clc, clear, close all, warning off %% Preprocessing - Just assign the data for Vertex Sampling_iter=15; Total_Run=1;n=70;Sampling_Num=20;k=3; Max_iter=1; %zpi=0.9; % global epsilon Accuracy_Proposed=zeros(Max_iter,4);Index_Proposed=zeros(Max_iter,4);Accuracy_Original=zeros(Max_iter,4);Index_Original=zeros(Max_iter,4); for iter=1:Max_iter [Data_Base_Model,Data_Bootstrap]= Dual_dataset(Total_Run,n,Sampling_Num,Sampling_iter,k,zpi); %% Parameters...................................................... K=3; % Number of Classes epsilon=0.05; % General Parameters C=1;beta=-1.5;mu=0.01; eta=0.1; % there is no output for eta more than 2! degree=2; % Kernel degree Ic=550/2; % Stop Criterion for j=1:3 % type='Linear'; % Kernel Types: Linear, polynomial, RBF, Tanh %% Model Selection % model=['Proposed';'Original']; % Models: Proposed, Original for i=1:1 if j==1 type='Linear'; elseif j==2 type='polynomial'; elseif j==3 type='RBF'; elseif j==4 type='Tanh'; end switch i case 1 % Proposed-2 model='Proposed2'; data = Data_Bootstrap{1,1}; %Ap=Data_Base_Model{1,1}; [f1,f2,class,macc,index, Accuracy,f1max,f2max] = SVM(data,K,type,Ic,zpi,epsilon,C,beta,mu,eta,degree,model,j,iter,0); % Proceeding both Accuracy_Proposed(iter,j)=macc; Index_Proposed(iter,j)=index; % figure(j) % plot(Accuracy,'r') % plot(f1max,f2max,'ro') case 2 % Original model='Original'; data = Data_Base_Model{1,1}; [f1,f2,class,macc,index, Accuracy,f1max,f2max] = SVM(data,K,type,Ic,epsilon,C,beta,mu,eta,degree,model,j,iter,zpi,~); % Proceeding both Accuracy_Original(iter,j)=macc; Index_Original(iter,j)=index; %figure(j) % hold on %plot(Accuracy,'b') %figure(3),legend('Proposed','RSSVM') % plot(f1max,f2max,'bo') end end end end %% Main Setting=[zpi, epsilon, C, beta, mu, eta, degree, 0]; Mixed_Proposed=[]; Mixed_Original=[]; for kernel_number=1:4 Mixed_Proposed=[Mixed_Proposed, Accuracy_Proposed(:,kernel_number),Index_Proposed(:,kernel_number)]; Mixed_Original=[Mixed_Original, Accuracy_Original(:,kernel_number),Index_Original(:,kernel_number)]; end Mixed_Proposed=[Setting;Mixed_Proposed] Mixed_Original=[Setting;Mixed_Original]; xlswrite('Mixed_Proposed', Mixed_Proposed); xlswrite('Mixed_Original', Mixed_Original); disp('finished') %--------------------------------------------------------- function [Mixed_Proposed] = SimulatedData_ext(zpi,sig_U) %% Preprocessing - Just assign the data for Vertex global sig_U Sampling_iter=100; Total_Run=1;n=300;Sampling_Num=7;k=3; Max_iter=1; Accuracy_Proposed=zeros(Max_iter,4);Index_Proposed=zeros(Max_iter,4);Accuracy_Original=zeros(Max_iter,4);Index_Original=zeros(Max_iter,4); for iter=1:Max_iter [Data_Base_Model,Data_Bootstrap]= Dual_dataset(Total_Run,n,Sampling_Num,Sampling_iter,k,zpi); %% Parameters...................................................... K=3; % Number of Classes epsilon=0.05; % General Parameters C=1;beta=-1.5;mu=4; eta=0.1; % there is no output for eta more than 2! degree=2; % Kernel degree Ic=300/2; % Stop Criterion for j=1:3 % type='Linear'; % Kernel Types: Linear, polynomial, RBF, Tanh %% Model Selection % model=['Proposed';'Original']; % Models: Proposed, Original for i=1:1 if j==1 