Gerard J. Murhy, C*-algebras and operator theory. Academic Press, Inc., Boston, MA, 1990. ISBN: 0-12-511360-9 ## C*-Algebras and Hilbert Space Operators 2.1. C*-Algebras = aes=ates We begin by defining a number of concepts that make sense in any (Aa+b)= 10+ algebra with an involution. An involution on an algebra A is a conjugate-linear map $a \mapsto a^*$ on A, such that $a^{**} = a$ and $(ab)^* = b^*a^*$ for all $a, b \in A$. The pair (A, *) is called an involutive algebra, or a *-algebra. If S is a subset of A, we set $S^* = \{a^* \mid a \in S\}$, and if $S^* = S$ we say S is self-adjoint. A self-adjoint subalgebra B of A is a *-subalgebra of A and is a *-algebra when endowed with the involution got by restriction. Because the intersection of a family of *-subalgebras of A is itself one, there is for every subset S of A a smallest *-algebra B of A containing S, called the *-algebra generated by S. If I is self-adjoint ideal of A, then the quotient algebra A/I is a *-algebra with the involution given by $(a+I)^* = a^* + I$ $(a \in A)$. We define an involution on A extending that of A by setting $(a, \lambda)^* =$ (a^*, λ) . Thus, A is a *-algebra, and A is a self-adjoint ideal in A_* The subalg generated by S = BAn element a in A is self-adjoint subarbaitian if a = a. For each A = b + ic $a \in A$ there exist unique hermitian elements $b, c \in A$ such that a = b + ic $(b = \frac{1}{2}(a+a^*) \text{ and } c = \frac{1}{2i}(a-a^*))$. The elements a^*a and aa^* are hermitian. The set of hermitian elements of A is denoted by A_{sa} . We say a is normal if $a^*a = aa^*$. In this case the *-algebra it generates is abelian and is in fact the linear span of all $a^m a^{*n}$, where $m, n \in \mathbb{N}$ and n + m > 0. An element p is a projection if $p = p^* = p^2$. TC 4:---:4-1 41-- 1* 1 /1* /11* $(a^*)^{-1} = (a^{-1})^*$. Hence, for any $a \in A$, $$\bar{\mathbf{N}} = \mathbf{N}^*$$ $\sigma(a^*) = \sigma(a)^* = \{\bar{\lambda} \in \mathbf{C} \mid \lambda \in \sigma(a)\}.$ An element u in A is a unitary if $u^*u = uu^* = 1$. If $u^*u = 1$, then u is an isometry, and if $uu^* = 1$, then u is a co-isometry. If $\varphi: A \to B$ is a homomorphism of *-algebras A and B and φ preserves adjoints, that is, $\varphi(a^*) = (\varphi(a))^*$ $(a \in A)$, then φ is a *-homomorphism. If in addition φ is a bijection, it is a *-isomorphism. If $\varphi: A \to B$ is a *-homomorphism, then $\ker(\varphi)$ is a self-adjoint ideal in A and $\varphi(A)$ is a *-subalgebra of B. An automorphism of a *-algebra A is a *-isomorphism $\varphi: A \to A$. If A is unital and u is a unitary in A, then $$\mathrm{Ad}\,u \colon A \to A, \quad a \mapsto uau^*,$$ is an automorphism of A. Such automorphisms are called *inner*. We say elements a, b of A are unitarily equivalent if there exists a unitary u of A such that $b = uau^*$. Since the unitaries form a group, this is an equivalence relation on A. Note that $\sigma(a) = \sigma(b)$ if a and b are unitarily equivalent. A Banach *-algebra is a *-algebra A together with a complete submultiplicative norm such that $||a^*|| = ||a||$ ($a \in A$). If, in addition, A has a unit such that ||1|| = 1, we call A a unital Banach *-algebra. A C*-algebra is a Banach *-algebra such that $$||a^*a|| = ||a||^2 \qquad (a \in A). \tag{1}$$ A closed *-subalgebra of a C*-algebra is obviously also a C*-algebra. We shall therefore call a closed *-subalgebra of a C*-algebra a C*-subalgebra. If a C*-algebra has a unit 1, then automatically ||1|| = 1, because $||1|| = ||1^*1|| = ||1||^2$. Similarly, if p is a non-zero projection, then ||p|| = 1. If u is a unitary of A, then ||u|| = 1, since $||u||^2 = ||u^*u|| = ||1|| = 1$. Hence, $\sigma(u) \subseteq \mathbf{T}$, for if $\lambda \in \sigma(u)$, then $\lambda^{-1} \in \sigma(u^{-1}) = \sigma(u^*)$, so $|\lambda|$ and $|\lambda^{-1}| \le 1$ that is, $|\lambda| = 1$ that is, $|\lambda| = 1$ The seemingly mild requirement on a C*-algebra in Eq. (1) is in fact very strong—far more is known about the nature and structure of these algebras than perhaps of any other non-trivial class of algebras. Because of the existence of the involution, C*-algebra theory can be thought of as "infinite-dimensional real analysis." For instance, the study of linear functionals on C*-algebras (and of traces, cf. Section 6.2) is "non-commutative measure theory." - 2.1.1. Example. The scalar field C is a unital C*-algebra with involution given by complex conjugation $\lambda \mapsto \lambda$. - **2.1.2.** Example. If Ω is a locally compact Hausdorff space, then $C_0(\Omega)$ is a C*-algebra with involution $f \mapsto f$. Similarly, all of the following algebras are C*-algebras with involution given by $f \mapsto f$: - (a) $\ell^{\infty}(S)$ where S is a set; - (b) $L^{\infty}(\Omega, \mu)$ where (Ω, μ) is a measure space; - (c) $C_b(\Omega)$ where Ω is a topological space; - (d) $B_{\infty}(\Omega)$ where Ω is a measurable space. - **2.1.3.** Example. If H is a Hilbert space, then B(H) is a C*-algebra. We shall see that every C*-algebra can be thought of as a C*-subalgebra of some B(H) (Gelfand-Naimark theorem). We defer to Section 2.3 a fuller consideration of this example. - **2.1.4.** Example. If $(A_{\lambda})_{{\lambda} \in {\Lambda}}$ is a family of C*-algebras, then the direct sum $\bigoplus_{\lambda} A_{\lambda}$ is a C*-algebra with the pointwise-defined involution, and the restricted sum $\bigoplus_{\lambda}^{c_0} A_{\lambda}$ is a closed self-adjoint ideal (cf. Exercise 1.1). - **2.1.5.** Example. If Ω is a non-empty set and A is a C*-algebra, then $\ell^{\infty}(\Omega, A)$ is a C*-algebra with the pointwise-defined involution. This of course generalises Example 2.1.2 (a). If Ω is a locally compact Hausdorff space, we say a continuous function $f:\Omega\to A$ vanishes at infinity if, for each $\varepsilon > 0$, the set $\{\omega \in \Omega \mid ||f(\omega)|| \geq \varepsilon\}$ is compact. Denote by $C_0(\Omega, A)$ the set of all such functions. This is a C*-subalgebra of $\ell^{\infty}(\Omega, A)$. The following easy result has a surprising and important corollary: 2.1.1. Theorem. If a is a self-adjoint element of a C*-algebra A, then $r(a) = \|a\|.$ = 100 a*=a **Proof.** Clearly, $||a^2||^{\vee} = ||a||^2$, and therefore by induction $||a^{2^n}|| = ||a||^{2^n}$, so $r(a) = \lim_{n \to \infty} ||a^n||^{1/n} = \lim_{n \to \infty} ||a^{2^n}||^{1/2^n} = ||a||$. so $r(a) = \lim_{n \to \infty} ||a^n||^{-n} = \lim_{n \to \infty} ||a^n||^{-n} = ||a||.$ well known $\{||a^n||^{-n}\}$ is a subsequence of $\{||a^n||^{-n}\}$ 2.1.2. Corollary. There is at most one norm on a *-algebra making it a C*-algebra. **Proof.** If $||.||_1$ and $||.||_2$ are norms on a *-algebra A making it a C*-algebra, then then $$\|a\|_j^2 = \|a^*a\|_j = r(a^*a) = \sup_{\lambda \in \sigma(a^*a)} |\lambda| \quad (j=1,2),$$ so $\|a\|_1 = \|a\|_2$. The given horm **2.1.3. Lemma.** Let A be a Banach algebra endowed with an involution such that $||a||^2 \le ||a^*a||$ $(a \in A)$. Then A is a C*-algebra. **Proof.** The inequalities $||a||^2 \le ||a^*a|| \le ||a^*|| ||a||$ imply that $||a|| \le ||a^*||$ for all a. Hence, $||a|| = ||a^*||$, and therefore $||a||^2 = ||a^*a||$. We associate to each C*-algebra A a certain unital C*-algebra M(A) which contains A as an ideal. This algebra is of great importance in more advanced aspects of the theory, especially in certain approaches to K-theory. A double centraliser for a C*-algebra A is a pair (L,R) of bounded linear maps on A, such that for all $a,b\in A$ $$L(ab) = L(a)b$$, $R(ab) = aR(b)$ and $R(a)b = aL(b)$. For example, if $c \in A$ and L_c, R_c are the linear maps on A defined by $L_c(a) = ca$ and $R_c(a) = ac$, then (L_c, R_c) is a double centraliser on A. It is easily checked that for all $c \in A$ and therefore $||L_c|| = ||R_c|| = ||c||$. **2.1.4. Lemma.** If (L, R) is a double centraliser on a C^* -algebra A, then ||L|| = ||R||. **Proof.** Since $||aL(b)|| = ||R(a)b|| \le ||R|| ||a|| ||b||$, we have $$\|L(b)\| = \sup_{\|a\| \le 1} \|aL(b)\| \le \|R\| \|b\|,$$ and therefore $||L|| \le ||R||$. Also, $||R(a)b|| = ||aL(b)|| \le ||L|| ||a|| ||b||$ implies $$||R(a)|| = \sup_{||b|| \le 1} ||R(a)b|| \le ||L|| ||a||,$$ and therefore $||R|| \le ||L||$. Thus, ||L|| = ||R||. If A is a C*-algebra, we denote the set of its double centralisers by M(A). We define the norm of the double centraliser (L, R) to be ||L|| = ||R||. It is easy to check M(A) is a closed vector subspace of $B(A) \oplus B(A)$. $B(A) \oplus B(A)$ to be If (L_1, R_1) and $(L_2, R_2) \in M(A)$, we define their product to be $$(L_1,R_1)(L_2,R_2)=(L_1L_2,R_2R_1).$$ Straightforward computations show that this product is again a double centraliser of A and that M(A) is an algebra under this multiplication. If $L: A \to A$, define $L^*: A \to A$ by setting $L^*(a) = (L(a^*))^*$. Then L^* is linear and the map $L \mapsto L^*$ is an isometric conjugate-linear map from B(A) to itself such that $L^{**} = L$ and $(L_1L_2)^* = L_1^*L_2^*$. If (L, R) is a double centraliser on A, so is $(L, R)^* = (R^*, L^*)$. It is easily verified that the map $(L, R) \mapsto (L, R)^*$ is an involution on M(A). **2.1.5. Theorem.** If A is a C^* -algebra, then M(A) is a C^* -algebra under the multiplication, involution, and norm defined above. **Proof.** The only thing that is not completely straightforward that has to be checked is that if T = (L, R) is a double centraliser, then $||T^*T|| = ||T||^2$. If $||a|| \le 1$, then $||L(a)||^2 = ||(L(a))^*L(a)|| = ||L^*(a^*)L(a)|| = ||a^*R^*L(a)|| \le ||R^*L|| = ||T^*T||$, so $$\|T\|^2 = \sup_{\|a\| \le 1} \|L(a)\|^2 \le \|T^*T\| \le \|T\|^2,$$ and therefore $||T^*T|| = ||T||^2$. The algebra M(A) is called multiplier algebra of A. The map $$A \to M(A), \ a \mapsto (L_a, R_a),$$ is an isometric *-homomorphism, and therefore we can, and do, identify A as a
C*-subalgebra of M(A). In fact A is an ideal of M(A). Note that M(A) is unital (the double centraliser $(\mathrm{id}_A,\mathrm{id}_A)$ is the unit), so A=M(A) if and only if A is unital. If A is unital with unit 1, then $\int SP(Q^*) = \overline{SP(Q)} \qquad (L_1, R_1) = (id_A, id_A)$ ur on cott of of india inc 1 7 hold - 10 to 1) 1. What is the direct sum in Linear Algebra? Lot X& y be lincon spaces. Then XXY={(x,y)fxeX,yey} together with f(x,y)+(u,v)=(1x+4, 1y+1) is a linen space, denoted by XA). It is called external lines sum. Now let V, W be subspaces of a linear space X such that VNW={0}. Then V+W={v+w: veV, weW} is a subspace of X. It is called the I mer direct sum (0,y) R= RXR (x,y) (x,o) Proof- Put V= {(x, o) | x ∈ X} and W={(0,y)|yE)}. Then VNW-{0} and Xxy=V+W ((x,y)=(x,0)+(0,y)) $S_0 \times \times = V \oplus W \cdot \square$ aCX-alg. but not | The Any internal direct sum can be regarded as an external direct sum. | |---| | Proof. Consider the internal d.s. VOW. Then | | P: VxW→VØW isan isomorphism between | | linear spaces. So VAW Can be identified by VXW our External. | | 5) cc* = c*c \\ c* ^2 c ^2 | | (6) M(A) is closed in B(A) ⊕ B(A): Let (L,R) → (T,S). So | | HR-SIN II (Ln, Rn) - (T, SI) < E. Hence / Ln of Therefore & A. SIN II - TI, IIR-SII) | | T(ab)=lim L(ab) = hi(L(a)b) +(lim L(a)) b=T(a)bsimy
