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4.3 Theorem Suppose B is the closed unit ball of a normed space X.

oo o X 3p € X
|x*|| = sup {.L x, x*>|: x € B) X TFK.M
bet (4] 'é’ X.

for every x* € X*. = W ———— ‘
500) “xfo 1 eyercise B(XY) »

(@) This norm makes X* into a Banach spaces > Bon HEF §o 1S /" .
(b) . Let B* be the closed unit ball of X*. For every x € X,
eI BY; AL J ¢x, 5 ¢ 127N e

IxIl 3 sup {|<x, x*>|: x* € B*). <

Consequently, x* -+ {(x, x*) is a bounded linear functional on X*, of

norm || x||. - x]"_{ y = (T Wiz
(c) B*is weak*-compact. lin ’LL‘O;E‘

PROOF. Since #(X, Y)= X* when Y is the scalar field, (a) is a corol-
lary of Theorem 4.1.

Fix x € X. The corollary to Theorem 3.3 shows that there exists

y* € B* such that A wx
(1) (X y*y = IIx ]l #: M—sy

{ I Ay A1xl)
On the other hand,

K_} mhn-ﬁmﬂt
(2) [<x, x*> | < x| [Ix*]| < [Ix| X

for every x* € B*. Part (b) follows from (1) and (2). ")eﬂ" ”ﬁ ”f HP’?UE

Since the open unit ball U of X is dense in B, the definition of
||x*| shows that x* € B* if and only if |{x, x*>| < | for every x € U.
Part (¢) now follows directly from Theorem 3.15. I/

MYTAn2>
4.5 The second dual of a Banach space The normed dual X* of a
Banach space X is itself a Banach space and hence has a normed dual of its
own, denoted by X**. Statement (b) of Theorem 4.3 shows that every x € X

: e :

defines a unique ¢x € X**, by the equation Cf Xy X A‘i

(1) {x,-:x*> — {_-..g;ﬂ'rB dx> (x* = X% o I—" f:t. =%

and that 5 ')?,(7(*)-; X, I“}
A

v) loxl = Ixl  (xex). CHsen=nxll

It follows from (1) that ¢: X — X ** is linear; by (2), ¢ is an isometry. Since
X is now assumed to be complete, ¢(X) is closed in X **.
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Frequently, X is identified with ¢(X); then X is regarded as a sub-
space of X**.

The members of ¢(X) are exactly those linear functionals on X * that
are continuous relative to its weak*-topology. (See Section 3.14.) Since the
norm topology of X* is stronger, it may happen that ¢(X) is a proper
subspace of X**. But there are many important spaces X (for example, all
[P-spaces with 1 < p < o0) for which ¢(X) = X **; these are called reflexive.
Some of their properties are given in Exercise 1.

It should be stressed that, in order for X to be reflexive, the existence
of some isometric isomorphism ¢ of X onto X ** is not enough; it is crucial
that the identity (1) be satisfied by ¢.

X x Xe—=C
(x, 2¥) s <, 2"5= 27 0O

4.6 Annihilators Suppose X is a Banach space, M is a subspace of X,
and N is a subspace of X*; neither M nor N is assumed to be closed. Their
annihilators M- and N are defined as follows:

M- ={x*e X*:{x x"3 =07%or all x c A},
IN={xeX:{(x, x*>=0forall x* e N}

Thus M* consists of all bounded linear functionals on X that vanish
on M, and “N is the subset of X on which every member of N vanishes. It

is clear that M* and *N are vector spaces. Since M" is the intersection of
the null spaces of the functionals ¢x, where x ranges over M (see Section
4.5), M* is a weak*-closed subspace of X*. The proof that *N is a norm-
closed subspace of X is even more direct. The foliowing theorem describes
the duality between these two types of annihilators.

4.7 Theorem Under the preceding hypotheses,

L, ==
(@) *“(M?1)is the norm-closure of M in X,m G‘/TL) =M

(b) (“N)* is the weak*-closure of N in X*.

As regards (a), recall that the norm-closure of M equals its weak
closure, by J&'I‘IE{!I'EII] 330

1).Se M) éz:;#::. definition of M-
PROO TI\‘)(/EM theMx x*» =0 for every x* e M*, so that



Thus

x € H(M")f Sinee—M—is~nerm-tlased, it contains the norm-closure-
M of M. On the other hand, if x ¢ M the Hahn-Banach theorem
yields an x* € M"* such that {x, x* % 0. Thus x ¢ “(M*), and (a) is
proved. = |hbef)

Similarly, if x* € N, then {x, x*)» = 0 for every x € *N, so that
x* € (*N)*. This weak*-closed subspace of X* contains the weak*-
closure N of N. If x* ¢ N, the Hahn-Banach theorem (applied to the
locally convex space X* with its weak*-topology) implies the exis-
tence of an x € N such that {x, x*) # 0; thus x* ¢ (*N)*, which

proves (b). /11
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4.9 Theurem Let M be a closed subspace of a Banach spr.lce !‘L’

(@ The Hahn-Banach theorem extends ggch m* € M* m a funcnﬂna!

; iyl I, Deﬁne M Lﬁ‘lﬁl t .‘X'
PR PRSI ¥ —7’“@
5 (740 (My)=7 1M + %+ AT SR ¥ 1‘“12) I
Then o IS an isometric isomorphism of M* ﬂnm X*/M*. = *‘
(b) Let m: X — X/M be the quotient map. Put Y = X/M. For each }-m =
define
Ty* = y*n.

: : ; * L

Then t is an isometric {;(jmﬂrphism of Y* onto M "‘ﬁ — "M
PROOF. (a) If X* and xT are extensions of m ;5 then x* — xt is in M,
hence x* + M+ = x} +ﬁ) Thus o 1s well deﬁned A trivial verifica-
tion shows that o is linear/Since the restriction of every x* ¢ X* to M
is a member of M*, the range of ¢ is all of X*/M™".

1% x m*e M* If x*¥ e X* extends m*, it is obvious that

Jﬂm*l 1. WMWWOMMM—M

. Hence




LEM ~3mel £ L =080 W =L ) =X (g™ L L T =27 Mﬁkf
R |m*| <’lam*| < ||x*].
Hence ‘ﬂh'r'ﬁ!.{ ol 2% '—-;“';?‘*--.__”__”_ﬁ EE;;,[L-LMLL ” %
BﬂBut Theoremf furnishes an extension x* of m* with ||x*| = ||m*].

It follows that |om*| = |m*||. This completes (a).

