ B ([‘ ﬁ / 0
In the case of hex‘ﬂt:lltr:’:.rj,r -Subalgebras, :? strengtzen the above

result—we can even write down an “expression” for 7':

3.3.9. Theorem. Let B be a hereditary C*-subalgebra of a C*-algebra
A. If T is a positive linear functional on B, then there is a unique positive
linear functional ' on A extending T and preserving the norm. Moreover,
if (ux)aea 1s an approximate unit for B, then

7'(a) = liinr(u,xau;) (a € A).

Proof. Of course we already have existence, so we only prove uniqueness.
Let ' be a positive linear functional on A extending r and preserving the
norm. We may in turn extend r’ in a norm-preserving fashion to a positive
functional (also denoted ') on A. Let (ux)rea be an approximate unit for
B. Then limy r(uy) = ||7|| = ||7'|| = 7'(1), so limy 7'(1 — u)) = 0. Thus,
for any element a € A,

I7'(a) — T(uprauy)| < |7'(a — ura)| + |’ (ura — upauy)|
< T'((l i ul)ﬂ)l,’ﬂ I(a a)]f?
+7'(a*ula)' 27 ((1 — ua)?)'/?
< (7'(1 —ua))?7'(a*a)'? + 7'(a*a) 2 (r'(1 — uy)) /2.

Since limy 7'(1 — uy) = 0, these inequalities imply limy r(ujauy) = 7'(a).0



Let A be a C*-algebra. If 7 is a bounded linear functional on A, then

7l = sup |Re(r(a))l. (1)
lal<1

Forifa € A and ||a|| < 1, then thereis a number A € T such that Ar(a) € R, __—

so |r(a)| = |Re(r(Aa))| < ||7||, which implies Eq. (1). hd P"ﬁ: F{)(ﬂ*)
If r € A*, we define 7* € A* by setting E*(a) == r(a")“for \mie A.
Note that ** = 7, ||7*|| = ||r||, and the map 7+ 7" is conjugate-linear. "_’F oy
We say a functional r € A* is self-adjoint if r = r*. For any bounded (](R)T{ﬂ)
linear functional T on A, there are unique self-adjoint bounded linear func- ‘"
tionals 7; and ™, on A such that r =7, + iy (take 1y = (v +7*)/2 and % §
2 = (1 — 7*)/2i). (i
The condition 7 = 7* is equivalent to 7(A,,) C R, and therefore if
T is self-adjoint, the restriction 7': A;, — R of 7 is a bounded real-linear J-(_(f f
e X
..C z

functional. Moreover, ||7|| = ||7'||; that is,

I7ll = sup |r(a)l

lla]|<1

For if a € A, we have Re(7(a)) = r(Re(a)), so

I7ll = sup |Re(r(a))] < sup |r(8)] < ||7.
lall<1 bed,e

We denote by Aj, the set of self-adjoint functionals in A*, and by A%
the set of positive functionals in A*.

We adopt some temporary notation for the proof of the next theorem:
If X is a real-linear Banach space, we denote its dual (over R) by X*.

The space A;, is a real-linear Banach space and it is an easy exercise
to verify that A}, is a real-linear vector subspace of A* and that the map
A%, — A',, 7— 7', is an isometric real-linear isomorphism. We shall use
these observations in the proof of the following result.

3.3.10. Theorem (Jordan Decomposition). Let 7 be a self-adjoint
bounded linear functional on a C*-algebra A. Then there exist positive
linear functionals 7, 7_ on A such that r = 4. —7_ and ||7|| = ||[r+|+]7=]|-

3.4. The GElfand—NaimarkaEpr?esentatinn

In this section we introduce the impo#tant GNS construction and prove
that every C*-algebra can be regarded as a C*-subalgebra of B(H) for



some Hilbert space H. It is partly due to this concrete realisation of the
C*-algebras that their theory is so accessible in comparison with more gen-
eral Banach algebras.

A representation of a C*-algebra A is a pair (H, ) where H is a Hilbert
space and ¢: A — B(H) is a *-homomorphism. We say (H, ) is faithful if
@ 18 injective. |—

¥ (H), ©@a)aea is a family of represen
the representation (H,y) got by setting F DrHy, and p(a)((za)r) =
(pa(a)(zx))a for all a € A and all (zx)x € H. It is readily verified that
(H, ) is indeed a representation of A. If for each non-zero element a € A
there is an index A such that py(a) # 0, then (H, ) is faithful.

s of A, their direct sum 1s

Recall now that if H is an inner product space (that is, a pre-Hilbert
space), then there is a unique inner product on the Banach space completion
Hof H extending the inner product of H and having as its associated norm
the norm of H. We call H endowed with this inner product the Hilbert space
completion of H.