S(ab)=as(b), at(b)= R(a)b. Thus (T,s) +(MA). | | 0(00)=as(b), (116)= R(a) b. Thus (T,s) (MA). | One cam prove 11 (a, 2) ||= Sup flab+ 2b) in a C- 990 m on A. **2.1.6. Theorem.** If A is a C^* -algebra, then there is a (necessarily unique) norm on its unitisation \tilde{A} making it into a C^* -algebra, and extending the norm of A. **Proof.** Uniqueness of the norm is given by Corollary 2.1.2. The proof of existence falls into two cases, depending on whether A is unital or non-unital. Suppose first that A has a unit e. Then the map φ from \tilde{A} to the direct sum of the C*-algebras A and C defined by $\varphi(a,\lambda) = (a + \lambda e, \lambda)$ is a *-isomorphism. Hence, one gets a norm on \tilde{A} making it a C*-algebra by setting $\|(a,\lambda)\|^2 = \|\varphi(a,\lambda)\|$. Now suppose A has no unit. If 1 is the unit of M(A), then $A \cap C1 = 0$. The map φ from \tilde{A} onto the C*-subalgebra $A \oplus C1$ of M(A) defined by setting $\varphi(a,\lambda) = a + \lambda 1$ is a *-isomorphism, so we get a norm on \tilde{A} making it a C*-algebra by setting $\|(a,\lambda)\| = \|\varphi(a,\lambda)\|$. If A is a C*-algebra, we shall always understand the norm of \tilde{A} to be the one making it a C*-algebra. Note that when A is non-unital, M(A) is in general very much bigger than \tilde{A} . For instance, it is shown in Section 3.1 that if $A = C_0(\Omega)$, where Ω is a locally compact Hausdorff space, then $M(A) = C_b(\Omega)$. If $\varphi: A \to B$ is a *-homomorphism between *-algebras A and B, then it extends uniquely to a unital *-homomorphism $\tilde{\varphi}: \tilde{A} \to \tilde{B}$. Aa $$(a+\lambda 1) = \varphi(a) + \lambda 1 = \varphi(a) + \lambda 1$$ $\varphi(a+\lambda 1) = \varphi(a) + \lambda 1 = \varphi(a) + \lambda 1$ $\varphi(a+\lambda 1) = \varphi(a) + \lambda 1 = \varphi(a) + \lambda 1 = \varphi(a+\lambda 1)$ ## q(a*)=q(a), q(7a+b)= 26(a)+6(b), c(ab)=6(a)6(b) 2.1.7. Theorem. A *-homomorphism $\varphi: A \to B$ from a Banach *-algebra A to a C*-algebra B is necessarily norm-decreasing. **Proof.** We may suppose that A, B and φ are unital (by going to \tilde{A}, \tilde{B} , and $\tilde{\varphi}$ if necessary). If $a \in A$, then $\sigma(\varphi a) \subseteq \sigma(a)$, so $\|\varphi a\|^2 = \|\varphi(a)^* \varphi(a)\| = \|\varphi(a^*a)\| = r(\varphi(a^*a)) \le r(a^*a) \le \|a^*a\| \le \|a\|^2$. Hence, $\|\varphi(a)\| \le \|a\|$. \square **2.1.8. Theorem.** If a is a hermitian element of a C^* -algebra A, then $\sigma(a) \subseteq \mathbf{R}$. **Proof.** We may suppose that A is unital. Since $e^{(a)}$ is unitary, $\sigma(e^{ia}) \subseteq \mathbf{T}$. If $\lambda \in \sigma(a)$ and $b = \sum_{n=1}^{\infty} i^n (a-\lambda)^{n-1}/n!$ then $e^{ia} - e^{i\lambda} = (e^{i(a-\lambda)} - 1)e^{i\lambda} = (a-\lambda)be^{i\lambda}$. Since b commutes with a, and since $a-\lambda$ is non-invertible, $e^{ia} - e^{i\lambda}$ is non-invertible. Hence, $e^{i\lambda} \in \mathbf{T}$, and therefore $\lambda \in \mathbf{R}$. Thus, $\sigma(a) \subseteq \mathbf{R}$. f is not written, then $\sigma(a) := \sigma(a)$. 2.1.9. Theorem. If \(\tau \) is a character on a C*-algebra A, then it preserves adjoints. **Proof.** If $a \in A$, then a = b + ic where b, c are hermitian elements of A. The numbers $\tau(b)$ and $\tau(c)$ are real because they are in $\sigma(b)$ and $\sigma(c)$ respectively, so $\tau(a^*) = \tau(b - ic) = \tau(b) - i\tau(c) = (\tau(b) + i\tau(c))^- = \tau(a)$. The character space of a unital abelian Banach algebra is non-empty, so this is true in particular for unital abelian C*-algebras. However, there are non-unital, non-zero, abelian Banach algebras for which the character space is empty. Fortunately, this cannot happen in the case of C*-algebras. Let A be a non-unital, non-zero, abelian C*-algebra. Then A contains a non-zero hermitian element, a say. Since r(a) = ||a|| by Theorem 2.1.1, it follows that there is a character τ on \tilde{A} such that $|\tau(a)| = ||a|| \neq 0$. Hence, the restriction of τ to A is a non-zero homomorphism from A to C, that is, a character on A. We shall now completely determine the abelian C*-algebras. This result can be thought of as a preliminary form of the spectral theorem. It allows us to construct the functional calculus, a very useful tool in the analysis of non-abelian C*-algebras. 2.1.10. Theorem (Gelfand). If A is a non-zero abelian C*-algebra, then the Gelfand representation is an isometric *-isomorphism. **Proof.** That φ is a norm-decreasing homomorphism, such that $\|\varphi(a)\| = 1$ r(a), is given by Theorem 1.3.6. If $\tau \in \Omega(A)$, then $\varphi(a^*)(\tau) = \tau(a^*) =$ $\tau(a)^- = \varphi(a)^*(\tau)$, so φ is a *-homomorphism. Moreover, φ is isometric, since $\|\varphi(a)\|^2 = \|\varphi(a)^*\varphi(a)\| = \|\varphi(a^*a)\| = r(a^*a) = \|a^*a\| = \|a\|^2$. Clearly, then, $\varphi(A)$ is a closed *-subalgebra of $C_0(\Omega)$ separating the points of $\Omega(A)$, and having the property that for any $\tau \in \Omega(A)$ there is an element $a \in A$ such that $\varphi(a)(\tau) \neq 0$. The Stone-Weierstrass theorem implies, therefore, that $\varphi(A) = C_0(\Omega(A))$. Let S be a subset of a C*-algebra A. The C*-algebra generated by S is the smallest C*-subalgebra of A containing S. If $S = \{a\}$, we denote by $C^*(a)$ the C*-subalgebra generated by S. If a is a normal, then $C^*(a)$ is abelian. Similarly, if A is unital and a normal, then the C^* -subalgebra generated by 1 and a is abelian. Observe that r(a) = ||a|| if a is a normal element of a C*-algebra (apply Theorem 2.1.10 to $C^*(a)$). 2.1.11. Theorem. Let B be a C*-subalgebra of a unital C*-algebra A containing the unit of A. Then $$\sigma_B(b) = \sigma_A(b)$$ $(b \in B)$. A from the unit of We are now going to set up the functional calculus, for which we need to make two easy observations: If $\theta:\Omega\to\Omega'$ is a continuous map between compact Hausdorff spaces Ω and Ω' , then the transpose map $$\theta^t : C(\Omega') \to C(\Omega), \ f \mapsto f\theta,$$ is a unital *-homomorphism. Moreover, if θ is a homeomorphism, then θ^t is a *-isomorphism. Our second observation is that a *-isomorphism of C*-algebras is necessarily isometric. This is an immediate consequence of Theorem 2.1.7. 2.1.13 Theorem Let a be a normal element of a unital C*-algebra A and suppose that z is the inclusion map of $\sigma(a)$ in C. Then there is a unique unital *-homomorphism $\varphi: C(\sigma(a)) \to A$ such that $\varphi(z) = a$. Moreover, φ is isometric and $im(\varphi)$ is the C*-subalgebra of A generated by 1 and α **Proof.** Denote by B the (abelian) C*-algebra generated by 1 and a, and let $\psi: B \to C(\Omega(B))$ be the Gelfand representation. Then ψ is a *-isomorphism by Theorem 2.1.10, and so is $\hat{a}^t: C(\sigma(a)) \to C(\Omega(B))$, since $\hat{a}: \Omega(B) \to \sigma(a)$ is a homeomorphism. Let $\varphi: C(\sigma(a)) \to A$ be the com position $\psi^{-1}\hat{a}^t$, so φ is a *-homomorphism. Then $\varphi(z) = a$, since $\varphi(z) = a$ $\psi^{-1}(\hat{a}^t(z)) = \psi^{-1}(\hat{a}) = a$, and obviously φ is unital. From the Stone-Weierstrass theorem, we know that $C(\sigma(a))$ is generated by 1 and z; φ is therefore the unique unital *-homomorphism from $C(\sigma(a))$ to A such that $\varphi(z)=1.$ It is clear that φ is isometric and $\operatorname{im}(\varphi) = B$. As in Theorem 2.1.13, let a be a normal element of a unital C^* -algebra A, and let z be the inclusion map of $C(\sigma(a))$ in C. We call the unique unital *-homomorphism $\varphi: C(\sigma(a)) \to A$ such that $\varphi(z) = a$ the functional calculus at a. If p is a polynomial, then $\varphi(p) = p(a)$, so for $f \in C(\sigma(a))$ we may write f(a) for $\varphi(a)$. Note that f(a) is normal. Let B be the image of φ , so B is the C*-algebra generated by 1 and a. If $\tau \in \Omega(B)$, then $f(\tau(a)) = \tau(f(a))$, since the maps $f \mapsto f(\tau(a))$ and $f \mapsto \tau(f(a))$ from $C(\sigma(a))$ to C are *-homomorphisms agreeing on the generators 1 and z and hence are equal. 2.1.14. Theorem (Spectral Mapping). Let a be a normal element of a unital C*-algebra A, and let $f \in C(\sigma(a))$. Then In an abelian Banaly $$\sigma(f(a)) = f(\sigma(a)).$$ Moreover, if $g \in C(\sigma(f(a)))$, then $$\sigma(f(a)) = f(\sigma(a)).$$ $$\sigma(f(a)), \text{ then}$$ $$\sigma(f(a)),
\text{ then}$$ $$\sigma(f(a)) = f(\sigma(a)).$$ $$\sigma(f(a)) = f(\sigma(a)).$$ **Proof.** Let B be the C*-subalgebra generated by 1 and a. Then $\sigma(f(a)) =$ $\{\tau(f(a)) \mid \tau \in \Omega(B)\} = \{f(\tau(a)) \mid \tau \in \Omega(B)\} = f(\sigma(a)).$ If C denotes the C*-subalgebra generated by 1 and f(a), then $C \subseteq B$ and for any $\tau \in \Omega(B)$ its restriction τ_C is a character on C. We therefore have $\tau((g \circ f)(a)) = g(f(\tau(a))) = g(\tau_C(f(a))) = \tau_C(g(f(a))) = \tau(g(f(a)))$. Hence, $(g \circ f)(a) = g(f(a))$. The Next left to the PhD 87 ude G(a). $$T(f(a))=T(hih(a))=hi T(f(a))=hi P_n(Z(a))$$ $$=f(Z(a))\in T$$ **2.1.15.** Theorem. Let Ω be a compact Hausdorff space, and for each $\omega \in \Omega$ let δ_{ω} be the character on $C(\Omega)$ given by evalution at ω ; that is, $\delta_{\omega}(f) = f(\omega)$. Then the map $$\Omega \to \Omega(C(\Omega)), \quad \omega \mapsto \delta_{\omega},$$ is a homeomorphism. **Proof.** This map is continuous because if $(\omega_{\lambda})_{\lambda \in \Lambda}$ is a net in Ω converging to a point ω , then $\lim_{\lambda \in \Lambda} f(\omega_{\lambda}) = f(\omega)$ for all $f \in C(\Omega)$, so the net $(\delta_{\omega_{\lambda}})$ is weak* convergent to δ_{ω} . The map is also injective, because if ω, ω' are distinct points of Ω , then by Urysohn's lemma there is a function $f \in C(\Omega)$ such that $f(\omega) = 0$ and $f(\omega') = 1$, and therefore $\delta_{\omega} \neq \delta_{\omega'}$. Now we show surjectivity of the map. Let $\tau \in \Omega(C(\Omega))$. Then $M = \ker(\tau)$ is a proper C*-algebra of $C(\Omega)$. Also, M separates the points of Ω , for if ω, ω' are distinct points of Ω , then as we have just seen there is a function $f \in C(\Omega)$ such that $f(\omega) \neq f(\omega')$, so $g = f - \tau(f)$ is a function in M such that $g(\omega) \neq g(\omega')$. It follows from the Stone-Weierstrass theorem that there is a point $\omega \in \Omega$ such that $f(\omega) = 0$ for all $f \in M$. Hence, $(f - \tau(f))(\omega) = 0$, so $f(\omega) = \tau(f)$, for all $f \in C(\Omega)$. Therefore, $\tau = \delta_{\omega}$. Thus, the map is a continuous bijection between compact Hausdorff spaces and therefore is a homeomorphism. If A, B are (*ab, then so is ABB under man | nam, whil)= |1(a,b)|1. 1 (a,b) (a,b) ||= || (aa,bb) ||= max ||aa|, ||bb|| = |(ab)||2 2) (+(x), +(y)) = d(x,y) if f in 1-1 Onto (X)1.11) || +(x) || = ||x|| if f is linear isom. Exercise C(SI) is unital ill SI is compact. g in the unit of C(S) () 9f=f Hf ()g=1 861) for =f(x) dx $C(\Omega)$ unital \Rightarrow $1 \in C(\Omega) \xrightarrow{\varepsilon=1} \{x: |1(x)|\} \xrightarrow{1} \}$ is compact. a compact => HEJK {x: 1201>E} is compact => 7EC(60) In this case we closed = 12 compass arrite C(-1)= C(-2) (3) or(p(a)) cola) if pin a home, since λθο(α)=9 α-21/15 inV.⇒ ∃b∈A; (α-21)b=1=5 (ε(α)-21)(ε(β)-1) ⇒ ε(α)-21/18 is inv ⇒ 2 € or ε(α). A / hom B Note: No n is Convergent in R = lin 2 at Bonneh of 11 and 15 convergent in R nyoo ke o ! Bonneh of 11 and 15 lians , 5 halls | lians | nyoo ke o ! Bonneh of 11 and 15 lians | ne o + 100 lians | comparison test $A = (a-\lambda)be^{-\lambda}$ is inv, then $A = (a-\lambda)be^{-\lambda}$ $\underline{G} \stackrel{ih}{e^{ih}} = \stackrel{i(a+ib)}{=} \stackrel{ia-b}{=} \stackrel{ia-b$ (6) If T:A , t is a linear functional, then Tis onto, since $C(A) \leq \mathbb{C}$, so dim $C(A) \leq \dim \mathbb{C}$. Hence dim C(A) = 1. Thus $C(A) = \mathbb{C}$. FAlugys 70) Ev. (a), since if 7(a) & v(a), then 36EA; (b(a-7(a)1) = 1.50 (b)(7(a)-7(a))=7(1). Note: We have 12 (1) < 10 (1) (2) (2) (2) (2) (1) Exercite If 6: X >> Y to the isometric hen E(X) in closed in. isomorphis. 8) 1276 SQ(A) 7 810 EQ(A); 9(0)(z) = 9 JO; i,(a) + T_(a) = Viena) JacA; e(a)(Z)+0 non-zero pt(a) + 0 B.