W & (b) If x € X and y* € Y*, then nx € Y, hence x — y*nx is a con-
» tinuous linear functional on X which vanishes for x € M. Thus

. Ty* € M*. The linearity of 7 is obvious. Fix x* ¢ M*. Let N be the
?lf\{’l? null space of x*. Since M = N, there 1s a linear functional A on Y
such that Am = x*. The null space of A is n(N), a closed subspace of
Y, by the definition of the quotient topology in Y = X/M. By
Theorem 1.18, A i1s continuous, that 1s, A € Y* Hence tA = An = x*

The range of t is therefore all of M.

It remains to be shown that 7 is an isometry.

Let B be the open unit ball in X. Then nB i1s the open unit ball

of Y = nX. Since 1y* = y*n, we have

lzy*|| = ly*=nll = sup {|<{nx, y*>|: x € B}

= sup {|<y, y*>|: y e aB} = |y*|
for every y* € Y* /1]

4.10 Theorem Suppose X and Y are normed spaces. To each
T € #B(X, Y) corresponds a unique T* € Z(Y*, X*) that satisfies

(1) CTx, WP, T 5
for all x € X and all y* € Y*. Moreover, T* satisfies
(2) | T*|| = |T]-

PROOF. If y* € Y*and T € #A(X, Y), define
(3) LT e

Being the composition of two continuous linear mappings,
T*y* ¢ X*. Also,

x, T*y*) = (T*y*)x) = y¥Tx) = (Tx, y*),

which 1s (1). The fact that (1) holds for every x € X obviously deter-
mines T*y* uniquely.
If yf € Y* and y3 € Y*, then

O, THyY + y23)) =(Tx, y¥ + y%)



= (Tx, yi) + < Tx, y3)
= {x, T*yi) + {x, T*y3)

= (x, Toy + T35
for every x € X, so that

(4) Tyt + y3) = T%i + T*y3.

Similarly, T*(xy*) = «T*y*. Thus T*: Y* — X * is linear. Finally, (b)
of Theorem 4.3 leads to

ITIE =sup {I<Tx, y*>|: lIx|l < L, |y*I <1}
=sup { |[{x, T*y*>[: x|l < 1, |ly*]l < 1}
= sup {[|T*y*||: ly*| < 1} = | T*||. /1

£ f[ff_'_( IfosnSvJ: fs“, ’
st (11))I-f Mis & fﬁﬂ W Inegn SpaiL

X {xm-:ze}(} endoed cvh ("'+M)+(H+M)=+a)+M

M N M) = Px+M)
d Hx—rM!-me Jr+2) > & homed Space.




4.11 Notation If T maps X into Y, the null space and the range of T
will be denoted by A47°(T') and #(T), respectively:

Kex T = A(T)={xe X: Tx =0},
A(T)={ye Y: Tx =y for some x € X}.

The next theorem concerns annihilators; see Section 4 6 for the notation.
AL Todelindon “*’/*":"yﬂwaﬂ"o(s" 2t AT OB’
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4.12 Theorem Suppose X and Y are Banach spaces, and T € ﬁ(X, Y).
T hen

N(T*) = RAT) and  N(T)= “A(T*).

PROOF. In each of the following two columns, each statement is obvi-
ously equivalent to the one that immediately follows and/or precedes
it.

y* € A (T*). x € A(T).
)( D T*y* = 0. Tx=0.
{x, T*y*> = 0 for all x. {Tx, y*» = Ofor all y*
cT%, y*> =0Dorall x %, Try®y ={xfor:all y*.
y* € A(T)*. x & ~4(T*). I}/

Corollaries e X™. %y ‘}-356 / J?RZI‘
floe o) #u‘"\g 4} Fozs & 5

(@) A(T*)is weak* closed in Y*. Bd Y @

(b) 4(T) is dense in Y if and only if T* is one-to-one.

(¢) T is one-to-one if and only if A(T*) is weak*-de

theorem N' ‘T )
As to (b), J?(T) is dense in Y if and only if #(T)" = {0}; in that
case, A (T*) = (T) /\?‘(T#)

lecwme J‘:?(T*} = {0} if and only if 2(T*) is annihilated by no
‘e X other than x = 0 this says that 2(T*) is weak*-dense in X*.



Note that the Hahn-Banach theorem 3.5 was tacitly used in the
proofs of (b) and (c).

VR IS

|
4.13 Theorem Let U and V be the open unit balls in the Banach spaces
X and Y, respectively. If T € (X, Y) and 6 > 0, then the implications

(a) = (b) = () = (d)

hold among the following statements :

JJ Muuy

X
(@) | T*y*| = oly*| for euer}’}’ e Y™ (T/ ) J;nlln
b) TU)>6 V,_{Ue 7/ I< ¢
() TU)>=oV.
d T(X)=Y.

Moreover, if (d) holds, then (a) holds for some é > 0.

PROOF. Assume (a), and pick y, ¢ T(U). Since T(U) is convex, closed,
and balanced, Theorem 3.?_511_0ws that there is a y* such that
1<y, y*>| <1 for every ye T(U), but |{y,, y*>|> 1L If xe U, it

follows that “— M

| Cx, T*y*> | = [(Tx, y*>| < 1.
Thus || T*y*| < 1, and now (a) gives €TU
5 £51vo, v*>1 < 51yl 1v*] < 1ol 1T**) <

It follows that y € T(U) if ||y|| < o. Thus (a) — (b).
Next, assume (b). Take 6 = 1, without loss of generality/ Then

TU -—*> T(U)> V. To every ye Y and every ¢ > 0 cnrresponds therefore an
'?"gl{t x € X with |x|| < |y|land |y — Tx| <e. g )= i QV'->.

5 g:l{ﬂfﬂ ;lI:Pmlj}e > 0 so that T'U_?i “’732'60

oo <l ._”Hﬂ} HZIE., <1 = |yl- Hi _ ”,{“y”%

"3!’
h: T~
Assume n>1and y, is picked. There e:us I'Ftig't Ix.l < lyall

‘%%ngn — Tx,| <e¢,.Put "“) ) F”l‘gﬂ%ﬂ,{"ﬂ”
¥ ___j+.-. yn+1=yn__T'xn'
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By induction, this process defines two sequences {x,} and {y,}. Note
that

1%t ll < Wmsall = I¥a — Txl <80y~

[
Hence ,’ht‘! | EN zﬂ"’fﬁ, Il

2 V< x|+ X e, < lyall + Zﬂg L.
"IEX NS I < |
It follows that x = )  x_ is in U(M} and that

N N
Tx= lim Y Tx,=lm 2 (Jo~ Yns1) =¥
N—+om n=1 Neem o n=s1
since yy, 1 -—>0as N — oo. Thus y, = Tx € T(U), which proves (c).
Note that the preceding argument is just a specialized version of
part of the proof of the open mapping theorem 2.11.
That (c) implies (d) 1s obvious.
Assume (d). By the open mapping theorem, there is a 4 > 0 such
that T(U) = éV. Hence

IT*y*|| =sup {|<x, T*y*>|: x € U}
=sup { |{Tx, y*>|: x € U}
>sup { |y, y*>|l: yedVv} = d|y*|
for every y* € Y* This is (a). 111/
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* An algebra is a vector space A together with a bilinear map —_— A_’ =
= (E)am alin o) =

A? = A, (a,b) — ab,

such that
a(be) = (ab)e (a,b,c€ A).
A subalgebra of A is a vector subspace B such that b} € B = b’ € B.