type='Linear'; elseif j==2 type='polynomial'; elseif j==3 type='RBF'; elseif j==4 type='Tanh'; end switch i case 1 % Proposed-2 model='Proposed2'; data = Data_Bootstrap{1,1}; Ap=Data_Base_Model{1,1}; [f1,f2,class,macc,index, Accuracy,f1max,f2max] = SVM(data,K,type,Ic,zpi,epsilon,C,beta,mu,eta,degree,model,j,iter,Ap); % Proceeding both Accuracy_Proposed(iter,j)=macc; Index_Proposed(iter,j)=index; case 2 % Original model='Original'; data = Data_Base_Model{1,1}; [f1,f2,class,macc,index, Accuracy,f1max,f2max] = SVM(data,K,type,Ic,epsilon,C,beta,mu,eta,degree,model,j,iter,zpi,Ap); % Proceeding both Accuracy_Original(iter,j)=macc; Index_Original(iter,j)=index; end end end end %% Main Setting=[zpi, epsilon, C, beta, mu, eta, degree, 0]; Mixed_Proposed=[]; Mixed_Original=[]; for kernel_number=1:4 Mixed_Proposed=[Mixed_Proposed, Accuracy_Proposed(:,kernel_number),Index_Proposed(:,kernel_number)]; Mixed_Original=[Mixed_Original, Accuracy_Original(:,kernel_number),Index_Original(:,kernel_number)]; end Mixed_Proposed=[Setting;Mixed_Proposed]; Mixed_Original=[Setting;Mixed_Original]; end %------------------------------------- function [f1,f2,class,macc,index, Accuracy,f1max,f2max] = SVM(data,K,type,Ic,zpi,epsilon,C,beta,mu,eta,degree,model,j,iter,Ap) %UNTITLED2 Summary of this function goes here % Detailed explanation goes here %Normalising data...................................... data(:,1:end-1)=data(:,1:end-1)/(max(max(data(:,1:end-1)))); realclass=data(:,size(data,2)); dim=size(data,1); V=Find_V(K); % V matrix A=data; A(:,end)=[]; % Removing Label Column e1=ones(size(A,1),1);e2=ones(2*size(A,1),1); % Vector e % Kernel = My_Kernel(A,dim,degree,mu,beta,type,Ap); Kernel = My_Kernel(A,dim,degree,mu,beta,type); [E_hat,F_hat]=Find_E_F(K,V,dim,data,zpi); % producing E and F matrices for E_hat and F_hat. [H,B]=Find_H_B(E_hat,F_hat,Kernel,e1,e2,epsilon,zpi,model); % % Algorithm 2 ................................. [f1,f2,class,Accuracy,f1max,f2max] = Algorithm2(K,dim,Ic,eta,H,B,C,Kernel,E_hat,realclass,zpi); % Output [macc,index]=max(Accuracy); SIMplot(f1max,f2max,realclass,model,dim,j,iter); end %------------------------------------ function [Data_Base_Model,Data_Bootstrap] = Dual_dataset(Total_Run,n,Sampling_Num,Sampling_iter,k,zpi) %UNTITLED2 Summary of this function goes here % Detailed explanation goes here global data % Total_Run=1; % Total iteration(r) % n=150; % Dimension of each creation Data_Base_Model{Total_Run}={}; Data_Bootstrap{Total_Run}={}; for ij=1:Total_Run %% Ba Jaygozari- ya 11, 12 % darand ya 13 , 14 % data1 = DatasetCreatorIris(n); % for creating data artificial (active line 11 & 12) % data = sortrows(data1, size(data1, 2)); %D=load('IrisTrain.mat'); %real Mahalle dataset %data=D.data_6July; % Real data SamplingData=data(:,1:end-1); Data_Base_Model{ij}=data(:,1:end); size_end=size(data,2); %% R1,R2,R3 r1=0;r2=0;r3=0; for i=1:size(data,1) if data(i,end)==1 r1=r1+1; elseif data(i,end)==2 r2=r2+1; elseif data(i,end)==3 r3=r3+1; end end %% % k=3; % Number of classes % Sampling_iter=25; % Number of Samples % Sampling_Num=7; % Volume of Samples dimension=Total_Run*Sampling_iter*Sampling_Num; % Dimension