< (_S) *-sub-als) Stone-Wellerson TH B separates Points of 2 B vanishes nowhere on so > Cashbala generated If S Subset 1 Stale the Ctalg, since NB sclosed 358<Y Caubaly (Xd) complete metric span (FSX,d) 11 11 11 FSX closed a closed x-subaly of Subaly TOD COVI 1 oct. 2013 cx-alg is an extension of C self-adj eldments unitarios Positive elements R Positive elements R Positive elements ## 2.2. Positive Elements of C*-Algebras In this section we introduce a partial order relation on the hermitian elements of a C^* -algebra. The principal results are the existence of a unique positive square root for each positive element and Theorem 2.2.4, which asserts that elements of the form a^*a are positive. **2.2.1.** Remark. Let $A = C_0(\Omega)$, where Ω is a locally compact Hausdorff space. Then A_{sa} is the set of real-valued functions in A and there is a natural partial order on A_{sa} given by $f \leq g$ if and only if $f(\omega) \leq g(\omega)$ for all $\omega \in \Omega$. An element $f \in A$ is positive, that is, $f \geq 0$, if and only if f is of the form $f = \bar{g}g$ for some $g \in A$, and in this case f has a unique positive square root in A, namely the function $\omega \mapsto \sqrt{f(\omega)}$. Note that if $f = \bar{f}$ we can also express the positivity condition in terms of the norm: If $f \in A$, then f is positive if $||f - f|| \leq f$, and in the reverse direction if $||f|| \leq f$ and $f \geq 0$, then $||f - f|| \leq f$. We shall presently define a partial order on an arbitrary C*-algebra that generalises that of $C_0(\Omega)$, and we shall obtain similar, and many other, results. If B has a unit e not equal to the unit 1 of A, then for any $b \in B$ and $\lambda \in \mathbb{C} \setminus \{0\}$ invertibility of $b + \lambda$ in A is equivalent to invertibility of $b + \lambda e$ in B, so $\sigma_A(b) = \sigma_B(b) \cup \{0\}$. From these observations and Theorem 2.1.11, it is clear that for any C*-subalgebra B of a C*-algebra A we have $\sigma_B(b) \cup \{0\} = \sigma_A(b) \cup \{0\}$ for all $b \in B$. An element a of a C*-algebra A is positive if a is hermitian and $\sigma(a) \subseteq \mathbb{R}^+$. We write $a \ge 0$ to mean that a is positive, and denote by A^+ the set of positive elements of A. By the preceding observation $B^+ = B \cap A^+$ for any C*-subalgebra B of A. If S is a non-empty set, then an element $f \in \ell^{\infty}(S)$ is positive in the C*-algebra sense if and only if $f(x) \geq 0$ for all $x \in S$, because $\sigma(f)$ is the X space, then $f \in C_0(\Omega)$ is positive if and only if $f(\omega) \geq 0$ for all $\omega \in \Omega$. If a is a hermitian element of a C*-algebra A observe that $C^*(a)$ is the closure of the set of polynomials in a with zero constant term. **2.2.1. Theorem.** Let A be a C*-algebra and $a \in A^+$. Then there exists a unique element $b \in A^+$ such that $b^2 = a$. **Proof.** That there exists $b \in C^*(a)$ such that $b \ge 0$ and $b^2 = a$ follows from the Gelfand representation, since we may use it to identify $C^*(a)$ with $C_0(\Omega)$, where Ω is the character space of $C^*(a)$, and then apply Remark 2.2.1. Suppose that c is another element of A^+ such that $c^2 = a$. As c commutes with a it must commute with b, since b is the limit of a sequence of polynomials in a. Let B be the (necessarily abelian) C*-subalgebra of A generated by b and c, and let $\varphi: B \to C_0(\Omega)$ be the Gelfand representation of B. Then $\varphi(b)$ and $\varphi(c)$ are positive square roots of $\varphi(a)$ in $C_0(\Omega)$, so by another application of Remark 2.2.1, $\varphi(b) = \varphi(c)$, and therefore b = c. \square If A is a C*-algebra and a is a positive element, we denote by $a^{1/2}$ the unique positive element b such that $b^2 = a$. If c is a hermitian element, then c^2 is positive, and we set $|c| = (c^2)^{1/2}$, $c^+ = \frac{1}{2}(|c| + c)$, and $c^- = \frac{1}{2}(|c| - c)$. Using the Gelfand representation of $C^*(c)$, it is easy to check that |c|, c^+ and c^- are positive elements of A such that $c = c^+ - c^-$ and $c^+c^- = 0$. **2.2.2.** Remark. If a is a hermitian element of the closed unit ball of a unital C*-algebra A, then $1 - a^2 \in A^+$ and the elements $$u = a + i\sqrt{1 - a^2} \qquad \text{and} \qquad v = a - i\sqrt{1 - a^2}$$ are unitaries such that $a = \frac{1}{2}(u+v)$. Therefore, the unitaries linearly span A. a result that is frequently useful. **2.2.2. Lemma.** Suppose that A is a unital C*-algebra, a is a hermitian element of A and $t \in \mathbb{R}$. Then, $a \ge 0$ if $||a-t|| \le t$. In the reverse direction, if $||a|| \le t$ and $a \ge 0$, then $||a-t|| \le t$. **Proof.** We may suppose that A is the (abelian) C*-subalgebra generated by 1 and a, so by the Gelfand representation $A = C(\sigma(a))$. The result now follows from Remark 2.1.1. It is immediate from Lemma 2.2.2 that A^+ is closed in A. 2.2.3. Lemma. The sum of two positive elements in a C*-algebra is a positive element. **Proof.** Let A be a C^* -algebra and a, b positive elements. To show that $a+b \ge 0$ we may suppose that A is unital. By Lemma 2.2.2, $||a-||a||| \le ||a||$ and $||b-||b||| \le ||b||$, so $||a+b-||a|| - ||b||| \le ||a-||a||| + ||b-||b||| \le ||a|| + ||b||$. By Lemma 2.2.2 again, $a + b \ge 0$. 2.2.4. Theorem. If a is an arbitrary element of a C*-algebra A, then a*a is positive. **Proof.** First we show that a = 0 if $-a^*a \in A^+$. Since $\sigma(-aa^*) \setminus \{0\} =$ $\sigma(-a^*a) \setminus \{0\}$ by Remark 1.2.1, $-aa^* \in A^+$ because $-a^*a \in A^+$. Write a = b + ic, where $b, c \in A_{sa}$. Then $a^*a + aa^* = 2b^2 + 2c^2$, so $a^*a = a^*a + aa^*a aa$ $2b^2 + 2c^2 - aa^* \in A^+$. Hence, $\sigma(a^*a) = \mathbf{R}^+ \cap (-\mathbf{R}^+) = \{0\}$, and therefore $||a||^2 = ||a^*a|| = r(a^*a) = 0.$ Now suppose a is an arbitrary element of A, and we shall show that a^*a is positive. If $b = a^*a$, then b is hermitian, and therefore we can write $b = b^{+} - b^{-}$. If $c = ab^{-}$, then
$-c^{*}c = -b^{-}a^{*}ab^{-} = -b^{-}(b^{+} - b^{-})b^{-} = -b^{-}(b^{+} - b^{-})b^{-}$ $(b^-)^3 \in A^+$, so c=0 by the first part of this proof. Hence, $b^-=0$, so $a^*a = b^+ \in A^+$. If A is a C*-algebra, we make A_{sa} a poset by defining $a \leq b$ to mean $b-a \in A^+$. The relation \leq is translation-invariant; that is, $a \leq b \Rightarrow$ $a+c \leq b+c$ for all $a,b,c \in A_{sa}$. Also, $a \leq b \Rightarrow ta \leq tb$ for all $t \in \mathbb{R}^+$, and $a \leq b \Leftrightarrow -a \geq -b$. Using Theorem 2.2.4 we can extend our definition of |a|: for arbitrary $a \text{ set } |a| = (a^*a)^{1/2}.$ We summarise some elementary facts about A^+ in the following result. ## 2.2.5. Theorem. Let A be a C*-algebra. - (1) The set A^+ is equal to $\{a^*a \mid a \in A\}$. - (2) If $a, b \in A_{sa}$ and $c \in A$, then $a \le b$ $c^*ac \le c^*bc$. (3) If $0 \le a \le b$, then $||a|| \le ||b||_0$ - (4) If A is unital and a, b are positive invertible elements, then $a \leq$ $0 < b^{-1} < a^{-1}$. @20=)Q=030= **Proof.** Conditions (1) and (2) are implied by Theorem 2.2.4 and the existence of positive square roots for positive elements/ To prove Condition (3) we may suppose that A is unital. The inequality $b \leq ||b||$ is given by the Gelfand representation applied to the C^* -algebra generated by 1 and b. Hence, $a \leq ||b||$. Applying the Gelfand representation again, this time to the C*-algebra generated by 1 and a, we obtain the inequality $||a|| \leq ||b||$. To prove Condition (4) we first observe that if $c \geq 1$, then c is invertible and $c^{-1} \leq 1$. This is given by the Gelfand representation applied to the C^* -subalgebra generated by 1 and c. Now $a < b \rightarrow 1 = a^{-1/2}aa^{-1/2} < a$ $$a^{-1/2}ba^{-1/2} \Rightarrow (a^{-1/2}ba^{-1/2})^{-1} \leq 1$$, that is, $a^{1/2}b^{-1}a^{1/2} \leq 1$. Hence, $b^{-1} < (a^{1/2})^{-1}(a^{1/2})^{-1} = a^{-1}$. **2.2.6. Theorem.** If a, b are positive elements of a C^* -algebra A, then the inequality $a \leq b$ implies the inequality $a^{1/2} \leq b^{1/2}$. **Proof.** We show $a^2 \le b^2 \Rightarrow a \le b$ and this will prove the theorem. We may suppose that A is unital. Let t > 0 and let c, d be the real and imaginary hermitian parts of the element (t + b + a)(t + b - a). Then $$c = \frac{1}{2}((t+b+a)(t+b-a)) + (t+b-a)(t+b+a))$$ = $t^2 + 2tb + b^2 - a^2$ $\geq t^2$. Consequently, c is both invertible and positive. Since $1 + ic^{-1/2}dc^{-1/2} = c^{-1/2}(c+id)c^{-1/2}$ is invertible, therefore c+id is invertible. It follows that t+b-a is left invertible, and therefore invertible, because it is hermitian. Consequently, $-t \notin \sigma(b-a)$. Hence, $\sigma(b-a) \subseteq \mathbf{R}^+$, so b-a is positive, that is, $a \le b$. It is not true that $0 \le a \le b \Rightarrow a^2 \le b^2$ in arbitrary C*-algebras. For example, take $A = M_2(\mathbb{C})$. This is a C*-algebra where the involution is given by $$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}^* = \begin{pmatrix} \bar{\alpha} & \bar{\gamma} \\ \bar{\beta} & \bar{\delta} \end{pmatrix}.$$ Let p and q be the projections $$p = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$ and $q = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. Then $p \le p + q$, but $p^2 = p \not\le (p+q)^2 = p + q + pq + qp$, since the matrix $$q + pq + qp = \frac{1}{2} \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix}$$ has a negative eigenvalue. It can be shown that the implication $0 \le a \le b \Rightarrow a^2 \le b^2$ holds only in abelian C*-algebras [Ped, Proposition 1.3.9]. It's; If-t||<t} > twen: |f(w)-t|| t => tw: f(w)=\$\forall_{\infty} \forall_{\infty} \forall_ f > 0 f2) $\forall a \in A^{\dagger} \exists |b \in A^{\dagger}; b^2 = a$ (b is denoted by a^2). Let us pass to C(a,1). Positive square root $O: C(a,1) \xrightarrow{\times} C(\sigma(a))$ $a \xrightarrow{\times} f(t) = t$ Since a >0, $\{a=a^*\}$ So $\{b(a)=[0,\infty)\}$ So $\{b(a)=[0,\infty)\}$ So $\{b(a)=[0,\infty)\}$ So $\{b(a)=[0,\infty)\}$ $\{b(a)=[0,\infty)\}$ So $\{b(a)=[0,\infty)\}$ $\{b(a)=[0,\infty)\}$ Position b=h(a)+ th(t)=Vtc((or(a)) b>0 h>0 b=a + h2=f Moreover, let JCEA; C>ORC=a. So Ca=c.c2=c.c=ac Hence c commutes with each polynomial in a. So C. b = b. c P(+) 4 \ ={Ph} & Ph (a) Why any x-homom 9. A, B between C'algebras Preserves <? a < b > b-a> 0 => 6 a= cc= (6-a)= (10cc)= (10c Why is the inverse of a χ -home, a χ -hom? Solution. $O(O(bb)) = bb' = O(O(b)) \cdot O(O(b))$ $=O(O(b) \cdot O(b')) \Rightarrow O(bb') = O(b) \cdot O(b') \cdot O(b')$ We shall need to view Hilbert spaces as dual spaces. Let H be a Hilbert space and $H_* = H$ as an additive group, but define a new scalar multiplication on H_* by setting $\lambda x = \lambda x$, and a new inner product by setting $\langle x,y\rangle_* = \langle y,x\rangle$. Then H_* is a Hilbert space, and obviously the norm induced by the new inner product is the same as that induced by the . old one. If $x \in H$, define $v(x) \in (H_*)^*$ by setting $v(x)(y) = \langle y, x \rangle_* = \langle x, y \rangle$. It is a direct consequence of the Riesz representation theorem that the map $$v: H \to (H_*)^*, x \mapsto v(x),$$ is an isometric linear isomorphism, which we use to identify these Banach spaces. The weak* topology on H is called the weak topology. A net $(x_{\lambda})_{{\lambda}\in\Lambda}$ converges to a point x in H in the weak topology if and only if $\langle x,y\rangle = \lim_{\lambda} \langle x_{\lambda},y\rangle \ (y\in H)$. Consequently, the weak topology is weaker than the norm topology, and a bounded linear map between Hilbert spaces is necessarily weakly continuous. The importance to us of the weak topology is the fact that the closed unit ball of H is weakly compact (Banach-Alaoglu theorem). **2.4.1. Theorem.