Endowed with the multiplication got by restriction, B is itself an algebra.
A norm ||.|| on A is said to be submultiplicative if

llabll < [lallllbl] (a,b€ A).

In this case the pair (A, ||.||) is called a normed algebra. If A admits a unit 1
(al = la=a, for all a € A) and ||1]| = 1, we say that A is a unital normed
algebra.

A left (respectively, right) ideal in an algebra A is a vector subspace [
of A such that

ac A and bel=abel (respectively, ba € I).

An ideal in A is a vector subspace that is simultaneously a left and a right
ideal in A. Obvicusly, 0 and A are ideals in A, called the trivial ideals.
A mazimal ideal in A is a proper ideal (that is, it is not A) that is not
contained in any other proper ideal in A. Maximal left ideals are defined
similarly.

An ideal I is meodular if there is an element u in A such that a — au
and a — ua are in [ for all a € A. It follows easily from Zorn's lemma that
every proper modular ideal is contained in a maximal ideal.

If w is an element of a locally compact Hausdorff space €1, and M, =
{f € Co(82) | f(w) = 0}, then M, is a modular ideal in the a.Igcbm Co(02).
This is so because there j
hence, f = uf € MZJ for all f € Cy(f2). Since M, is of codimension one in

Co(R2) (as M & Cu = Cp(f2)), it is a
i fﬂ'j“_‘gzm-yﬁfi" 4oy oy
1.1.1. Ezample. If 5 is a set, £*°(5), the sét of bounded complex-

valued functions on S, is a unital Banach algebra where the operations are
ned pointw t' t
‘?3&;%_}6&:3‘7 JEC(X) 'r'] ¥ ’
2% sl D 120910110 el onp Sy
o e (110~ (0 o foose
;yﬁr wr  EE Badele &gl e fotet
ennrm is t Ny v I
) ? izﬂ{ mﬁ@] = sup If(ﬂl(o‘?ia Note : C(X) 1 He (UHP /47‘

S aw N O#l%) 717814 §) o ((X) mla;;ﬁ&p,

1.1.2. ple. If 1 is a topological space, the set Cy((2) of aljound
continuous complex-valued functions on 1 is a closed subalgebra of £°°((1). /
Thus, C3(2) is a unital Banach algebra. }%

If 2 is compact, C(€2), the set of continuous functions from 2 to C, is

of course equal to C(2). C (ﬂ)"{ ﬂ DT-Q)

1.1.3. Ezample. If Q is a locally compact Hausdorff space, we say that a ( Q)__ {f .__Q - m ] }
continuous function f from 0 to C vanishes at infinity, if for each positive p
number € the set {w € | |f(w)| = €} is compact. We denote the set of b‘a {XFJ)-’ ] mh, E?

enioh Ainetiong By A0 Tk e & slmasd snihaleabhra afF Rl amnd therefars



a Banach algebra. It is umtal if and only if 2 is -::ompa.ct a.nd in this case A Lo

Co(f2) = C(). The algebra Cp(R2) is one of the most important examples
of a Banach algebra, and we shall see it used constantly in C*-algebra _F Vaﬂu‘s‘l‘ﬂ G,ﬁ— £9

theory (the functional calculus).
c;___L& 1 eCEVY

1.1.4. Ezf;mpl'e. If (2, p) is a measure space, the set L™(12, u) of (classes a4y
of) essentially bounded complex-valued measurable functions on {2 is a S- i] +‘H‘H ' ]

unital Banach algebra with the usual (pointwise-defined) operations and “= — ="

the essential supremum norm f = || f|leo= 'h{ {']}l [-f(n,(j . } (.=~_>.) {‘r_(‘-“ .f‘-) 1 {1{) }

1.1.5. Ezample. If 1 is a measurable space, let B,,({?) denote the set of

all bounded complex-valued measurable functions on 2. Then B.(f) is a (é) WE, ‘ié-az lf(ﬂ‘?}a
closed subalgebra of £°°(2), so it is a unital Banach algebra. This example M
will be used in connection with the spectral theorem in Chapter 2. 1,1-? o

~S So At M) 0
1.1.6. Ezample. The set A of all continuous functions on the closed
unit disc D in the plane which are analytic on the interior of D is a closed _r
subalgebra of C(D), so A is a unital Banach algebra, called the disc algebra.
This is the motivating example in the theory of function algebras, where
many aspects of the theory of analytic functions are extended to a Banach

algebraic setting. Ct
All of the above examples are of course abelian—that is, ab = ba for
all elements a and b—but the following examples are not, in general.

1.1.7. Ezample. If X is a normed vector space, denote by B(X) the set
of all bounded linear maps from X to itself (the operators on X). It is
routine to show that B(X) is a normed algebra with the pointwise-defined
operations for addition and scalar multiplication, multiplication given by
(u,v) — u ov, and norm the operator norm:

L 3]
u(z
full = sup PN gup g, 18 X= € Thea
0 ||zl I=ll<t
R(C") =M (@)
If X is a Banach space, B(X) is complete and is therefore a Banachi® * -
algebra. . n
1.1.8. Ezample. The algebra M,(C) of n x n-matrices with entries in C | ] a N j
is identified with B(C"). It is therefore a unital Banach algebra. Recall T . ‘ t“
that an upper triangular matrix is one of the form . lj“:t (i
U SO -‘HTC}*
0 A2z v ee. Azn
0 0 Mg ... hom (8 ,0,,0)

SN et
gi ;::::: D't;e:l;;:r[é};‘e main diagonal are zero). These matrices form a _,; |<—i Q
LC
10 redl Suw &m ];—:. AX

25';(:);& a Vector S)w!o XXyM a ‘t@C"ﬂ"W&—M+
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‘We define th ectrum of an element a to be the set - . i
T A S wt wmital,

o(a) =oa(a) = {A € C| A1 —a ¢ Inv(4)}. Hem P = fﬁfa} °),

We shall henceforth find it convenient to write Al simply as A.

1.2.1. Ezample. Let A = C(Q), w Eere lis a m?pmﬁx}-la:;orﬂ' space. .~ ] (q A @ @
noT YV

Then o(f) = £(Q) for all f € A.