With each positive linear functional, there is associated a represent-
ation. Suppose that 7 is a positive linear functional on a C*-algebra A.
Setting

it 1s easy to check (using Theorem 3.3.7) that N,- is a closed left ideal of A
and that the map

%% % A/ ~—}c (a+ N, b+ N,) — r(b*a),

(asN a+y\1()-o=}»t(aa}n—>ﬁ€Nf>W

is a well-defined inner Ernducj\nn A/N,. We denote by H, the Hilbert

completion of A/N,.
If a € A, define an operator ¢(a) € B(A/Nf} by setting
®(0): F/ne
p(a)(b+ N;)=ab+ N,.” T
e e

M= (o€ alr@a =0} [tk b7

The inequality ||p(a)|]| < [|a|| holds since we have |¢(a)(b + N» )||Y
T(b*a*ab) < ||a||?>7(b*b) = ||a||?||b + N||? ( the tter 1nequallty is given by
Theorem 3.3.7). The operator r,p(a} ha.s a exten ion to a bounded

operator ¢,(a) on H,. The map H
3
PriA— B(H )1 (a) ?[&" .c
H,

‘:Q - *_]ﬁnmnmnrﬁl*u:am {*1"\;:& ':Q Sy ST ONr ﬂ"lﬂ"ﬂf"f";ﬂ.ﬂ‘

=0

al

N
C

Y A/N —Job+ Mrﬂ‘?'
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The representation (H,, ;) of A is the Gelfand- Nﬂ:mark Segaf repre-
sentation (or GNS representation) associated to 7.

If A is non-zero, we define its universal representation to be the direct
sum of all the representations (H,, ), where r ranges over S(A).

3.4.1. Theorem (Gelfand—Naimark). If A isa C*-algebra, then it hasa
faithful representation. Specifically, its universal representation is faithful.

Proof. Let (H,p) be the universal representation of A and suppose that
a is an element of A such that ¢(a) = 0. By Theorem 3.3.6 there is a state

T on A such that ||a*a|| = r(a*a). Hence, if b = (a*a)'/4, then ||a|? =
r(a*a) = 7(8*) = [lpr(b)(b + Nr)||? = O (since ¢(b*) = ¢r(a%a) = 0, so
wr(b) = 0). Hence, a =0, and ¢ is injective. O

The Gelfand-Naimark theorem is one of those results that are used all
of the time. For the present we give just two applications.

The first application is to matrix algebras. If A is an algebra, M,(A)
denotes the algebra of all n x n matrices with entries in A. (The operations
are defined just as for scalar matrices.) If A is a *-algebra, so is M,(A),
where the involution is given by (ai;)}; = (a};)i,;-

If p: A —» B is a *-homomorphism between *-algebras, its inflation is
the *-homomorphism (also denoted )

P Mﬂ-(A) - MR{B)? (aij) = (‘F(ai‘:})'

If H is a Hilbert space, we write H(®) for the orthogonal sum of n
copies of H. If u € M,(B(H)), we define p(u) € B(H(™) by setting

P(u)(21y.04320) = (Zuu(mjh ey E un;j(2;));
j=1 =1

for all (z1,...,2,) € H™). It is readily verified that the map
¢: Mn(B(H)) = B(H™), u— o(u),

is a *-isomorphism. We call ¢ the canonical *-isomorphism of M, (B(H))
onto B(H(™), and use it to identify these two algebras. If v is an operator
in B(H™) such that v = ¢(u) where u € M, (B(H)), we call u the operator
matriz of v. We define a norm on M,(B(H)) making it a C*-algebra by
setting ||u|| = [[¢(u)]. The following inequalities for u € M, (B(H)) are
easy to verify and are often useful:

n
sl o floifld® N Mgl 4 T ok
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k=1

3.4.2. Theorem. If A is a C*-algebra, then there is a unique norm on
M, (A) making it a C*-algebra.

Proof. Let the pair (H,y) be the universal representation of A, so the
*-homomorphism ¢: M,(A) — M,(B(H)) is injective. We define a norm
on M,(A) making it a C*-algebra by setting ||a|]| = ||¢(a)|| for a € Mp(A)
(completeness can be easily checked using the inequalities preceding this
theorem). Uniqueness is given by Corollary 2.1.2. a

3.4.1. Remark. If A is a C*-algebra and a € M,(A), then

n
lai; || < llall < 3 llawll G5 =1,...,7n).

k=1
These inequalities follow from the corresponding inequalities in M,(B(H)).

Matrix algebras play a fundamental role in the K-theory of C*-algebras.
The 1dea 1s to study not just the algebra A but simultaneously all of the
matrix algebras M,(A) over A also.

Whereas it seems that the only way known of showing that matrix
algebras over general C*-algebras are themselves normable as C*-algebras
i1s to use the Gelfand-Naimark representation, for our second application
of this representation alternative proofs exist, but the proof given here has
the virtue of being very “natural.”

3.4.3. Theorem. Let a be a self-adjoint element of a C*-algebra A. Then
a € A% if and only if r(a) > 0 for all positive linear functionals T on A.

Proof. The forward implication is plain. Suppose conversely that r(a) >
0 for all positive linear functionals 7 on A. Let (H,y) be the universal
representation of A, and let + € H. Then the linear functional

A — C, b (p(b)(z),z),

1s positive, so T7(a) > 0; that 1s, {¢(a)(z),z) = 0. Since this is true for all
z € H, and since p(a) is self-adjoint, therefore ¢(a) is a positive operator
on H. Hence, p(a) € p(A)t, so a € AT, because the map p: A — p(A) is
a *-1somorphism. a
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