** Let $u: H_1 \to H_2$ be a compact linear map between Hilbert spaces H_1 and H_2 . Then the image of the closed unit ball of H_1 weakon H= work on Hx under u is compact. **Proof.** Let S be the closed unit ball of H_1 . It is weakly compact, and u is weakly compact and therefore weakly δ closed. Hence, u(S) is norm-closed, since the weak topology is weaker than the norm topology. Since u is a compact operator, this implies that $\overline{u}(S)$ is norm-compact. **2.4.2.** Theorem. Let u be a compact operator on a Hilbert space H. Then both |u| and u^* are compact. **Proof.** Suppose that u has polar decomposition u = w|u| say. Then $|u| = w^*u$, so |u| is compact, and $u^* = |u|w^*$, so u^* is compact. 2.4.3. Corollary. If H is any Hilbert space, then K(H) is self-adjoint. Thus, K(H) is a C*-algebra, since (as we saw in Chapter 1) K(H) is a closed ideal in B(H). An operator u on a Hilbert space H is diagonalisable if H admits an orthonormal basis consisting of eigenvectors of u. Diagonalisable operators are necessarily normal, but not all normal operators are diagonalisable. For instance, the bilateral shift is normal (it is a unitary), but it has no eigenvalues. - 1- N = LDIT 10) INDUIT 2.4.4. Theorem. If u is a compact normal operator on a Hilbert space H, then it is diagonalisable. **Proof.** By Zorn's lemma there is a maximal orthonormal set E of eigenvectors of u. If K is the closed linear span of E, then $H = K \oplus K^{\perp}$, and K reduces u. The restriction $u_{K^{\perp}}: K^{\perp} \to K^{\perp}$ is compact and normal. An eigenvector of $u_{K^{\perp}}$ is one for u also, so by maximality of E, the operator $u_{K^{\perp}}$ has no eigenvectors, and therefore $\sigma(u_{K^{\perp}}) = \{0\}$ by Theorem 1.4.11. Hence, $||u_{K^{\perp}}|| = r(u_{K^{\perp}})$ (by normality) = 0, so $K^{\perp} = 0$. Thus, K = H and E is an orthonormal basis of eigenvectors of u, so u is diagonalisable. If H is a Hilbert space, we denote by F(H) the set of finite-rank operators on H. It is easy to check that F(H) is a self-adjoint ideal of B(H). **2.4.5. Theorem.** If H is a Hilbert space, then F(H) is dense in K(H). **Proof.** Since $F(H)^-$ and K(H) are both self-adjoint, it suffices to show that if u is a hermitian element of K(H), then $u \in F(H)^-$. Let E be an orthonormal basis of H consisting of eigenvectors of u, and let $\varepsilon > 0$. By Theorem 1.4.11 the set S of eigenvalues λ of u such that $|\lambda| \geq \varepsilon$ is finite. From Theorem 1.4.5 it is therefore clear that the set S' of elements of E corresponding to elements of S is finite. Now define a finite-rank diagonal operator v on E by setting E by setting E and E if E by and E is the eigenvalue corresponding to E, and setting E by E if E by E is easily checked that
E by on H by $(x \otimes y)(z) = \langle z, y \rangle x.$ If x, y are elements of a Hilbert space H we define the operator $x \otimes y$ on $y \in \mathbb{R}$ \mathbb{R} \mathbb Clearly, $||x \otimes y|| = ||x|| ||y||$. The rank of $x \otimes y$ is one if x and y are non-zero. If $x, x', y, y' \in H$ and $u \in B(H)$, then the following equalities are readily verified: $$(x \otimes x')(y \otimes y') = \langle y, x' \rangle (x \otimes y')$$ $$(x \otimes y)^* = y \otimes x$$ $$u(x \otimes y) = u(x) \otimes y$$ $$(x \otimes y)u = x \otimes u^*(y).$$ $$(x \otimes y)u = x \otimes x^*(y).$$ The operator $x \otimes x$ is a rank-one projection if and only if $\langle x, x \rangle = 1$, If we U . U' is a unitary between Uilbert are see U and U' then the map $H : H \to H$ is a unitary between Hilbert spaces H and H, then the $$Ad u: K(H) \to K(H'), v \mapsto uvu^*,$$ is a *-isomorphism. In fact, all *-isomorphisms between K(H) and K(H') are obtained in this way: **2.4.8. Theorem.** Let H and H' be Hilbert spaces and suppose that the map $\varphi: K(H) \to K(H')$ is a *-isomorphism. Then there exists a unitary $u: H \to H'$ such that $\varphi = \operatorname{Ad} u$. Let Ω be a locally compact Hausdorff space. For $\omega \in \Omega$, denote by τ_{ω} the character on $C_0(\Omega)$ given by evaluation at ω : $\tau_{\omega}(f) = f(\omega)$. If $\omega_1, \ldots, \omega_n$ are distinct points of Ω , then $\tau_{\omega_1}, \ldots, \tau_{\omega_n}$ are linearly independent. For if $\lambda_1 \tau_{\omega_1} + \cdots + \lambda_n \tau_{\omega_n} = 0$ and we fix i, then by Urysohn's lemma we may choose $f \in C_0(\Omega)$ such that $f(\omega_i) = 1$ and $f(\omega_j) = 0$ for $j \neq i$. Hence, $0 = \sum_{j=1}^n \lambda_j f(\omega_j) = \lambda_i$. It follows that if $C_0(\Omega)$ is finite-dimensional, then Ω is finite. From this observation we show that the projections linearly span an abelian finite-dimensional C*-algebra. We may suppose the algebra is of the form $C_0(\Omega)$ by the Gelfand representation. Then Ω is finite and therefore discrete, so the characteristic functions of the singleton sets span $C_0(\Omega)$. Suppose now that A is an arbitrary finite-dimensional C*-algebra. It is linearly spanned by its self-adjoint elements, and they in turn are linear combinations of projections by what we have just shown, so it follows that A is the linear span of its projections. If p is a finite-rank projection on a Hilbert space H, then the C*-algebra A = pB(H)p is finite-dimensional. To see this, write $p = \sum_{j=1}^{n} e_j \otimes e_j$, where $e_1, \ldots, e_n \in H$. If $u \in B(H)$, then $$pup = \sum_{j,k=1}^{n} (e_j \otimes e_j) \widehat{u(e_k \otimes e_k)} = \sum_{j,k=1}^{n} \langle u(e_k), e_j \rangle e_j \otimes e_k.$$ Hence, A is in the linear span of the operators $e_j \otimes e_k$ (j, k = 1, ..., n), and therefore $\dim(A) < \infty$. A closed vector subspace K of H is invariant for a subset $A \subseteq B(H)$ if it is invariant for every operator in A. If A is a C^* -subalgebra of B(H), it is said to be irreducible, or to act irreducibly on H, if the only closed vector subspaces of H that are invariant for A are 0 and H. The concept of irreducibility is of great importance in the representation theory of C^* -algebras which we shall be taking up in Chapter 5. The following theorem gives a nice connection between irreducibility and the ideal of compact operators. X 2.4.9. Theorem. Let A be a C*-algebra acting irreducibly on a Hilbert space H and having non-zero intersection with K(H). Then $K(H) \subseteq A$. (1) or (X,X) on X* in the top. Generated by the semi-norms P(f)-|f(x)| (xEX is fixed). An element of the local basis is N(x,,,,x,,E)=\f: |f(x;)|<E \ 181 \is n} finter for the $V: H \simeq (H)^{\times}$ $\{ \overline{9}'(G) : \xrightarrow{*} is \text{ open} \} \text{ is a typen} \}$ on $H. \longrightarrow (H)^{\times}$ X, 11.11) ms (X, 11.11) d(x))= |x-0|1 / ||4|1=||fw|1:=||x1| and will be needed in succeeding chapters. If dimTX(xxxXT is bd, then I is compact. Ais bol set dim x < 00 4> TA is bd (ITTOCKITIIINI) dim/(100 => Every subspace JY TA S NO = S = TX W dix X (xx) Tis bd (5) u is rome operator. So uH=Cx for some xEH. HZEH; U(Z)=T(Z)9(Then T: H + I is bod linear functional: U(z)= \lambda \gamma \righta = \lambda \gamma \gamma \righta \righta \gamma \ga $U(2) = Z(2) \chi$ $$\begin{array}{c} u(z') = \overline{\tau}(z')x \\ u(z) + u(z') = \overline{\tau}(z+z')x \\ u(z) + u(z') = \overline{\tau}(z)x \\ |u(z)| + \overline{\tau}(z')x | + \overline{\tau}(z')x \\ |u(z)| = ||T(z)x|| = ||T(z)|||x|| \Rightarrow ||T(z)|| = ||u(z)|| |$$ $$\begin{array}{c} u \in F(H) \\ v \in F(H) \end{array}$$ $$\begin{array}{c} u(H) = \langle x_1, \dots, x_n \rangle \\ v(H) = \langle y_1, \dots, y_n \rangle \end{array}$$ $$\begin{array}{c} u + v \in F(H) \end{array}$$ $$\begin{array}{c} (u + v)(H) = \langle y_1, \dots, y_n \rangle \\ (u + v)(H) = \langle y_1, \dots, y_n \rangle \end{array}$$ $$\begin{array}{c} (u + v)(H) = \langle y_1, \dots, y_n \rangle \\ F(H) \text{ is an ideal of } K(1H).$$ $$\begin{array}{c} u \in F(H) \end{array}$$ F(H)$$ $$\begin{array}{c} u \in F(H) \end{array}$$ $$\begin{array}{c} u \in F(H) \end{array}$$ $$\begin{array}{c} u \in F(H) \end{array}$$ $$\begin{array}{c} u \in F(H)$$ $$\begin{array}{c} u \in F(H) \end{array}$$ $$\begin{array}{c} u \in F(H)$$ $$\begin{array}{c} u \in F(H) \end{array}$$ $$\begin{array}{c} u \in F(H)$$ $$\begin{array}{c} u \in F(H) \end{array}$$ $$\begin{array}{c} u \in F(H) \end{array}$$ $$\begin{array}{c} u \in F(H)$$ $$\begin{array}{c} u \in F(H) \end{array}$$ $$\begin{array}{c} u \in F(H) \end{array}$$ $$\begin{array}{c} u \in F(H)$$ $$\begin{array}{c} u \in F(H) \end{array}$$ $$\begin{array}{c} u \in F(H)$$ $$\begin{array}{c} u \in F(H) \end{array}$$ $$\begin{array}{c} u \in F(H)$$ $$\begin{array}{c} u \in F(H) \end{array}$$ $$\begin{array}{c} u \in F(H)$$ $$\begin{array}{c} u \in F(H) \end{array}$$ $$\begin{array}{c} u \in F(H)$$ $$\begin{array}{c} u \in F(H) \end{array}$$ $$\begin{array}{c} u \in F(H)$$ $$\begin{array}{c} u \in F(H)$$ $$\begin{array}{c} u \in F$$ ux=y (yox)(x)= 5 (9) If -12{ω,ω, ω, ω, then C(S) ≥{ζ,ζ,ω, ω} We observed that every finite subset of { Z, Z, m} is linearly independent. So { Zw, Zw, ...] is lin independent. Thus C(si)' is infinite dim. Hence C(52) is infinite du Th. If ukck, then ikck (KSH) tack , (u*x,y)=(x,uy)=0 (REK) => MXEKTO $u = \lim_{n \to \infty} p_n u \text{ if } u \in F(H), \text{ since } F(H) \text{ is dense in } K(H). \text{ Now if } u \in F(H), \text{ there exist } x_1, \dots, x_m, y_1, \dots, y_m \text{ in } H \text{ such that } u = \sum_{k=1}^m x_k \otimes y_k.$ $|\text{Hence, } p_n u = \sum_{k=1}^m p_n(x_k) \otimes y_k. \text{ Since } \lim_{n \to \infty} p_n(x) = x_k \text{ for all } x \in H,$ $|\text{Therefore for each } k, \text{ sp}(p^2 - p) = |\lambda^2 - \lambda^2 -$ Let A be an arbitrary C*-algebra and denote by Λ the set of all positive A elements a in A such that ||a|| < 1. This set is a poset under the partial order of A_{sa} . In fact, Λ is also upwards-directed; that is, if $a, b \in \Lambda$, then there exists $c \in \Lambda$ such that $a, b \leq c$. We show this: If $a \in A^+$, then 1 + a is of course invertible in A, and $a(1+a)^{-1} = 1 - (1+a)^{-1}$. We claim $a, b \in A^+$ and $a \leq b \Rightarrow a(1+a)^{-1} \leq b(1+b)^{-1}$. Indeed, if $0 \le a \le b$, then $1+a \le 1+b$ implies $(1+a)^{-1} \ge (1+b)^{-1}$, by Theorem 2.2.5, and therefore $1-(1+a)^{-1} \le 1-(1+b)^{-1}$; that is, $a(1+a)^{-1} \le b(1+b)^{-1}$, proving the claim. Observe that if $a \in A^+$, then $a(1+a)^{-1}$ belongs to Λ (use the Gelfand representation applied to the C*-subalgebra generated by 1 and a). Suppose then that a, b are an arbitrary pair of elements of Λ . Put $a' = a(1-a)^{-1}$, $b' = b(1-b)^{-1}$ and $c = (a'+b')(1+a'+b')^{-1}$. Then $c \in \Lambda$, and since $a' \le a'+b'$, we have $a = a'(1+a')^{-1} \le c$, by (1). Similarly, $b \le c$, and therefore Λ is upwards-directed, as asserted. **3.1.1. Theorem.** Every C^* -algebra A admits an approximate unit. Indeed, if Λ is the upwards-directed set of all $a \in A^+$ such that ||a|| < 1 and $u_{\lambda} = \lambda$ for all $\lambda \in \Lambda$, then $(u_{\lambda})_{\lambda \in \Lambda}$ is an approximate unit for A (called the canonical approximate unit). **Proof.** From the remarks preceding this theorem, $(u_{\lambda})_{{\lambda} \in {\Lambda}}$ is an increasing net of positive elements in the closed unit ball of A. Therefore, we need only show that $a = \lim_{\lambda} u_{\lambda} a$ for each $a \in A$. Since ${\Lambda}$ linearly spans A, we can reduce to the case where $a \in {\Lambda}$. only show that $a = \lim_{\lambda} u_{\lambda} a$ for each $a \in A$. Since Λ linearly spans A, we can reduce to the case where $a \in \Lambda$. Suppose then that $a \in \Lambda$ and that $\varepsilon > 0$. Let $\varphi : C^*(a) \to C_0(\Omega)$ be the Gelfand representation. If $f = \varphi(a)$, then $K = \{\omega \in \Omega \mid |f(\omega)| \ge \varepsilon\}$ is compact, and therefore by Urysohn's lemma there is a continuous function $g: \Omega \to [0,1]$ of compact support such that $g(\omega) = 1$ for all $\omega \in K$. Choose $\delta > 0$ such that $\delta < 1$ and $1 - \delta < \varepsilon$. Then $||f - \delta gf|| \le \varepsilon$. If $\lambda_0 = 0$ and $\lambda \ge \lambda_0$. Then $\lambda_0 \in \Lambda$ and $\lambda \ge \lambda_0$. Then $\lambda_0 \in \Lambda$ and $\lambda \ge \lambda_0$. Then $\lambda_0 \in \Lambda$ and $\lambda \ge \lambda_0$. Then $\lambda_0 \in \Lambda$ and $\lambda \ge \lambda_0$. Then $\lambda_0 \in \Lambda$ and $\lambda \ge \lambda_0$. Then $\lambda_0 \in \Lambda$ and $\lambda \ge \lambda_0$. Then $\lambda_0 \in \Lambda$ and $\lambda \ge \lambda_0$. Then $\lambda_0 \in \Lambda$ and $\lambda \ge