1.2.2. Fzxample. Let A = £=(§ },Hwhere{.'.? ;aafggn ty set Then (ﬂt g)"j_(b !“ ) =
o(f)=(f(S))~ (the closure in C]fﬁralleA f?f)' (ﬂﬁ-}-h Q'F/'()

3 %)'/\6‘&(-“) ¥ (2): @, D’A)

(2,2 (5;/"]'-’-@"*/“
,.4/:0\ uht-]-aﬂ Bor ﬁlgjf"
o N B

1.2.7. Theorem (Beurling). Ifa is an element of a unital Banach algebra #
A, then

SEuis n l‘fnz - nlfn
r(a) = igf """ = Jim_ fla™ ",

1.2.2. Theorem. Let A be a unital Banach algebra and a an element of
A such that ||la|| < 1. Then 1 —a € Inv(A) and
--'—‘,,__..--—--'L/’1

Proof. Since Y22, [la”l| < %, llall* = (1 — lall)~* < +oo, the series
5o ,a" is convergent, to b say, in A, and since (1 —a)(l +--- +a") =
1 — a"*! converges to (1 — a)b = b(1 — a) and to 1 as n — oo, the element
b is the inverse of 1 — a. O

The series in Theorem 1.2.2 is called the Neumann series for (1 —a)™!.

1.2.3. Theorem. If A is a unital Banach algebra, then Inv(A) is open in

A, and the map

Inv(A) = A, a—a™!,

-1
is differentiable. (!: - ﬂ:j 0

Proof. Suppose that a € Inv(A) and ||b—al| < |la~*||~". Then ||ba~* = 1||
< ||b—=alllla”*|| < 1, so ba~! € Inv(A), and thereforc,ng € Inv(A). yThus,

Inv(4) is open in A. ( ba')o N(m)QInb’#’)
!

Note that if p: A — B is 3 homomorphism between algebras A and B
and M Neuftited, then 3: A — B, a+ A — p(a)+ A, (a € A, A € C) is the
unique unital homomorphism extending .

If »: A — B is a unital homomorphism between unital algebras, then

w(Inv(A)) € Inv(B), so o(p(a)) C o(a) (a € A).
A character on an abelian algebra A is a non-zero homomorphism
r: A — C. We denote by §2(A) the set of characters on A %?( 1) >_((1):1

7 )r Z(f 1)'



1.3.3. Theorem. Let A be a unital abelian Banach algebra.
(1) Ifr € QA), thea |r] =1. C(®-T1@)] )=0
(2) The set QU(A) is non-empty, and the map

T — ker(1)
A1 6 1psutpective mop betieen (4
S E S

o U5 QLT

1.3.4. Theorem. Let A be an abelian Banach algebra.

S g
(1) If A is unital, then !7@){5”& ”}:} ” -Z”: }
RERGEIrER) (i ¢ )=

OLHATILNR, Pl o oD
o = 4T TE ae
7 TSR T o f=>?i E——‘-‘lfﬁg

CA) ] 0, Zan=A (R 7-

1.3.5. Theorem. If A ﬁan a@am Bana;j: n]gebra then (}(A) isal

0= m)-- s

AePO=S G-AL 15

not v =% Lom¥

A@ad %A@F"
 A(a-AlNCM

0 18 co 3
compact Hausdoa??“spme If A is unital, thenl (A) is e mpmzi ‘\-n&XM fJeAﬂ
Proof. 1t is easily checked that (}(A) U {0} is weak* closed in MZ"M
unit ball § of A*. Sines § is weak® compact (Banach-Alsoglu theoren)), _5_'5_‘_,4:?
Q(A) U {0} is weak* compact, and therefore, {)(A) is locally compact. —
If A is unital, then #(A4) is weak® closed in S and thus compact. D'Zéq.(ar,'){ ])):u

”@“’ﬁm 3.4 76)- v‘(a {%"@ )E’@g@} A,,mm)..n:;

{ "((ﬂ) 'té'--ﬁ(ﬁr U* ]f. T’;\ 125

1.3.6. The::rem (Gelfand Re resentatmn] Suppose that A is Prea “i;
abelian Banach algebra and that 0 A) is non-empty. Then the map Q ___{ I
- (A)={teA

A = Co({1(A)), a a, dlo&c &/ (ﬂbﬁ) a QM
. . a(y) =T0) Pl ¢
is & norm-deereasing homomorphism, and eV _ /L.. ’ ) ({ D
r(a) = llafl<  (a € A). (_\-\(5

If A is unital, #(a) = G(Q(A)), and if A is non-unital, o(a) = &((A))U{0},~ SN J’““-"an”‘ﬂ

for each a € A. iy
T (Bl ol ) T
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2.2.4. Theorem. If a is an arbitrary element of a C*-algebra A, then a*a

1s positive. QS)Q}&EL 22 =11113- o

Proof. First we show that a = 0 if —a*a € A*. Since -:r(—qa*) \ {0} =

o(—a*a) \ {0} by Remark 1.2.1, —aa* € A" because —a*a € At. Write
= b+ ic, where b,c € A,.. Then a*a + aa* = 2b? +2c so a*a =

20% + 2¢? —aa* € A*. Hence, o(a®a) = Rt N (= {0}+and-therefore

lall? = lla*all = r(a*a) = 0. ¢//ga).—gl-d) "]

Now suppose a is an arbitrary element of A 2 all s

a*a 1s positive. If b = a*a, then b is hermitian, and thﬂrﬂfﬂrﬁ we can write

b=>5t—b". If c = ab™, then —c*c = —b~ag*ab™ = —b~(b* —b7)b~ =

(b‘) € AT, s0c =10 by the first part of this p pmof Hence._. b= = 0, so
‘g =b* € AT,

[59) eag) o Hi)-en e
CIR 7°=0¢ Efl

2.2.5. Theorem. Let A be a C*-algebra. [)n,b — ¢ --—>a 010 0 ”> b

(1) The set A" is equal to {a*a | a € A}. + _\;u/

(2) HﬂbEAaaﬂﬂchAthenaibz‘:Lci: ‘be ”b\u};‘, °
(3) If0<a <b, then |a| < |b]. - .{L [ &) i r

(4) If A is unital and a, b are positive irfvertible el&:n;'lﬂnts,b rjlen é‘ L.Lb:;- L o