of random numbers R1=randi(r1,1,dimension); R2=randi(r2,1,dimension); R2=R2+r1; R3=randi(r3,1,dimension); R3=R3+r1+r2; R=[R1,R2,R3]; % Creating all random numbers Sample_Matrix=zeros(1,size(SamplingData,2)); % Accelerating Sample_Mean=zeros(1,size(SamplingData,2)); % Accelerating m=0; Store_sample=[]; for i=1:Sampling_iter*k m=(i-1)*Sampling_Num; for j=1:Sampling_Num m=m+1; Sample_Matrix(1,:)=Sample_Matrix+SamplingData(R(m),:); Store_sample(j,:)= SamplingData(R(m),:); % x_i end Sample_Mean(i,:)=Sample_Matrix/Sampling_Num; % x^bar dev=0; for ii=1:Sampling_Num dev=dev+(Store_sample(ii,:)-Sample_Mean(i,:)).^2; end Dev(i,:)=dev/Sampling_Num; Dev(i,:)=sqrt(Dev(i,:)); Sample_Matrix=zeros(1,size(SamplingData,2)); end Sample_Mean(1:Sampling_iter,size_end)=1; Sample_Mean(Sampling_iter+1:2*Sampling_iter,size_end)=2; Sample_Mean(2*Sampling_iter+1:3*Sampling_iter,size_end)=3; Dev=Dev*(zpi-1); Dev(1:Sampling_iter,size_end)=1; Dev(Sampling_iter+1:2*Sampling_iter,size_end)=2; Dev(2*Sampling_iter+1:3*Sampling_iter,size_end)=3; Data_Bootstrap{ij}=Sample_Mean+Dev; Data_Bootstrap{ij}(:,size_end)=Data_Bootstrap{1,1}(:,size_end)/2; end end
An Error occurred while handling another error:
yii\web\HeadersAlreadySentException: Headers already sent in on line 0. in /var/www/html/prof-homepages/vendor/yiisoft/yii2/web/Response.php:366
Stack trace:
#0 /var/www/html/prof-homepages/vendor/yiisoft/yii2/web/Response.php(339): yii\web\Response->sendHeaders()
#1 /var/www/html/prof-homepages/vendor/yiisoft/yii2/web/ErrorHandler.php(136): yii\web\Response->send()
#2 /var/www/html/prof-homepages/vendor/yiisoft/yii2/base/ErrorHandler.php(135): yii\web\ErrorHandler->renderException()
#3 [internal function]: yii\base\ErrorHandler->handleException()
#4 {main}
Previous exception:
yii\web\HeadersAlreadySentException: Headers already sent in on line 0. in /var/www/html/prof-homepages/vendor/yiisoft/yii2/web/Response.php:366
Stack trace:
#0 /var/www/html/prof-homepages/vendor/yiisoft/yii2/web/Response.php(339): yii\web\Response->sendHeaders()
#1 /var/www/html/prof-homepages/vendor/yiisoft/yii2/base/Application.php(656): yii\web\Response->send()
#2 /var/www/html/prof-homepages/vendor/faravaghi/yii2-filemanager/models/Files.php(696): yii\base\Application->end()
#3 /var/www/html/prof-homepages/vendor/faravaghi/yii2-filemanager/controllers/FilesController.php(484): faravaghi\filemanager\models\Files->getFile()
#4 [internal function]: faravaghi\filemanager\controllers\FilesController->actionGetFile()
#5 /var/www/html/prof-homepages/vendor/yiisoft/yii2/base/InlineAction.php(57): call_user_func_array()
#6 /var/www/html/prof-homepages/vendor/yiisoft/yii2/base/Controller.php(180): yii\base\InlineAction->runWithParams()
#7 /var/www/html/prof-homepages/vendor/yiisoft/yii2/base/Module.php(528): yii\base\Controller->runAction()
#8 /var/www/html/prof-homepages/vendor/yiisoft/yii2/web/Application.php(103): yii\base\Module->runAction()
#9 /var/www/html/prof-homepages/vendor/yiisoft/yii2/base/Application.php(386): yii\web\Application->handleRequest()
#10 /var/www/html/prof-homepages/backend/web/index.php(16): yii\base\Application->run()
#11 {main}