\lambda_0$. Then $\lambda_0 \in \Lambda$ and $\lambda \ge \lambda_0$. Then $\lambda_0 \in \Lambda$ and $\lambda \ge \lambda_0$. Then $\lambda_0 \in \Lambda$ and $\lambda \ge \lambda_0$. Then $\lambda_0 \in \Lambda$ and $\lambda \ge \lambda_0$. Then $\lambda_0 \in \Lambda$ and $\lambda \ge \lambda_0$. Then $\lambda_0 \in \Lambda$ and $\lambda \ge \lambda_0$. Then $\lambda_0 \in \Lambda$ and $\lambda \ge \lambda_0$. Then $\lambda_0 \in \Lambda$ and $\lambda_0 \in \Lambda$. Then $\lambda_0 \in \Lambda$ and $||a-u_{\lambda}a||^2 = ||(1-u_{\lambda})^{2/2}(1-u_{\lambda})^{2/2}a||^2 \le ||(1-u_{\lambda})^{2/2}a||^2 = ||a(1-u_{\lambda})a|| \le ||a-u_{\lambda}a||^2 ||a-u_$ $||a(1-u_{\lambda_0})a|| \le ||(1-u_{\lambda_0})a|| \le \varepsilon$. This shows that $a = \lim_{\lambda} u_{\lambda}a$. $||a(1-u_{\lambda_0})a|| \le \varepsilon$. This shows that $a = \lim_{\lambda} u_{\lambda}a$. $||a(1-u_{\lambda_0})a|| \le \varepsilon$. This shows that $a = \lim_{\lambda} u_{\lambda}a$. $||a(1-u_{\lambda_0})a|| \le \varepsilon$. This shows that $a = \lim_{\lambda} u_{\lambda}a$. $||a(1-u_{\lambda_0})a|| \le \varepsilon$. This shows that $a = \lim_{\lambda} u_{\lambda}a$. $||a(1-u_{\lambda_0})a|| \le \varepsilon$. This shows that $a = \lim_{\lambda} u_{\lambda}a$. $||a(1-u_{\lambda_0})a|| \le \varepsilon$. This shows that $a = \lim_{\lambda} u_{\lambda}a$. $||a(1-u_{\lambda_0})a|| \le \varepsilon$. This shows that $a = \lim_{\lambda} u_{\lambda}a$. $||a(1-u_{\lambda_0})a|| \le \varepsilon$. This shows that $a = \lim_{\lambda} u_{\lambda}a$. $||a(1-u_{\lambda_0})a|| \le \varepsilon$. This shows that $a = \lim_{\lambda} u_{\lambda}a$. $||a(1-u_{\lambda_0})a|| \le \varepsilon$. This shows that $a = \lim_{\lambda} u_{\lambda}a$. $||a(1-u_{\lambda_0})a|| \le \varepsilon$. This shows that $a = \lim_{\lambda} u_{\lambda}a$. $||a(1-u_{\lambda_0})a|| \le \varepsilon$. This shows that $a = \lim_{\lambda} u_{\lambda}a$. $||a(1-u_{\lambda_0})a|| \le \varepsilon$. This shows that $a = \lim_{\lambda} u_{\lambda}a$. $||a(1-u_{\lambda_0})a|| \le \varepsilon$. This shows that $a = \lim_{\lambda} u_{\lambda}a$. $||a(1-u_{\lambda_0})a|| \le \varepsilon$. This shows that $a = \lim_{\lambda} u_{\lambda}a$. $||a(1-u_{\lambda_0})a|| \le \varepsilon$. This shows that $a = \lim_{\lambda} u_{\lambda}a$. $||a(1-u_{\lambda_0})a|| \le \varepsilon$. This shows that $a = \lim_{\lambda} u_{\lambda}a$. $||a(1-u_{\lambda_0})a|| \le \varepsilon$. This shows that $a = \lim_{\lambda} u_{\lambda}a$. $||a(1-u_{\lambda_0})a|| \le \varepsilon$. This shows that $a = \lim_{\lambda} u_{\lambda}a$. $||a(1-u_{\lambda_0})a|| \le \varepsilon$. This shows that $a = \lim_{\lambda} u_{\lambda}a$. $||a(1-u_{\lambda_0})a|| \le \varepsilon$. This shows that $a = \lim_{\lambda} u_{\lambda}a$. proximate unit which is a sequence. For in this case there exist finite sets, $F_1 \subseteq F_2 \subseteq \ldots \subseteq F_n \subseteq \ldots$ such that $F = \bigcup_{n=1}^{\infty} F_n$ is dense in A. Let $||Q_n|| < 1$ $(u_{\lambda})_{{\lambda}\in\Lambda}$ be any approximate unit for A. If ${\varepsilon}>0$, and $F_n=\{a_1,\ldots,a_m\}$ say, then there exist $\lambda_1, \ldots, \lambda_m \in \Lambda$ such that $||a_j - a_j u_{\lambda}|| < \varepsilon$ if $\lambda \geq \lambda_j$. Choose $\lambda_{\varepsilon} \in \Lambda$ such that $\lambda_{\varepsilon} \geq \lambda_1, \ldots, \lambda_m$. Then $||a - au_{\lambda}|| < \varepsilon$ for all $a \in F_n$ and all $\lambda \geq \lambda_{\varepsilon}$. Hence, if n is a positive integer and $\varepsilon = 1/n$, then there exists $\lambda_n = \lambda_{\varepsilon} \in \Lambda$ such that $||a - a\lambda_n|| < 1/n$ for all $a \in F_n$. Also, we may obviously choose the λ_n such that $\lambda_n \leq \lambda_{n+1}$ for all n. Consequently, $\lim_{n\to\infty} \|a-au_{\lambda_n}\|=0$, for all $a\in F$, and since F is dense in A, this also holds for all $a \in A$. Therefore, $(u_{\lambda_n})_{n=1}^{\infty}$ is an approximate unit for A. 3.1.2. Theorem. If L is a closed left ideal in a C*-algebra A, then there is an increasing net $(u_{\lambda})_{{\lambda} \in {\Lambda}}$ of positive elements in the closed unit ball of ${\lambda} \neq {\lambda}$. L such that $a = \lim_{\lambda} au_{\lambda}$ for all $a \in L$. DELOL* $A \in L$ **Proof.** Set $B = L \cap L^*$. Since B is a C*-algebra, it admits an approximate unit, $(u_{\lambda})_{{\lambda} \in {\Lambda}}$ say, by Theorem 3.1.1. If $a \in L$, then $a^*a \in B$, so 0 = $\lim_{\lambda} a^* a(1-u_{\lambda})$. Hence, $\lim_{\lambda} \|a-au_{\lambda}\|^2 = \lim_{\lambda} \|(1-u_{\lambda})a^* a(1-u_{\lambda})\| \le$ $\lim_{\lambda} ||a^*a(1-u_{\lambda})|| = 0$, and therefore $\lim_{\lambda} ||a-au_{\lambda}|| = 0$. In the preceding proof we worked in the unitisation \tilde{A} of A. We shall frequently do this tacitly. **3.1.3. Theorem.** If I is a closed ideal in a C^* -algebra A, then I is self-adjoint and therefore a C^* -subalgebra of A. If $(u_{\lambda})_{{\lambda}\in\Lambda}$ is an approximate unit for I, then for each $a\in A$ $$\inf \|a+Z\| = \|a+I\| = \lim_{\lambda} \|a-u_{\lambda}a\| = \lim_{\lambda} \|a-au_{\lambda}\|.$$ **Proof.** By Theorem 3.1.2 there is an increasing net $(u_{\lambda})_{\lambda \in \Lambda}$ of positive elements in the closed unit ball of I such that $a = \lim_{\lambda} au_{\lambda}$ for all $a \in I$. Hence, $a^* = \lim_{\lambda} u_{\lambda}a^*$ so $a^* \in I$, because all of the elements u_{λ} belong to I. Therefore, I is self-adjoint. Suppose that $(u_{\lambda})_{{\lambda} \in \Lambda}$ is an arbitrary approximate unit of I, that $a \in A$, and that ${\varepsilon} > 0$. There is an element b of I such that $||a+b|| < ||a+I|| + {\varepsilon}/2$. Since $b = \lim_{\lambda} u_{\lambda} b$, there exists $\lambda_0 \in \Lambda$ such that $||b-u_{\lambda}b|| < {\varepsilon}/2$ for all ${\lambda} \ge {\lambda}_0$, and therefore $$||a+I|| \leq ||a-u_{\lambda}a|| \leq ||(1-u_{\lambda})(a+b)|| + ||b-u_{\lambda}b||$$ $$||a+I|| \leq ||a+b|| + ||b-u_{\lambda}b||$$ $$||a+I|| + \varepsilon/2 + \varepsilon/2.$$ 10 follows that $\|a+1\| = \min_{\lambda} \|a-a_{\lambda}a\|$, and therefore also $\|a+1\|$ $||a^* + I|| = \lim_{\lambda} ||a^* - u_{\lambda}a^*|| = \lim_{\lambda} ||a - au_{\lambda}||.$ 3.1.4. Theorem. If I is a closed ideal of a C*-algebra A, then the quotient A/I is a C*-algebra under its usual operations and the quotient norm. **Proof.** Let $(u_{\lambda})_{{\lambda} \in \Lambda}$ be a approximate unit for I. If $a \in A$ and $b \in I$, then $$||a + I||^{2} = \lim_{\lambda} ||a - au_{\lambda}||^{2} \text{ (by Theorem 3.1.3)}$$ $$= \lim_{\lambda} ||(1 - u_{\lambda})a^{*}a(1 - u_{\lambda})|| \qquad () \text{ (ondition)}$$ $$\leq \sup_{\lambda} ||(1 - u_{\lambda})(a^{*}a + b)(1 - u_{\lambda})|| + \lim_{\lambda} ||(1 - u_{\lambda})b(1 - u_{\lambda})||$$ $$\leq ||a^{*}a + b|| + \lim_{\lambda} ||b - u_{\lambda}b||$$ $$= ||a^{*}a + b||.$$ Therefore, $||a+I||^2 \le ||a^*a+I||$. By Lemma 2.1.3, A/I is a C*-algebra. \square 3110+III 1/0+I)1 = 110+I1/2 **3.1.5. Theorem.** If $\varphi: A \to B$ is an injective *-homomorphism between C^* -algebras A and B, then φ is necessarily isometric. **Proof.** It suffices to show that $\|\varphi(a)\|^2 = \|a\|^2$, that is, $\|\varphi(a^*a)\| = \|a^*a\|$. Thus, we may suppose that A is abelian (restrict to $C(a^*a)$ if necessary), and that B is abelian (replace B by $\varphi(A)^-$ if required). Moreover, by extending $\varphi: A \to B$ to $\tilde{\varphi}: \tilde{A} \to \tilde{B}$ if necessary, we may further assume that A, B, and φ are unital. If τ is a character on B, then $\tau \circ \varphi$ is one on A. Clearly the map A2((2(A)) F is continuous. Hence, $\varphi'(\Omega(B))$ is compact, because $\Omega(A)$ is compact. and therefore $\varphi'(\Omega(B))$ is closed in $\Omega(A)$. If $\varphi'(\Omega(B)) \neq \Omega(A)$, then by Urysohn's lemma there is a nonezero continuous function $f:\Omega(A)\to \mathbf{C}$ such that f vanishes on $\varphi'(\Omega(B))$. By the Gelfand representation, $f = \hat{a} \rightarrow h$. 1 - O(D) for some element $a \in A$. Hence, for each $\tau \in \mathcal{U}(B)$, $\tau(\varphi(a)) = a(\tau \circ \varphi) = 0$. Therefore, $\varphi(a) = 0$, so a = 0. But this implies that f is zero, a contradiction. The only way to avoid this is to have $\varphi'(\Omega(B)) = \Omega(A)$. Hence, for each $a \in A$, $$||a|| = ||\hat{a}||_{\infty} = \sup_{\tau \in \Omega(A)} |\tau(a)| = \sup_{\tau \in \Omega(B)} |\tau(\varphi(a))| = ||\varphi(a)||.$$ Thus, φ is isometric. **3.1.6. Theorem.** If $\varphi: A \to B$ is a *-homomorphism between C^* -algebras, then $\varphi(A)$ is a C^* -subalgebra of B. Proof. The map $$A/\ker(\varphi) \to B, \ a + \ker(\varphi) \mapsto \varphi(a),$$ is an injective *-homomorphism between C*-algebras and is therefore isometric. Its image is $\varphi(A)$, so this space is necessarily complete and therefore closed in B. Yan \mathcal{H} is C* small of \mathcal{B} **3.1.7. Theorem.** Let B and I be respectively a C^* -subalgebra and a closed ideal in a C^* -algebra A. Then B + I is a C^* -subalgebra of A. **Proof.** We show only that B+I is complete, because the rest is trivial. Since I is complete we need only prove that the quotient (B+I)/I is complete. The intersection $B \cap I$ is a closed ideal in B and the map φ from $B/(B \cap I)$ to A/I defined by setting $\varphi(b+B \cap I)=b+I$ $(b \in B)$ is a *-homomorphism with range (B+I)/I. By Theorem 3.1.6, (B+I)/I is complete, because it is a C*-algebra. b+xeB+[whereb+B&7] (b+x)=b+x & B+ I & B & EI If I_1, I_2, \ldots, I_n are sets in A, we define $I_1I_2 \ldots I_n$ to be the closed linear span of all products $a_1a_2 \ldots a_n$, where $a_j \in I_j$. If I, J are closed ideals in $A \in I \cap I$, then $I \cap J = IJ$. The inclusion $IJ \subseteq I \cap J$ is obvious. To show the reverse inclusion