) iz;;'f;::_'g& €A b:L)LEL:ﬂQ./

h1>a
(2)agb= 5—ﬂ?ﬂ%~¢(h4)0-c (b-ﬂ)'k(b-‘-") = © ==7CM<C‘I;C
(8) °‘~'°"'°=~'>Fbo-f ﬁb\l-}‘f <o ‘>°“flﬂ" e = I < <hel] ""“J“fu”

e ~\

[4) sgatb bRy bE !;ib Lo Liab?) Sl b*a 5 21586
Proof. Conditions (1) and (2) are implied by Them:em 2.2.4 and the exist-
ence of positive square roots for positive elements. To prove Condition (3)
we may suppose that A is unital. The inequality b < ||b]| is given by the
Gelfand representation applied to the C*-algebra generated by 1 and b.
Hence, a < ||b||. Applying the Gelfand representation again, this time to
the C*-algebra generated by 1 and a, we obtain the inequality ||a| < |[b]|.
To prove Condition (4) we first observe that if ¢ > 1, then c is invertible
and ¢~! < 1. This is given by the Gelfand representation applied to the
C*-subalgebra generated by 1 and ¢. Now a < b = 1 = a~/2aa"1/? <
a~?ba"1? = (a"/2ba"1/?)"' < 1, that is, a’/2b7'a!'/? < 1. Hence,
b1 < (auz)—l{auz}—l —a-l. 0



2.2.6. Theorem. Ifa,b are positive elements of a C*-algebra A, then th 1{_.;-2'_
inequality a < b implies the inequality a'/2 < p1/2, A% "?(ﬁ") < (b 1‘) “"ﬁ@

Proof. We show d this will prove the theorem. We
may suppose that A is unital. Let ¢ > 0 and let ¢,d be the real and
imaginary hermitian parts of the element (¢ + b+ a)(t + b — a). Thenb{

‘c——((t+b+a)(t+b a)) + (t +b—a)(t + b+ a))
= 1% +2tb + b — o’ a—JJo = G
ztz)ﬂ > "‘;o p Wﬂﬂlﬂ

Fumdd. (‘Mw
Consequently, c is bothi invzz;tible and positive. Since 1 i m::(\:’;’\-ﬂ_’2 tj&_” =

¢~ 1?(c+id)c=1/? is invertible, therefore c + id is invertible. It follows that

t + b — a is left invertible, and therefore invertible, because it is hermitian.
Consequently, —t ¢ (b —a). Hence, o(b—a) C R¥, so b — a is positive,
that is,a < b. Ze O

It is not true that 0 < a < b = a? < b? in arbitrary C*-algebras. For
example, take A = M,(C). This is a C*-algebra where the involution is

given by ) i I 0551&5629
G-GD [t

Let p and ¢ be the projections
1 1
1 1)

1 0
p=(0 0) I

Then p < p+ ¢, but p? = p £ (p+ ¢)* = p+ ¢ + pq + gp, since the matrix

3 2
q+m+qp=%(2 1)

has a negative eigenvalue.
It can be shown that the implication 0 < a < b = a? < b® holds only
in abelian C*-algebras [Ped, Proposition 1.3.9].
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2.3.1. Theorem. Let H, and H9 be Hilbert spaces.

(1) Ifu € B(Hy, Hz), then there is a unique element u* € B(Hz, H,) such

that
(u(ml )& Ii} = (I],H*(Ig)) (Il € Hy, 9 € Hz)

(2) The map u — u* is conjugate-linear and u** = u. Also

el = Nl = flu*ull*/2.
The P“’“ﬁ [LA”"}‘O He. Sudenie.

@ 'an('r’d'ofb{ '%7 Uc'jq(—‘) {%, Ug,‘}.— ﬁi{ﬁ? (‘Lﬂlg) ﬂﬁﬁaﬁyc lan |y
@wu-h(u‘f' (LH(D) =S et o MW ) (MM

If u: H; — H; is a continuous linear map between Hilbert spaces,
call the map u*: H, — H, the adjoint of u. Note that ker(u*) = (im(u))+,

where im[u} is the range of u, and hence, (im(u*))” = ker(u?é‘j
u(Z%e. Z’A A0, o ) ‘.
(1.1 "‘l } “ g - ( ( hg ) t‘(;ﬁ h?w

.3.1. Ezample. Let (ﬁ,, 2>, bean orfﬁ"ﬁnrm basis for a ﬂﬂbert space u{_ .
H, and suppose that u is an operatnr diagonal with respect to (e,), wit "

diagonal sequence (An). Then u* is also diagonal with respect to (en|)— {“‘E ¢

and its diagonal sequence is (),). This follows from the observation that\ ’ }
{u*(ﬁn)r ‘Em) = {Enau(ﬁm)) = {ﬂnr}"mﬁm) = j‘m‘snny where 6, is the Kro- \
necker delta symbol, which implies that u*(e,) = Apen. Since all operators
diagonal with respect to the same basis commute, uu® = u*u; that is, u is

normal. u .zdc ] fa! Cq‘\“ oV (f-'{“ﬂ )L__)(U 0 1'\
2. 3./;5‘mampfe Let (e ') and H be as in the preceding example, but
this time let u denote the unilateral shift on this basis, so u(e,) = €nt1
for all n > 1. The adjoint u* is the backward shift: u*(e,) = €n—; if
n > 1 and u*(e;) = 0. It follows that u*u = 1. It is easily seen that
u has no eigenvalues. In contrast, u* has very many, for if |A\| < 1, then
A is an eigenvalue: Set z = 3°°° A™e, and observe that = € H because
Yooy |A*™® < o0, and that  # 0 and u*(z) = Az. It follows from this, and
the fact that ||u*|| = ||u|| = 1, that o(u) = o(u*) =D

Inn:tdenta.]ly, if (fn)S%, is an orthonormal basis for another Hilbert
space K and v is the unilateral shift on (f,), so v(fn) = fany1, then v =

wuw*, where w: H — K is the unitary c:perator such that w(e,) = f, for
M s, = T . T Y . e | I . R T L1



adl 76 = 1. L1101l LG dabobldllh POLILIL Ol VICY, LilC OPCldatuls U 4allld UV ale
therefore the same, so one can speak of “the” unilateral shift.

2.3.2. Theorem. Let p,q be?IEMGH a Hilbert space H. Then the
ent:

following con ditﬂim\:s}are equi pL P. P'l:'
1) p<g= A-T7° o ¥ X
E% iq =qp- %}:’1( Y1 P4P=> (P9) =P 9RP
3) ap =»p. 32):S twilom +o (D)y3)
(4) p(H) € q(H).
(5) I < la@)l (= € 1. ) fy) Unedl;t b =3(ph)ely
(6) ¢ — p is a projection. (ZD:% O)E'I\EH, ﬂ?&'}_; PCh)

Proof. Equivalence of Conditions (2),(3), and (4) is clear, as are the R
implications (2) = (6) = (1). We show (1) = (5) = (2), and this will -/
prove the theorem. <°|9Lr‘t> =<ﬂ:ﬁi§__

If we assume Condition (1) holds, ||g(z)||*> =|lp(z)|I* = ((¢ — p)(x),z) =
(g — p)}/?(z)||* > 0, so Condition (5) holds.