we need only show that if a is a positive element of $I \cap J$, then $a \in IJ$. Suppose then that $a \in (I \cap J)^+$. Hence, $a^{1/2} \in I \cap J$. If $(u_{\lambda})_{\lambda \in \Lambda}$ is an approximate unit for I, then $a = \lim_{\lambda} (u_{\lambda}a^{1/2})a^{1/2}$, and since $u_{\lambda}a^{1/2} \in I$ for all $\lambda \in \Lambda$, we get $a \in IJ$, as required. Let I be a closed ideal I in A. We say I is essential in A if $aI = 0 \Rightarrow a = 0$ (equivalently, $Ia = 0 \Rightarrow a = 0$). From the preceding observations it is easy to check that I is essential in A if and only if $I \cap J \neq 0$ for all non-zero closed ideals J in A. Program C* also best Tisas assertial ideal in the sultiplier also best M(T) Every C'-algebra I is an essential ideal in its multiplier algebra M(I). 3.1.8. Theorem. Let I be a closed ideal in a C*-algebra A. Then there is a unique *-homomorphism $\varphi: A \to M(I)$ extending the inclusion $I \to M(I)$. Moreover, φ is injective if I is essential in A. **Proof.** We have seen above that the inclusion map $I \to M(I)$ admits a *-homomorphic extension $\varphi: A \to M(I)$. Suppose that $\psi: A \to M(I)$ is another such extension. If $a \in A$ and $b \in I$, then $\varphi(a)b = \varphi(ab) = ab =$ $\psi(ab) = \psi(a)b$. Hence, $(\varphi(a) - \psi(a))I = 0$, so $\varphi(a) = \psi(a)$, since I is essential in M(I). Thus, $\varphi = \psi$. Suppose now that I is essential in A and let $a \in \ker(\varphi)$. Then aI = $L_a(I) = 0$, so a = 0. Thus, φ is injective. (2) Let lingue & Yuc F(H). Assume that UEK(H). Given E) or So=JUEF(H); 114-11/2 (since F(H)=K(H)). 190-01/ <119/11/12-41/+119/4-4/H 110-4/1 Sor Yn>N; 11Pn0-1911 < E. Honeclippn0=10.0 Four jer ferier 3/iPx=x (Pn(H)=Cep... Den) since | i.Px | i.Pn \(\frac{1}{2}\) | i. [i.Pn \(\frac{1}{2}\) | i. [i.Pn \(\frac{1}{2}\)] | i. [i.Pn \(\frac{1}{2}\)] | i. [i.Pn \(\frac{1}{2}\)] | i.Pn \(\frac{1}{2}\) \(11011515=), sup|t| <1 => t < |t| < sup|t| <1 =) a < 1. B. I) HECOGO ## Hereditary C*-Subalgebras A C*-subalgebra B of a C*-algebra A is said to be hereditary if for $a \in A^+$ and $b \in B^+$ the inequality $a \leq b$ implies $a \in B$. Obviously, 0 and A are hereditary C^* -subalgebras of A, and any intersection of hereditary C*-subalgebras is one also. The hereditary C*-subalgebra generated by a subset S of A is the smallest hereditary C^* -subalgebra of A containing S. **3.2.1.** Example. If p is a projection in a C*-algebra A, the C*-subalgebra pAp_{i} is hereditary. For, assuming $0 \le b \le pap$, then $0 \le (1-p)b(1-p) \le pAp_{i}$ (1-p)pap(1-p)=0, so (1-p)b(1-p)=0. Hence, $||b^{1/2}(1-p)||^2=0$ ||(1-p)b(1-p)|| = 0, so b(1-p) = 0. Therefore, $b = pbp \in pAp$. The correspondence between hereditary C*-subalgebras and closed left ideals in the following theorem is very useful. ## 3.2.1. Theorem. Let A be a C*-algebra. - (1) If L is a closed left ideal in A, then $L \cap L^*$ is a hereditary C^* -subalgebra of A. The map $L \mapsto L \cap L^*$ is a bijection from the set of closed left ideals of A onto the set of hereditary C^* -subalgebras of A. - (2) If L_1, L_2 are closed left ideals of A, then $L_1 \subseteq L_2$ if and only if $L_1 \cap L_1^* \subseteq L_2$ $L_2 \cap L_2^*$. - (3) If B is a hereditary C*-subalgebra of A, then the set $$L(B) = \{a \in A \mid a^*a \in B\}$$ is the unique closed left ideal of A corresponding to B. **Proof.** If L is a closed left ideal of A, then clearly $B = L \cap L^*$ is a C*-subalgebra of A. Suppose that $a \in A^+$ and $b \in B^+$ and $a \leq b$. By Theorem 3.1.2 there is an increasing net $(u_{\lambda})_{{\lambda} \in {\Lambda}}$ in the closed unit ball of L^+ such that $\lim_{\lambda} bu_{\lambda} = b$. Now $0 \le (1 - u_{\lambda})a(1 - u_{\lambda}) \le (1 - u_{\lambda})b(1 - u_{\lambda})$, so $||a^{1/2} - a^{1/2}u_{\lambda}||^2 = ||(1 - u_{\lambda})a(1 - u_{\lambda})|| \le ||(1 - u_{\lambda})b(1 - u_{\lambda})|| \le ||b - bu_{\lambda}||.$ Hence, $a^{1/2} = \lim_{\lambda} a^{1/2} u_{\lambda}$, so $a^{1/2} \in L$, since $u_{\lambda} \in L$ ($\lambda \in \Lambda$). Therefore, $a \in B$, so B is hereditary in A. Suppose now that L_1, L_2 are closed left ideals of A. It is evident that $L_1 \subseteq L_2 \Rightarrow L_1 \cap L_1^* \subseteq L_2 \cap L_2^*$. To show the reverse implication, suppose that $L_1 \cap L_1^* \subseteq L_2 \cap L_2^*$ and let $(u_{\lambda})_{{\lambda} \in \Lambda}$ be an approximate unit for $L_1 \cap L_1^*$, and $a \in L_1$. Then $\lim_{\lambda} \|a - au_{\lambda}\|^2 = \lim_{\lambda} \|(1 - u_{\lambda})a^*a(1 - u_{\lambda})\| \le 1$ $\lim_{\lambda} \|a^*a(1-u_{\lambda})\| = 0$, since $a^*a \in L_1 \cap L_1^*$. It follows that $\lim_{\lambda} au_{\lambda} = a$. Therefore, $a \in L_2$, since $u_{\lambda} \in L_1 \cap L_1^* \subseteq L_2$. This proves Condition (2). Now let B be a hereditary C*-subalgebra of A and let L = L(B). If **Proof.** If B is hereditary, then by Theorem 3.2.1 $B = L \cap L^*$ for some closed left ideal L of A. Hence, if $b, b' \in B$ and $a \in A$, we have $b(ab') \in L$ and $b'^*(a^*b^*) \in L$, so $bab' \in B$. Conversely, suppose B has the property that $bab' \in B$ for all $b, b' \in B$ and $a \in A$. If $(u_{\lambda})_{\lambda \in \Lambda}$ is an approximate unit for B and $a \in A^+$, $b \in B^+$, and $a \leq b$, then $0 \leq (1 - u_{\lambda})a(1 - u_{\lambda}) \leq (1 - u_{\lambda})b(1 - u_{\lambda})$, and therefore $||a^{1/2} - a^{1/2}u_{\lambda}|| \leq ||b^{1/2} - b^{1/2}u_{\lambda}||$. Since $b^{1/2} = \lim_{\lambda} b^{1/2}u_{\lambda}$, therefore, $a^{1/2} = \lim_{\lambda} a^{1/2}u_{\lambda}$, so $a = \lim_{\lambda} u_{\lambda}au_{\lambda} \in B$. Thus, B is hereditary. \square 3.2.4. Corollary. If A is a C*-algebra and $a \in A^+$, then $(aAa)^-$ is the hereditary C*-subalgebra of A generated by $a \in B$ Proof. The only thing we show is that $a \in (aAa)^-$, because the rest is routine. If $(u_{\lambda})_{\lambda \in \Lambda}$ is an approximate unit for A, then $a^2 = \lim_{\lambda} au_{\lambda}a$, so $a^2 \in (aAa)^-$. Since $(aAa)^-$ is a C*-algebra, $a = \sqrt{a^2} \in (aAa)^-$ also. \square In the separable case, every hereditary C*-subalgebra is of the form in the preceding corollary: **3.2.5. Theorem.** Suppose that B is a separable hereditary C^* -subalgebra of a C^* -algebra A. Then there is a positive element $a \in B$ such that $B = (aAa)^-$. **Proof.** Since B is a separable C*-algebra, it admits a sequential approximate unit, $(u_n)_{n=1}^{\infty}$ say (cf. Remark 3.1.1). Set $a = \sum_{n=1}^{\infty} u_n/2^n$. Then $a \in B^+$, so B contains $(aAa)^-$. Since $u_n/2^n \le a$, and $(aAa)^-$ is hereditary by Corollary 3.2.4, therefore $u_n \in (aAa)^-$. If $b \in B$, then If the separability condition is dropped in Theorem 3.2.5, the result may fail. To see this let H be a Hilbert space, and suppose that u is a positive element of B(H) such that $K(H) = (uB(H)u)^{-}$. If $x \in H$, then $x \otimes x = \lim_{n \to \infty} u v_n u$ for a sequence (v_n) in B(H), and therefore x is in the closure of the range of u. This shows that $H = (u(H))^{-}$, and therefore H is separable, since the range of a compact operator is separable (cf. Remark 1.4.1). Thus, if H is a non-separable Hilbert space, then the hereditary C*-subalgebra K(H) of B(H) is not of the form $(uB(H)u)^-$ for any $u \in B(H)^+$. 3.2.6. Theorem. Suppose that B is a hereditary C*-subalgebra of a unital C*-algebra A, and let $a \in A^+$. If for each $\varepsilon > 0$ there exists $b \in B^+$ such that $a \leq b + \varepsilon$, then $a \in B$. **Proof.** Let $\varepsilon > 0$. By the hypothesis there exists $b_{\varepsilon} \in B^+$ such that $a \leq b_{\epsilon}^2 + \varepsilon^2$, so $a \leq (b_{\epsilon} + \varepsilon)^2$. Hence, $(b_{\epsilon} + \varepsilon)^{-1} a(b_{\epsilon} + \varepsilon)^{-1} \leq 1$, and therefore $\|(b_{\epsilon} + \varepsilon)^{-1} a(b_{\epsilon} + \varepsilon)^{-1}\| \leq 1$. Using the fact that $1 - b_{\epsilon}(b_{\epsilon} + \varepsilon)^{-1} = 0$ $\varepsilon(b_{\varepsilon}+\varepsilon)^{-1}$, we get $$\|a^{1/2} - a^{1/2}b_{\varepsilon}(b_{\varepsilon} + \varepsilon)^{-1}\|^{2} = \varepsilon^{2}\|a^{1/2}(b_{\varepsilon} + \varepsilon)^{-1}\|^{2}$$ $$= \varepsilon^{2}\|(b_{\varepsilon} + \varepsilon)^{-1}a(b_{\varepsilon} + \varepsilon)^{-1}\|$$ $$\leq \varepsilon^{2}.$$ Invertible. Hence, $$a^{1/2} = \lim_{\varepsilon \to 0} a^{1/2} b_{\varepsilon} (b_{\varepsilon} + \varepsilon)^{-1}, \text{ Salution by } 0 \longleftrightarrow t \Rightarrow$$ and therefore also Hence, $$a^{1/2} = \lim_{\varepsilon \to 0} a^{1/2} b_{\varepsilon} (b_{\varepsilon} + \varepsilon)^{-1}, \text{ Solution}$$ and therefore also $$a^{1/2} = \lim_{\varepsilon \to 0} (b_{\varepsilon} + \varepsilon)^{-1} b_{\varepsilon} a^{1/2}, \text{ by taking adjoints. Thus,}$$ Solution $$a = \lim_{\varepsilon \to 0} (b_{\varepsilon} + \varepsilon)^{-1} b_{\varepsilon} a b_{\varepsilon} (b_{\varepsilon} + \varepsilon)^{-1}. \text{ Solution}$$ by taking adjoints. Thus, $$a = \lim_{\varepsilon \to 0} (b_{\varepsilon} + \varepsilon)^{-1} b_{\varepsilon} a b_{\varepsilon} (b_{\varepsilon} + \varepsilon)^{-1}. \text{ by taking adjoints.}$$ Now $b_{\epsilon}(b_{\epsilon}+\varepsilon)^{-1} \in B$, and therefore $(b_{\epsilon}+\varepsilon)^{-1}b_{\epsilon}ab_{\epsilon}(b_{\epsilon}+\varepsilon)^{-1} \in B$, since B is hereditary in A. It follows that $a \in B$. We briefly indicate the connection between the ideal structure of a C*-algebra and its hereditary C*-subalgebras in the following results, but we shall defer to Chapter 5 a fuller consideration of this matter. 3.2.7. Theorem. Let B be a hereditary C*-subalgebra of a C*-algebra A, and let J be a closed ideal of B. Then there exists a closed ideal I of A such that $J = B \cap I$. **Proof.** Let I = AJA. Then I is a closed ideal of A. Since J is a C*-algebra, $J = J^3$, and since B is
hereditary in A, we have $B \cap I = BIB$ (both of these assertions follow easily from the existence of approximate **3.2.2.** Example. If H is a Hilbert space, then the C*-algebra K(H) is simple. For if I is a closed non-zero ideal of K(H), it is also an ideal of B(H) (cf. Remark 3.1.2), so I contains the ideal F(H) by Theorem 2.4.7, and therefore I = K(H). It is not true that C*-subalgebras of simple C*-algebras are necessarily simple. For instance, if p, q are finite-rank non-zero projections on a Hilbert space H such that pq = 0, then $A = \mathbf{C}p + \mathbf{C}q$ is a non-simple C*-subalgebra of the simple C*-algebra K(H) (the closed ideal $Ap = \mathbf{C}p$ of A is non-trivial). **3.2.8. Theorem.** Every hereditary C*-subalgebra of a simple C*-algebra is simple. **Proof.** Let B be a hereditary C*-subalgebra of a simple C*-algebra A. If J is a closed ideal of B, then $J = B \cap I$ for some closed ideal I of A by Theorem 3.2.7. Simplicity of A implies that I = 0 or A, and therefore J = 0 or B. ## 3.3. Positive Linear Functionals For abelian C*-algebras we were able completely to determine the structure of the algebra in terms of the character space, that is, in terms of the one-dimensional representations. For the non-abelian case this is quite inadequate, and we have to look at representations of arbitrary dimension. There is a deep inter-relationship between the representations and the positive linear functionals of a C*-algebra. Representations will be defined and some aspects of this inter-relationship investigated in the next section. In this section we establish the basic properties of positive linear functionals. If $\varphi: A \to B$ is a linear map between C*-algebras, it is said to be positive if $\varphi(A^+) \subseteq \mathcal{B}^+$ In this case $\varphi(A_{sa}) \subseteq B_{sa}$, and the restriction map $\varphi: A_{sa} \to B_{sa}$ is increasing. Every *-homomorphism is positive. **3.3.1.** Example. Let $A = C(\mathbf{T})$ and let m be normalised arc length measure on \mathbf{T} . Then the linear functional $$C(\mathbf{T}) \to \mathbf{C}, \ f \mapsto \int f \, dm,$$ - and of ai is -seitires (and not a homeomorphisms) is positive (and not a nomomorphism). **3.3.2.** Example. Let $A = M_n(\mathbf{C})$. The linear functional $$\operatorname{tr}: A \to \mathbf{C}, \ (\mathbf{0}_{ij}) \mapsto \sum_{i=1}^{n} \mathbf{0}_{ii},$$ A>0=>(Ax,x)>>0tx is positive. It is called the trace. Observe that there are no non-zero *-homomorphisms from $M_n(\mathbf{C})$ to \mathbf{C} if n > 1. Let A be a C*-algebra and τ a positive linear functional on A. Then the function $A^2 \to \mathbb{C}, \ (a,b) \mapsto \tau(b^*a)$ is a positive sesquilinear form on A. Hence, $\tau(b^*a) = \tau(a^*b)^-$ and $|\tau(b^*a)| \le \tau(a^*b)^ \tau(a^*a)^{1/2}\tau(b^*b)^{1/2}$. Moreover, the function $a\mapsto \tau(a^*a)^{1/2}$ is a semi-norm > 0>0,11a151 on A. Suppose now only that τ is a linear functional on A and that M is an element of \mathbb{R}^+ such that $|\tau(a)| \leq M$ for all positive elements of the closed unit ball of A. Then τ is bounded with norm $\|\tau\| \leq 4M$. We show this: First suppose that a is a hermitian element of A such that $||a|| \leq 1$. Then a^+, a^- are positive elements of the closed unit ball of A, and therefore $|\tau(a)| = |\tau(a^+) - \tau(a^-)|_{\parallel} \le 2M$. Now suppose that a is an arbitrary element of the closed unit ball of A, so a = b + ic where b, c are its real and imaginary parts, and $||b||, ||c|| \le 1$ Then $|\tau(a)| = |\tau(b) + i\tau(c)| \le 4M$. 3.3.1. Theorem. If τ is a positive linear functional on a C*-algebra A, then it is bounded. **Proof.** If τ is not bounded, then by the preceding remarks $\sup_{a \in S} \tau(a) =$ $+\infty$, where S is the set of all positive elements of A of norm not greater then 1. Hence, there is a sequence (a_n) in S such that $2^n \leq \tau(a_n)$ for all $n \in \mathbb{N}$. Set $a = \sum_{n=0}^{\infty} a_n/2^n$, so $a \in A^+$. Now $1 \le \tau(a_n/2^n)$ and therefore $N \le \sum_{n=0}^{N-1} \tau(a_n/2^n) = \tau(\sum_{n=0}^{N-1} a_n/2^n) \le \tau(a)$. Hence, $\tau(a)$ is an upper bound for the set N, which is impossible. This shows that τ is bounded. \square **3.3.2. Theorem.** If τ is a positive linear functional on a C^* -algebra A, then $\underline{\tau(a^*)} = \tau(a)^-$ and $|\tau(a)|^2 \le ||\tau|| \tau(a^*a)$ for all $a \in A$. **Proof.** Let $(u_{\lambda})_{{\lambda} \in \Lambda}$ be an approximate unit for A. Then $$\tau(a^*) = \lim_{\lambda} \tau(a^*u_{\lambda}) = \lim_{\lambda} \tau(u_{\lambda}a)^- = \tau(a)^-.$$ Also, $|\tau(a)|^2 = \lim_{\lambda} |\tau(u_{\lambda}a)|^2 \leq \sup_{\lambda} \tau(u_{\lambda}^2) \tau(a^*a) \leq ||\tau|| \tau(a^*a)$. D(aAa) is a herediray C_subally of A: axa eafa = (axa) (aya) = akay) a Eofa, ... Jafa aya eafa = (axa) (aya) = akay) a Eofa, ... Jafa is subag -) and subaly $x \in \overline{Aa} \Rightarrow oxa \rightarrow x \Rightarrow (oxa)^* \rightarrow x^* \Rightarrow ax^*a \rightarrow x^* \Rightarrow x \in \overline{Aa}$.: aAa is a chaly $x, x \in aAa \Rightarrow axa \rightarrow x, axa \rightarrow x \Rightarrow axa baxa \rightarrow xbx \in aya$ $b \in A$ at a Aa, since J=closed linear Span (ablast) -2 EB 13CE 13C 27=7 spanfabelance] [] approx unit ET3 3) - in Sesquilinum linum Cognigate linem If La, a>>0, then < ,> is called Positive. If La, a>>0, then < ,> is called Positive. $\langle a,b \rangle = 42$ (20+1/b), $0 = (b) \Rightarrow (b) \Rightarrow (b) = \Rightarrow$ **3.3.3. Theorem.** Let τ be a bounded linear functional on a C^* -algebra A. The following conditions are equivalent: - (1) τ is positive. - (2) For each approximate unit $(u_{\lambda})_{{\lambda} \in {\Lambda}}$ of A, $||\tau|| = \lim_{{\lambda}} \tau(u_{\lambda})$. - (3) For some approximate unit $(u_{\lambda})_{{\lambda} \in {\Lambda}}$ of A, $||\tau|| = \lim_{\lambda} \tau(u_{\lambda})$. **Proof.** We may suppose that $\|\tau\| = 1$. First we show the implication $(1) \Rightarrow (2)$ holds. Suppose that τ is positive, and let $(u_{\lambda})_{\lambda \in \Lambda}$ be an approximate unit of A. Then $(\tau(u_{\lambda})_{\lambda})_{\lambda \in \Lambda}$ is an increasing net in \mathbf{R} , so it converges to its supremum, which is obviously not greater than 1. Thus, $\lim_{\lambda} \tau(u_{\lambda}) \leq 1$. Now suppose that $a \in A$ and $\|a\| \leq 1$. Then $|\tau(u_{\lambda}a)|^2 \leq 1$. $\tau(u_{\lambda}^{2})\tau(a^{*}a) \leq \mathcal{L}(u_{\lambda})\tau(a^{*}a) \leq \lim_{\lambda} \tau(u_{\lambda}), \text{ so } |\tau(a)|^{2} \leq \lim_{\lambda} \tau(u_{\lambda}). \text{ Hence,}$ $1 \leq \lim_{\lambda} \tau(u_{\lambda}). \text{ Therefore, } 1 = \lim_{\lambda} \tau(u_{\lambda}), \text{ so } (1) \Rightarrow (2).$ $\text{That } (2) \Rightarrow (3) \text{ is obvious.}$ $\text{That } (2) \Rightarrow (3) \text{ is obvious.}$ Now we show that $(3) \Rightarrow (1)$. Suppose that $(u_{\lambda})_{{\lambda} \in {\Lambda}}$ is an approximate unit such that $1 = \lim_{{\lambda}} \tau(u_{\lambda})$. Let a be a self-adjoint element of A such that $||a|| \le 1$ and write $\tau(a) = \alpha + i\beta$ where α, β are real numbers. To show that $\tau(a) \in {\bf R}$, we may suppose that $\beta \le 0$. If n is a positive integer, then وت وافي مافلو If $|a-inu_{\lambda}|^2 = \|(a+inu_{\lambda})(a-inu_{\lambda})\|$ $= \|a^2+n^2u_{\lambda}^2-in(au_{\lambda}-u_{\lambda}a)\|$ $= \|a^2+n^2u_{\lambda}^2-in(au_{\lambda}-u_{\lambda}a)\|$ So we can replace a $|\tau(a-inu_{\lambda})|^{2} \leq 1+n^{2}+n||au_{\lambda}-u_{\lambda}a||.$ However, $\lim_{n\to\infty} \tau(a-inu_{\lambda}) = \tau(a)$, in add $\lim_{n\to\infty} u_{\lambda} = u_{\lambda}a$ However, $\lim_{\lambda} \tau(a - inu_{\lambda}) = \tau(a) - in$, and $\lim_{\lambda} au_{\lambda} - u_{\lambda}a = 0$, so in the limit as $\lambda \to \infty$ we get $(a - inu_{\lambda})^{2} = |\alpha + i\beta - in|^{2} \le 1 + n^{2}.$ The left-hand side of this inequality is $\alpha^2 + \beta^2 - 2n\beta + n^2$, so if we cancel and rearrange we get $(-2n\beta) \le 1 - \beta^2 - \alpha^2.$ Since β is not positive and this inequality holds for all positive integers n, β must be zero. Therefore, $\tau(a)$ is real if a is hermitian. Now suppose that a is positive and $||a|| \le 1$. Then $u_{\lambda} - a$ is hermitian and $||u_{\lambda} - a|| \le 1$, so $\tau(u_{\lambda} - a) \le 1$. But then $1 - \tau(a) = \lim_{\lambda} \tau(u_{\lambda} - a) \le 1$, and therefore $\tau(a) \ge 0$. Thus, τ is positive and we have shown $(3) \Rightarrow (1)$. **3.3.4.** Corollary. If τ is a bounded linear functional on a unital C^* -algebra, then τ is positive if and only if $\tau(1) = ||\tau||$. **Proof.** The sequence which is constantly 1 is an approximate unit for the C -algebra. Apply Theorem 5.5.5. 3.3.5. Corollary. If τ, τ' are positive linear functionals on a C*-algebra, then $\|\tau + \tau'\| = \|\tau\| + \|\tau'\|$. **Proof.** If $(u_{\lambda})_{{\lambda} \in {\Lambda}}$ is an approximate unit for the algebra, then $||\tau + \tau'|| =$ $\lim_{\lambda} (\tau + \tau')(u_{\lambda}) = \lim_{\lambda} \tau(u_{\lambda}) + \lim_{\lambda} \tau'(u_{\lambda}) = \|\tau\| + \|\tau'\|.$ A state on a C*-algebra A is a positive linear functional on A of norm one. We denote by S(A) the set of states of A. 3.3.6. Theorem. If a is a normal element of a non-zero C*-algebra A, then there is a state τ of A such that $||a|| = |\tau(a)|$. **Proof.** We may assume that $a \neq 0$. Let B be the C*-algebra generated by 1 and a in A. Since B is abelian and \hat{a} is continuous on the compact 10 = 10) space $\Omega(B)$, there is a character τ_2 on B such that $||a|| = ||\hat{a}||_{\infty} = |\tau_2(a)|$. By the Hahn-Banach theorem, there is a bounded linear functional τ_1 on \tilde{A} llall extending τ_2 and preserving the norm, so $||\tau_1|| = 1$. Since $\tau_1(1) =
\tau_2(1) = 1$, 2115 τ_1 is positive by Corollary 3.3.4. If τ denotes the restriction of τ_1 to A, Charcter then τ is a positive linear functional on A such that $||a||_1 = |\tau(a)|$. Hence, $\|\tau\|\|a\| \ge |\tau(a)| = \|a\|$, so $\|\tau\| \ge 1$, and the reverse inequality is obvious. Therefore, τ is a state of A. Suppose that τ is a positive linear functional on a 3.3.7. Theorem. C^* -algebra A. (1) For each $a \in A$, $\tau(a^*a) = 0$ if and only if $\tau(ba) = 0$ for all $b \in A$. (2) The inequality $$\tau(b^*a^*ab) \leq \|a^*a\|\tau(b^*b)$$ holds for all $a, b \in A$. 0 5 tc(ba) ((aa) T(b b) 4> **Proof.** Condition (1) follows from the Cauchy-Schwarz inequality. To show Condition (2), we may suppose, using Condition (1), that $\tau(b^*b) > 0$. The function $$\rho: A \to \mathbb{C}, \ c \mapsto \tau(b^*cb)/\tau(b^*b),$$ is positive and linear, so if $(u_{\lambda})_{{\lambda}\in\Lambda}$ is any approximate unit for A, then $$\|\rho\| = \lim_{\lambda} \rho(u_{\lambda}) = \lim_{\lambda} \tau(b^{\underline{*}}\underline{u_{\lambda}b})/\tau(b^{\underline{*}}b) = \tau(b^{\underline{*}}b)/\tau(b^{\underline{*}}b) = 1.$$ Hence, $\rho(a^*a) \leq ||a^*a||$, and therefore $\tau(b^*a^*ab) \leq ||a^*a||\tau(b^*b)$. We turn now to the problem of extending positive linear functionals. **3.3.8. Theorem.** Let B be a C*-subalgebra of a C*-algebra A, and supso that - is a mositive linear functional on P. Than there is a mositive linear functional τ' on A extending τ such that $||\tau'|| = ||\tau||$. **Proof.** Suppose first that $A = \tilde{B}$. Define a linear functional τ' on A by setting $\tau'(b+\lambda) = \tau(b) + \lambda \|\tau\|$ ($b \in B$, $\lambda \in C$). Let $(u_{\lambda})_{\lambda \in \Lambda}$ be an approximate unit for B. By Theorem 3.3.3, $\|\tau\| = \lim_{\lambda} \tau(u_{\lambda})$. Now suppose that $b \in B$ and $\mu \in C$. Then $|\tau'(b+\mu)| = |\lim_{\lambda} \tau(bu_{\lambda}) + \mu \lim_{\lambda} \tau(u_{\lambda})| = |\lim_{\lambda} \tau((b+\mu)(u_{\lambda}))| \le \sup_{\lambda} \|\tau\| \|(b+\mu)u_{\lambda}\| \le \|\tau\| \|b+\mu\|$, since $\|u_{\lambda}\| \le 1$. Hence, $\|\tau'\| \le \|\tau\|$, and the reverse inequality is obvious. Thus, $\|\tau'\| = \|\tau\| = \tau'(1)$, so τ' is positive by Corollary 3.3.4. This proves the theorem in the case $A = \tilde{B}$. Now suppose that A is an arbitrary C^* -algebra containing B as a C^* -subalgebra. Replacing B and A by \tilde{B} and \tilde{A} if necessary, we may suppose that A has a unit 1 which lies in B. By the Hahn-Banach theorem, there is a functional $\tau' \in A^*$ extending τ and of the same norm. Since $\tau'(1) = \tau(1) = ||\tau|| = ||\tau'||$, it follows as before from Corollary 3.3.4 that τ' is positive. In the case of hereditary C*-subalgebras, we can strengthen the above result—we can even write down an "expression" for τ ': **3.3.9. Theorem.** Let B be a hereditary C*-subalgebra of a C*-algebra A. If τ is a positive linear functional on B, then there is a unique positive linear functional τ' on A extending τ and preserving the norm. Moreover, if $(u_{\lambda})_{{\lambda} \in {\Lambda}}$ is an approximate unit for B, then $$\tau'(a) = \lim_{\lambda} \tau(u_{\lambda} a u_{\lambda}) \qquad (a \in A).$$ **Proof.** Of course we already have existence, so we only prove uniqueness. Let τ' be a positive linear functional on A extending τ and preserving the norm. We may in turn extend τ' in a norm-preserving fashion to a positive functional (also denoted τ') on \tilde{A} . Let $(u_{\lambda})_{{\lambda}\in\Lambda}$ be an approximate unit for B. Then $\lim_{\lambda} \tau(u_{\lambda}) = \|\tau\| = \|\tau'\| = \tau'(1)$, so $\lim_{\lambda} \tau'(1 - u_{\lambda}) = 0$. Thus, for any element $a \in A$, $$\begin{split} |\tau'(a) - \tau(u_{\lambda}au_{\lambda})| &\leq |\tau'(a - u_{\lambda}a)| + |\tau'(u_{\lambda}a - u_{\lambda}au_{\lambda})| \\ &\leq \tau'((1 - u_{\lambda})^{2})^{1/2}\tau'(a^{*}a)^{1/2} \\ &\qquad \qquad + \tau'(a^{*}u_{\lambda}^{2}a)^{1/2}\tau'((1 - u_{\lambda})^{2})^{1/2} \\ &\leq (\tau'(1 - u_{\lambda}))^{1/2}\tau'(a^{*}a)^{1/2} + \tau'(a^{*}a)^{1/2}(\tau'(1 - u_{\lambda}))^{1/2}. \end{split}$$ Since $\lim_{\lambda} \tau'(1-u_{\lambda}) = 0$, these inequalities imply $\lim_{\lambda} \tau(u_{\lambda}au_{\lambda}) = \tau'(a)$. Let A be a C*-algebra. If τ is a bounded linear functional on A, then $$\|\tau\| = \sup_{\|a\| \le 1} |Re(\tau(a))|.