If now we assume Condition (5) holds, ||p(1—¢)(z)|| < |[(¢ — ¢*)(z)| =
0, and therefore p = pg; that is, Condition (2) holds. (1.9) ) il

A continuous linear map u: H; — H» between Hilbert spaces H,, Hs
is a partial isometry if u is isometric on ker(u)*, that is, ||u(z)| = ||z for

L . ery=0, -L
all z € ker(u) kuu_H lué%}::}h_ﬁ?\_\:wu @ kevii Y Hz kesw 3
2.3.3. Theorem. Let H,, H, be Hilbert spaces and u € B(H;, H;). Then U

the following conditions are equivalent: ()| ot 9= UVl §oyyd g2 oty
(1) u = uu*u. 3 y 7’)— ) 9 H
(2) e " E-B =% ﬁ)s?(\”ﬁgl'{%:e?l}iu JQ v

u*u 1s a projection. —
(3) uu* is a projection. = gP ¥)e h’u]f = Y

Wiy
(4) u is a partial isometry. V\ Funed. '
R P | Z
Y AS LT “V=el{otz.
el o on3zv)
Proof. The implication (1) = (2) is obvious. To show the converse sup- 4
pose that u*u is a projection. Then [lu(z)|* = (u(z), u(z)) = (v*u(z), z) ={un, q’%,
||lu*u(z)||? for all z € Hy, so u(1 — u*u) = 0, and therefore u = uu*u. 4
To show that (2) = (3), suppose again that u*u is a projection. Then
(uu*)® = (uu*)?, so o(uu*) C {0,1)2Y Hence, uu* is a projection by the
functional calculus. Thus, (2) (3), and clearly, then, (3) = (2) b
symmetry. yela l-l-J—> h*‘ll(m] = 0 'xekuui:) wﬁl@t)ﬂ!ll Qﬂ = %-
To show that (1) = (4), suppose that u = uu*u. Then u*u is the
projection onto ker(u)t, since u* = u*uu*, and ker(u)t = (u*(Hz))™ &

*



u*u(fi;). Hence, if * € ker(u)™, then [u(z)|* = u"u(z),z) = (z,2) =
||z||?. Thus, u is a partial isometry, so (1) = (4). <ux,ux>

Finally, we show (4) = (2) (and this will prove the theorem). Suppose
that u is a partial isometry. If p is the projection of H, on ker(u)* and
z € ker(u)t, then (u*u(z),z) = |[u(z)||* = (z,z) = (p(z), z). If =z € ker(u),
then (u*u(z),z) = 0 = (p(z),z). Thus, (v*u(z),z) = {p(z),z) for all
z € H,. Hence, u*u = p, so (4) = (2). O

We shall need to view Hilbert spaces as dual spaces. Let H be a
Hilbert space and H, = H as an additive group, but define a new scalar T /Y—-ﬁ >]
multiplication on H, by setting A.z = Az, and a new inner product by 7[
f

setting {z,y)s« = (y,z). Then H, is a Hilbert space, and obviously the { Ly
' \

norm induced by the new inner product is the same as that induced by the
old one. If z € Ii define v(z) € (H.. )* by setting v(z)(y) = (y,z)e = (z,y). 7 1'- €

It is a direct consequence of the 1€8Z, TEep resen ation th rem that ema -
i 0 0 VA > Aot T

: ﬁ‘*""#ﬂ? [hern %

is an isometric linear lsomcrphlsm, which we use to identify thgse Banach

spaces. The weak* topology on H is called the weak topology. A net (f;l T 1< Eé 3{,
(zx)ren converges to a point z in H in the weak topology if and only if B N

{z,y) = limy(z,y) (y € H). Consequently, the weak topology is weaker W) T s C?&
than the norm topology, and a bounded linear map between Hilbert spaces ‘

1s necessarily weakly continuous. The importance to us of the weak topology e &’f I{W%
is the fact that the closed unit ball of H is weakly compact (Banach-Alaoglu

theorem).

2.4.1. Theorem. Let u:H, — H; be a compact linear map between
Hilbert spaces H, and Hy. Then the image of the closed unit ball of H,
under u is compact. 4 )k leYm

Proof. Let S be the closed unit ball of H;. It is weakly compact, and ‘a C z
u is weakly continuous, so u(S) is weakly compact and therefore weakly .
closed. Hence, u(S) is norm-closed, since the weak topology is weaker than
the norm topology. Since u is a compact operator, this implies that u(S)
18 norm-compact. O

2.4.2. Theorem. Let u be a compact operator on a Hilbert space H.
Then both |u| and u* are compact.

Proof. Suppose that u has polar decomposition u = w|u| say. Then
|lu| = w*u, so |u| is compact, and u* = |u|w*, so u* is compact. O



2.4.3. Corollary. If 1 1s any Hubert space, then K (M) 1s selt-adjoint.
Thus, K(H) is a C*-algebra, since (as we saw in Chapter 1) K(H) is
a closed ideal in B(H).
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l"‘q
If H is a Hilbert spax:é we denote by (H ) the set of fini an%(hvz‘“‘i’
operators on {\t is easy to check that F(H) is a self-adjoint -

B(H). Ficke UEFCH) —\,, |u1- W EFH) _—_>l4 *h\w*eFrH)

2.4.5. Theorem. If H is a Hilbert space, then F{H} is dense in K(H)

Proof. Since F(H)™ and K(H) are both self-adjoint, it suffices to show
that if u is a hermitian element of K(H), then u € F(H)~. Let E be an
orthonormal basis of H consisting of eigenvectors of u, and let £ > 0. By
Theorem 1.4.11 the set S of eigenvalues A of u such that |A| > ¢ is finite.
From Theorem 1.4.5 it is therefore clear that the set S' of elements of E
corresponding to elements of S is finite. Now define a finite-rank diagonal
operator v on H by setting v(z) = Az if ¢ € S’ and ) is the eigenvalue
corresponding to z, and setting v(z) = 0if x € E\ S'. It is easily checked
that [[v — u|| < supxes(u)\s |A| £ €. This shows that u € F(H)™. O

Left fo Stuckns. L"MKT Aliwa(’ YanT)
TERG Tank T ¢og ¢>jrmscm~r%w‘rg<mm—

If £,y are elements of a Hilbert space H we defin€ the operator z @ y

on H by

@@ = (20 1 (BY)=Cox = e
Clearly, ||z ®y|| = ||z||||yll. The rank of z @y 18.0ne if z and y are non-zero.
If z,2',y,y' € H and u € B(H), then the following equalities are readily
verified:

3 IX@YN < ixi iy )
(282 ©Y) = (1,2)(= &) ’(’“"?5)(“9/“””‘””&,’;

(z@y)" =y®=2 46@3) =<5, (:fﬁi)w

U(w ®y)=u(z)®y
TRyu==z@u(y).