$$ (1) For if $a \in A$ and $||a|| \le 1$, then there is a number $\lambda \in \mathbf{T}$ such that $\lambda \tau(a) \in \mathbf{R}$, so $|\tau(a)| = |Re(\tau(\lambda a))| \le ||\tau||$, which implies Eq. (1). so $|\tau(a)| = |Re(\tau(\lambda a))| \le ||\tau||$, which implies Eq. (1). If $\tau \in A^*$, we define $\tau^* \in A^*$ by setting $\tau^*(a) = \tau(a^*)^-$ for all $\alpha \in A$. Note that $\tau^{**} = \tau$, $||\tau^*|| = ||\tau||$, and the map $\tau \mapsto \tau^*$ is conjugate-linear. We say a functional $\tau \in A^*$ is self-adjoint if $\tau = \tau^*$. For any bounded ((α)7(α) linear functional τ on A, there are unique self-adjoint bounded linear functionals τ_1 and τ_2 on A such that $\tau = \tau_1 + i\tau_2$ (take $\tau_1 = (\tau + \tau^*)/2$ and $\tau_2 = (\tau - \tau^*)/2i$). The condition $\tau = \tau^*$ is equivalent to $\tau(A_{sa}) \subseteq \mathbf{R}$, and therefore if τ is self-adjoint, the restriction $\tau': A_{sa} \to \mathbf{R}$ of τ is a bounded real-linear functional. Moreover, $\|\tau\| = \|\tau'\|$; that is, $$\|\tau\| = \sup_{\substack{a \in A_{sa} \\ \|a\| \le 1}} |\tau(a)|.$$ For if $a \in A$, we have $Re(\tau(a)) = \tau(Re(a))$, so $$\|\tau\| = \sup_{\|a\| \le 1} |\operatorname{Re}(\tau(a))| \le \sup_{\substack{b \in A_{aa} \\ \|b\| \le 1}} |\tau(b)| \le \|\tau\|.$$ We denote by A_{sa}^* the set of self-adjoint functionals in A^* , and by A_+^* the set of positive functionals in A^* . We adopt some temporary notation for the proof of the next theorem: If X is a real-linear Banach space, we denote its dual (over \mathbf{R}) by X^{\natural} . The space A_{sa} is a real-linear Banach space and it is an easy exercise to verify that A_{sa}^* is a real-linear vector subspace of A^* and that the map $A_{sa}^* \to A_{sa}^{\dagger}$, $\tau \mapsto \tau'$, is an isometric real-linear isomorphism. We shall use these observations in the proof of the following result. 3.3.10. Theorem (Jordan Decomposition). Let τ be a self-adjoint bounded linear functional on a C*-algebra A. Then there exist positive linear functionals τ_+, τ_- on A such that $\tau = \tau_+ - \tau_-$ and $||\tau|| = ||\tau_+|| + ||\tau_-||$. ## 3.4. The Gelfand-Naimark Representation In this section we introduce the important GNS construction and prove that every C*-algebra can be regarded as a C*-subalgebra of B(H) for some Hilbert space H. It is partly due to this concrete realisation of the C^* -algebras that their theory is so accessible in comparison with more general Banach algebras. A representation of a C*-algebra A is a pair (H, φ) where H is a Hilbert space and $\varphi: A \to B(H)$ is a *-homomorphism. We say (H, φ) is faithful if φ is injective. If $(H_{\lambda}, \varphi_{\lambda})_{\lambda \in \Lambda}$ is a family of representations of A, their direct sum is the representation (H, φ) got by setting $H = \bigoplus_{\lambda} H_{\lambda}$, and $\varphi(a)((x_{\lambda})_{\lambda}) = (\varphi_{\lambda}(a)(x_{\lambda}))_{\lambda}$ for all $a \in A$ and all $(x_{\lambda})_{\lambda} \in H$. It is readily verified that (H, φ) is indeed a representation of A. If for each non-zero element $a \in A$ there is an index λ such that $\varphi_{\lambda}(a) \neq 0$, then (H, φ) is faithful. Recall now that if H is an inner product space (that is, a pre-Hilbert space), then there is a unique inner product on the Banach space completion \hat{H} of H extending the inner product of H and having as its associated norm the norm of \hat{H} . We call \hat{H} endowed with this inner product the Hilbert space completion of H. With each positive linear functional, there is associated a representation. Suppose that τ is a positive linear functional on a C*-algebra A. Setting $$N_{\tau} = \{a \in A \mid \tau(a^*a) = 0\}, \quad |\tau(a^*b) \mid |\tau(a^*a)| = 0\}$$ = 11ab+N-112 it is easy to check (using Theorem 3.3.7) that N_{τ} is a closed left ideal of A and that the map $$\begin{array}{c} A_{N} \times A_{N} \xrightarrow{(A/N_{\tau})^{2}} \rightarrow C, \ (a + N_{\tau}, b + N_{\tau}) \mapsto \tau(b^{*}a), \\ (a + N_{\tau}, a + N_{\tau}) = o \Rightarrow 7(a^{*}a) = o \Rightarrow a \in N_{\tau} \Rightarrow a + N_{\tau} = 0 \end{array}$$ is a well-defined inner product on A/N_{τ} . We denote by H_{τ} the Hilbert completion of A/N_{τ} . If $$a \in A$$, define an operator $\varphi(a) \in B(A/N_{\tau})$ by setting $$\varphi(a): A/N_z \longrightarrow A/N_z$$ $$\varphi(a)(b+N_\tau) = ab+N_\tau.$$ The inequality $\|\varphi(a)\| \leq \|a\|$ holds since we have $\|\varphi(a)(b+N_{\tau})\|^{2} = \tau(b^*a^*ab) \leq \|a\|^2\tau(b^*b) = \|a\|^2\|b+N_{\tau}\|^2$ (the latter inequality is given by Theorem 3.3.7). The operator $\varphi(a)$ has a unique extension to a bounded operator $\varphi_{\tau}(a)$ on H_{τ} . The map $$\varphi_{\tau} \colon A \to B(H_{\tau}), \ a \mapsto \varphi_{\tau}(a), \varphi(a)$$ is a *-homomorphism (this is an easy evercise) is a * nomonior primari (time to the case). The representation $(H_{\tau}, \varphi_{\tau})$ of A is the Gelfand-Naimark-Segal representation (or GNS representation) associated to τ . If A is non-zero, we define its universal representation to be the direct sum of all the representations $(H_{\tau}, \varphi_{\tau})$, where τ ranges over
S(A). 3.4.1. Theorem (Gelfand-Naimark). If A is a C*-algebra, then it has a faithful representation. Specifically, its universal representation is faithful. **Proof.** Let (H,φ) be the universal representation of A and suppose that a is an element of A such that $\varphi(a)=0$. By Theorem 3.3.6 there is a state τ on A such that $||a^*a|| = \tau(a^*a)$. Hence, if $b = (a^*a)^{1/4}$, then $||a||^2 = \tau(a^*a) = \tau(b^4) = ||\varphi_{\tau}(b)(b+N_{\tau})||^2 = 0$ (since $\varphi_{\tau}(b^4) = \varphi_{\tau}(a^*a) = 0$, so $\varphi_{\tau}(b) = 0$). Hence, a = 0, and φ is injective. The Gelfand-Naimark theorem is one of those results that are used all of the time. For the present we give just two applications. The first application is to matrix algebras. If A is an algebra, $M_n(A)$ denotes the algebra of all $n \times n$ matrices with entries in A. (The operations are defined just as for scalar matrices.) If A is a *-algebra, so is $M_n(A)$, where the involution is given by $(a_{ij})_{i,j}^* = (a_{ji}^*)_{i,j}$. If $\varphi: A \to B$ is a *-homomorphism between *-algebras, its inflation is the *-homomorphism (also denoted φ) $$\varphi: M_n(A) \to M_n(B), (a_{ij}) \mapsto (\varphi(a_{ij})).$$ If H is a Hilbert space, we write $H^{(n)}$ for the orthogonal sum of n copies of H. If $u \in M_n(B(H))$, we define $\varphi(u) \in B(H^{(n)})$ by setting $$\varphi(u)(x_1,\ldots,x_n) = (\sum_{j=1}^n u_{1j}(x_j),\ldots,\sum_{j=1}^n u_{nj}(x_j)),$$ for all $(x_1, \ldots, x_n) \in H^{(n)}$. It is readily verified that the map $$\varphi: M_n(B(H)) \to B(H^{(n)}), \ u \mapsto \varphi(u),$$ is a *-isomorphism. We call φ the canonical *-isomorphism of $M_n(B(H))$ onto $B(H^{(n)})$, and use it to identify these two algebras. If v is an operator in $B(H^{(n)})$ such that $v = \varphi(u)$ where $u \in M_n(B(H))$, we call u the operator matrix of v. We define a norm on $M_n(B(H))$ making it a C*-algebra by setting $||u|| = ||\varphi(u)||$. The following inequalities for $u \in M_n(B(H))$ are easy to verify and are often useful: $$||u_{i,i}|| \le ||u|| \le \sum_{i=1,\dots,n}^{n} ||u_{i,i}|| \quad (i, i = 1,\dots,n).$$ k, l=1 **3.4.2. Theorem.** If A is a C^* -algebra, then there is a unique norm on $M_n(A)$ making it a C^* -algebra. **Proof.** Let the pair (H,φ) be the universal representation of A, so the *-homomorphism $\varphi: M_n(A) \to M_n(B(H))$ is injective. We define a norm on $M_n(A)$ making it a C*-algebra by setting $||a|| = ||\varphi(a)||$ for $a \in M_n(A)$ (completeness can be easily checked using the inequalities preceding this theorem). Uniqueness is given by Corollary 2.1.2. **3.4.1.** Remark. If A is a C*-algebra and $a \in M_n(A)$, then $$||a_{ij}|| \le ||a|| \le \sum_{k,l=1}^{n} ||a_{kl}||$$ $(i, j = 1, ..., n).$ These inequalities follow from the corresponding inequalities in $M_n(B(H))$. Matrix algebras play a fundamental role in the K-theory of C*-algebras. The idea is to study not just the algebra A but simultaneously all of the matrix algebras $M_n(A)$ over A also. Whereas it seems that the only way known of showing that matrix algebras over general C*-algebras are themselves normable as C*-algebras is to use the Gelfand-Naimark representation, for our second application of this representation alternative proofs exist, but the proof given here has the virtue of being very "natural." **3.4.3. Theorem.** Let a be a self-adjoint element of a C^* -algebra A. Then $a \in A^+$ if and only if $\tau(a) \geq 0$ for all positive linear functionals τ on A. **Proof.** The forward implication is plain. Suppose conversely that $\tau(a) \geq 0$ for all positive linear functionals τ on A. Let (H, φ) be the universal representation of A, and let $x \in H$. Then the linear functional $$\tau: A \to \mathbf{C}, \ b \mapsto \langle \varphi(b)(x), x \rangle,$$ is positive, so $\tau(a) \geq 0$; that is, $\langle \varphi(a)(x), x \rangle \geq 0$. Since this is true for all $x \in H$, and since $\varphi(a)$ is self-adjoint, therefore $\varphi(a)$ is a positive operator on H. Hence, $\varphi(a) \in \varphi(A)^+$, so $a \in A^+$, because the map $\varphi: A \to \varphi(A)$ is a *-isomorphism. <(xi),(vi)>= ><xi,vi> is well-defined: So the increasing seg { \(\sum_{\text{in}} \) \ 2<xi,y;> 15 convergent. Thus $||(x_i)|| = \langle (x_i), (x_i) \rangle^{\frac{1}{2}} = \sum_{i=1}^{n} ||x_i||^2)^{\frac{1}{2}}$ Thus $||(x_i)|| = \langle (x_i), (x_i) \rangle^{\frac{1}{2}} = \sum_{i=1}^{n} ||x_i||^2)^{\frac{1}{2}}$ Thus $||(x_i)|| = \langle (x_i), (x_i) \rangle^{\frac{1}{2}} = \sum_{i=1}^{n} ||x_i||^2)^{\frac{1}{2}}$ Thus $||(x_i)|| = \langle (x_i), (x_i) \rangle^{\frac{1}{2}} = \sum_{i=1}^{n} ||x_i||^2)^{\frac{1}{2}}$ Thus $||(x_i)|| = \langle (x_i), (x_i) \rangle^{\frac{1}{2}} = \sum_{i=1}^{n} ||x_i||^2)^{\frac{1}{2}}$ Thus $||(x_i)|| = \langle (x_i), (x_i) \rangle^{\frac{1}{2}} = \sum_{i=1}^{n} ||x_i||^2)^{\frac{1}{2}}$ Thus $||(x_i)|| = \langle (x_i), (x_i) \rangle^{\frac{1}{2}} = \sum_{i=1}^{n} ||x_i||^2$ Thus $||(x_i)|| = \langle (x_i), (x_i) \rangle^{\frac{1}{2}} = \sum_{i=1}^{n} ||x_i||^2$ Thus $||(x_i)|| = \langle (x_i), (x_i) \rangle^{\frac{1}{2}} = \sum_{i=1}^{n} ||x_i||^2$ Thus $||(x_i)|| = \langle (x_i), (x_i) \rangle^{\frac{1}{2}} = \sum_{i=1}^{n} ||x_i||^2$ Thus $||(x_i)|| = \langle (x_i), (x_i) \rangle^{\frac{1}{2}} = \sum_{i=1}^{n} ||x_i||^2$ Thus $||(x_i)|| = \langle (x_i), (x_i), (x_i) \rangle^{\frac{1}{2}} = \sum_{i=1}^{n} ||x_i||^2$ Thus $||(x_i)|| = \langle (x_i), (x_i), (x_i), (x_i) \rangle^{\frac{1}{2}} = \sum_{i=1}^{n} ||x_i||^2$ Thus $||(x_i)|| = \langle (x_i), (x_i), (x_i), (x_i) \rangle^{\frac{1}{2}} = \sum_{i=1}^{n} ||x_i||^2$ Thus $||(x_i)|| = \langle (x_i), (x_i), (x_i), (x_i) \rangle^{\frac{1}{2}} = \sum_{i=1}^{n} ||x_i||^2$ Thus $||(x_i)|| = \langle (x_i), (x_i), (x_i), (x_i) \rangle^{\frac{1}{2}} = \sum_{i=1}^{n} ||x_i||^2$ Thus $||(x_i)|| = \langle (x_i), (x_i), (x_i), (x_i), (x_i) \rangle^{\frac{1}{2}} = \sum_{i=1}^{n} ||x_i||^2$ Thus $||(x_i)|| = \langle (x_i), (x_i), (x_i), (x_i), (x_i) \rangle^{\frac{1}{2}} = \sum_{i=1}^{n} ||x_i||^2$ Thus $||x_i|| = \langle (x_i), (x_i), (x_i), (x_i), (x_i) \rangle^{\frac{1}{2}} = \sum_{i=1}^{n} ||x_i||^2$ Thus $||x_i|| = \langle (x_i), (x_i), (x_i), (x_i), (x_i) \rangle^{\frac{1}{2}} = \sum_{i=1}^{n} ||x_i||^2$ Thus $||x_i|| = \langle (x_i), (x_i), (x_i), (x_i), (x_i), (x_i) \rangle^{\frac{1}{2}} = \sum_{i=1}^{n} ||x_i||^2$ Thus $||x_i|| = \langle (x_i), (x_i), (x_i), (x_i), (x_i), (x_i) \rangle^{\frac{1}{2}} = \sum_{i=1}^{n} ||x_i||^2$ timen operator: (x:) > (t;xi) $\|(\mathbf{\Phi}_{i}^{T})(\mathbf{x}_{i})\| = \|(\mathbf{T}_{i}^{T}\mathbf{x}_{i}^{T})\|_{1}^{2} \|(\mathbf{T}_{i}^{T}\mathbf{x}_{i}^{T})\|_{2}^{2} \|(\mathbf{T}_{i}^{T}\mathbf{x$ So sup $$\frac{||f|| ||f|||}{||f||} \le \frac{||f|| ||f||}{||f||} = \frac{||f||}{||f||} \frac{||f||}$$