(’@?‘5{ i (X@wkx@q}@n@m) XK E <%, x> =)
The operator z @ z is a rank-one projection if and only if (z,z) =1,
that is, x is a unit vector. Conversely, every rank-one projection is of the
form r ® z for some unit vector z. Indeed, if €;,...,€e, is an orthonormal
set in H, then the operator E;-;] e;® (@he orthogonal projection of H

onto the vector subspace Cey + - -+ +

s, Yo Uy = =Cx '-?ov%m xeH
If u € B(H) is a rank-one operator, and z a non-zero element of its
range, then u = ¢ ® y for some y € H. For if 2 € H, then u(z) = 7(2)z
for some scalar 7(z) € C. It is a.dily verified that the map 2z +— 7(z) is a
bounded linear functional on d therefore, by the Riesz representation
theorem, there CXJ%—S y € uch that T(z) = (2,y) for all 2 € H. Therefore l!{Z)'{)
u=z8y. ‘(ﬂ‘d =x®) ~ % ‘a/?'
2.4.6. Theorem IfH isa H1Ibert space, then F(H) is linearly spanned

by the rank-one projections.
Y the ran Projection’ «@X Uy+Uop s Uy, U 6_‘E('H)€1
Proof. Letu € F(H) and we shall show it isali combmat.mn of rank-

one projections. The real and imaginary parts of u"are in FI(H), since F(H)
is self-adjoint, so we may suppose that u is hermitian. Now u = u* —u~,




and by the polar decomposition |u| € F(H),so u™ and u™ belong to F((H).

Hence, we may assume that u > 0. The range u(H) is finite-dimensional,

and therefore it is a Hilbert space with an orthonormal basis, e;,...,e, lf p

say. Let p = E;-;I e; ® €, so P is the projection of H onto u(H). Then 4=t=4

u = pu Vipyl/2 = o = 7—1%;j ® z;, where z; = u'/?(e;). Now UP- Py

T; = A; B some unit vector fi an®Gall¥d, sou = 37 [A12f; @ f5, .

and since the operators f; ® f; are rank-one projections we are done. I:IQFNJ B f%
)

HFove.
2.4.7. Theorem. If H is a Hilbert space and I a non-zero ideal in B(H), ffﬂl)
then I contains F(H). : 1'(%&4% P"%

Proof. Let u be a non-zero operator in I. Then for some z € H we have ¥

u(z) # 0. If p is a rank-one projection, then p = y ® y for some unit ﬂ?g&.}_
vector y € H, and clearly there exists v € B(H) such that vu(z) = y (take e
v = (y @ u(z))/||u(z)||?, for instance). Hence, p = vu(z ® z)u*v*, so p € I

as u € I. Thus, I contains all the rank-one projéctions and therefore by
Theorem 2.4.6 it contains F/(H). ﬁ
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An approzimaete unit for a C*-algebra A 1s an increasing net (u)xea
of positive elements in the closed unit ball of A such that a = lim, au, for Q=aa.1_ 1.0\

all a € A. Equwa.lentima-hm;umfﬂrﬂuﬂ-'f A. lu\_ﬂ"_n
-l ot o (i e (lua )t N 2
"5 0":1\_.\»1 o~ %Ah%gp&)

={A% ?éﬁpa}

3.1.1. Ezample. Let H be a Hilbert space with an orthonormal basis
(en)az;. The C*-algebra K(H) is of course non-unital, since dim(H) = oo,

If pn is the projection onto Ce; + -- - + Ce,, then the increasing sequence 2
" . ) is an approximate unit for K(H). To see this we need only show that ﬁt}tq
= liMm, 00 patt if u € F(H, F(H) is dense in K(H). Now if u €
KFtH), there exist z,,. ,zm,‘ ,Ym in H such that u = || z¢ ® ys. \u,
¥ a%yo

tl Hence, pau = ¥ 1o, pf.l[.'rk} @ yi. Since limp oo pu(z) = ¢ forallze )
therefore for each k,
= ‘(xyeﬁ')eﬂ: %
lim_[lpa(zi) ® ve — 7 © uill = E‘_ﬂg! [pa(zs) = 24l el Lo

e e N
Heace timn—reprs = (27T PP FCP)
Let A be an arbitrary C*-algebra and denote by A the set of all positive F
elements a in A such that ||a|| < 1. This set is a poset under the partial #‘ﬂ -{""" ﬂ}fi ﬂ)l

order of A,,. In fact, A is also upwards-directed; that is, if a,b € A, then
there exists ¢ € A such that a,b < e. We show thie: If o € A%, then 1 4 a
is of cou vertible in 4, and a(l +a)™' =1 —=(1+a)"!. We claim

1‘%:1'{? vah:f.bEA"' anda<b=a(l+a)”' <b14+8)7".

L

Indeed, if 0 < a < b, then{l +a <1+bimplies (14 a)™! > (1 +b)7F,
by Theorem 2.2.5, and therefore 1 — (1 +a)™' < 1 — (1 + b)~'; that is,
a(l +a)™' < b1 + b)71, the claim. Observe that if a € A™,
then a(l + a)~! belongs tu@ the Gelfand representation applied to
the C*-subalgebra generated and a] Suppose then that a,b are an
arbitrary pair of elements of A. Put o' = a(l — a)T}, ¥ = b{] — b)j,
and ¢ = (a' + ¥')(1 +a' + V')l g Then ¢ € A, &ndmﬁcea <a + ¥V,

have a = a'(1 + a')~! < ¢, b{[l] Similarly, b < ¢, and therefore A i
upwards-directed, as a.sseﬂed

= |
PR Wp* u;gnﬂ! I

~=>(1) 0&-&“‘\ arth

3.1.1. Theorem. Every C*algebra A admits an approximate unit. In
deed, if A is the upwards-directed set of all a € A* such that ||a]| < 1 and
uy = A for all A € A, then (uy)aea is an approximate unit for A (called the
canonical approximate unit ).

Proof. From the remarks preceding this theorem, (uy)aen is an w
net of positive elements in the closed unit ball of A. Therefore, W

only show that a = limy uya for each a %“4 Since A linearly spans A4 (N 2 ;> ~ 7

can reduce to the case where a € A. _3 | dﬂ !-ZT"—- ‘@ \_‘_!J \3__;
Suppose then that a € A and that € > 0. Let :C*(a) — CE{RS

the Gelfand representation. If f = p(a), then K = {w € 2 | |f(w)] = ¢} is 11 A

compact, and therefore by Urysohn’s lemma there is a continuous function

g:§! — [0,1] of compact support such that g(w) =1 for all w € K. Choose _?
§ > 0 such that 6 < 1and 1 -6 < e. Then ||f — 8gf|| < e. If A = J - ?g(w} (A))

~1(&g), then Ay € A and |la — ux,a|l, < e&. Now suppose that' A € A
fnd(fg} Ao Thie 1~ uy < l[— ‘11.1.:: &k:{l —uy)a < aflp— uy,Ja. Hence, = (-E)ﬁﬂ-ﬂk, W@K
fo-—uaal” = g w”u—uarﬂqﬁ < (1~ ur)Zal = [la(i—un)al| <
[la(l — uy,)al| ﬁ — uy, )Ja|| < €. This shows that a = lim u,a. m] ffw‘]"ﬁ‘g(m&.,%k

u <A - Lueha. 0- )a %-U o
0uEAC,R-AGT 1-4ehd (una-a-to




dal i 'J.'I'll.'mvr-n;r 4 L 15 a croscd [€IL Idedd 10 o W - BCIMN . A, LUCH LICIE
is an increasing net {uy)aea of positive elements in the closed unit ball of

L such that a = limy auy for alla € L.

Proof. Set B = LNL*. Since B is a C*-algebra, it admits an approximat
unit, (%x)aea say, by Theorem 3.1.1. If a € L, then a*a € B, so 0 =
limy a*a(l = uy). Hence, limy lla = awnyl’ = im0 =@ e =w) <
limy ||la*a(1l — ua)|| = 0, and therefore limy ||a — au,|| =0C

PO OV AN,
PRSI

“d@l‘a;{ 3 HXE
In the preceding proof we worked in the it'?a.*fon A of A. We shall

|
= L
frequently do this tncitly.eélafl.k'ff ..' uhn'k\ 1,).‘{!_];{, %c{('- )'Z 13- '==\/’

a
3.1.3. Theorem. If I is a closed ide&lin a I L —then I “ﬂ_u ')"2' "<’ |
adjoint and therefore a C*-subalgebra of A. A -
unit for I, then for each a € A

L«F}ﬂb’é PR A —

Proof. By Theorem 3.1.2 there is an ificreasing net (u
that a = limyauy for all a € I.

Hence, a* = all of the elements u éﬁn to
I. Therefore, I is L M Y!!l\" ]
Suppose that ( approximate unit of I, that a € A,

}ﬁmt? € > 0. There is an element b of < |la+ I|| +£/2.
e = lim, u,b, there exists A9 € A such that ||b — uxb| e/2 for all
A > Ao, and therefore (p..qﬂ)o‘ -]-(’-"A)b ~{i- )A

\Tfa+l‘ )l ¢ 1E=5all < (1 = ua)(a + B)ll + [1b — wab]
£ . < lla + bf| + [[b — uabl
: _: © < lla+ I + €/2 +¢/2.

It follows that |la 4 I|| = lim, ||a — ujal|, and therefore also |la + I|| =
lla® + I|| = limy ||a* — uxa®|| =,éimﬂa - u,\lh ]
AT Gpae AN ST ST
3.1.2. Remark. Let I be a closed ideal in a C*-algebra A, and J a clos U d v %
ideal in I. Then J is also an ideal in A. To shog tis‘we need only show -1-
that ab and ba are in JifaeAmdbisapo;iz?e ent ofJ(sinceJisP( L },,j-o&)q/ LE—U 3
i

a C*-algebra, J* linearly spans J). If (uy)a approximate unit for
I, then b'/? = limy u;b'/? because b'/? € I. Hence, ab = limy auyb'/2h1/2

L . 5
so ab € J because b1/2 € J, auxb'/? € I, and J is an ideal in I. Therefore, b L?‘l b ’L(__
a"b € J also, so ba € J, since J is self-adjoint. 0 -
v AT
3.1.4. Theorem. If] is a closed ideal of a C*-algebra A, then the quotient G_I G_
A/I is a C*-algebra under its usual operations and the quotient norm.

Proof. Let (ux)aea be a approximate unit for I. If a € A and b € I, then

lla + IN]* = lim [|a™= aw3||* (by Theorem 3.1.3)
= lim |(1 — ux)a*a(1 — uy)|

Sﬂ';;bll(l = ua)(a”a +B)(1 — un)ll + Lm|(1 — ux)b(1 — ua)|l

< laa + 81+ nlb — bl \IL‘-";’@*‘*“ IR ad+bl)

= |la*a + b|.

2 , 1%'1-}1:“ o
Therefore, ||a + I||* < ||a aﬁfw -
D [CPu=u Ve U pu_w Hecked) |
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3.1.5. Theorem. If p: A — B is an injectiv momorphism between ']'
C*-algebras A and B, then p is necessﬁ}zﬁ;l 1 %: d‘ M (Q‘\)
Proof. 1t suffices to show that ||@(a)||® = ||a||?, that is, [|@(a*a)| = [la*a].
Thus, we may suppose that A is abelian (restrict to C(a®a) if necessary),
and that B is abelian (replace B by y(A)~ if required). Moreover, by %(- Z-) -
extending ¢: A - Btoyp: A = B if nec&asa.rxtye ma:,.rni}]ﬂher assume that. 0
A.Ba.ndlpa.reu.mtal S0P ‘—-——-} e ® |S vot T"f I!
§ a character on is /
T IE SRS A W\)ﬁ&y 72 ¢ &
' QUB) = HA), T—TOW, _ﬂﬂ
S

~-c Lo =
is tuntinuﬂuﬂ. Hence, (H{Bjj is compact, because R{A} i wmpa::t " ﬁ:.f;)?(g); o t’&é A
therefore p'(§2(B)) is closed in {}( A4 B} @' (R B)) # U A), then by b[
Urysohn’s lemma there is a wcnn muous function f:§}(A) — C 1( @{6})"5
2Cb)=v 6‘1:’66’1)(

such that f vanishes on :p {ﬂ{B]} 3-' the Gelfand mpresentatlm, f=a

f-::; su:;m elemEnt _( ﬁ 1 * P(a)) = “[" o) =

ﬂ F——

There‘fu ; xp a —qu t this imiplies tha.t, f /s zero, §%}Yﬂ%@")
tion. The only way to mrmd 15 tﬂ? @' (U BY) = Q(A). Hence, for
each a € A4, S ﬂr -

llall = l|aljec = sup I(,(u}|= sup lT(aﬂ(ﬂ}}l—Ilw(ﬂ}ll
a(A) refi(B

Thus, ¢ is isometric. A *— i‘:ﬁm C 6‘1 (ﬁ)) % ?JI{H})
O CenS\0eN "' -

Bfgf‘;
? .1.6. Theorem. Ify: A — B is a »-homomorphism between C*-algebras, % ( — v
hen ¢(A) is a C*-subalgebra of B. raj* ﬂ-—) 0& Ko~ e
Proof. The map M? !g é ‘JM . P )ﬂaﬁ% P(ﬂ(ﬁ"')
{Hb

L;J:Af ker() — B, a+ ker(y) — p(a),

is an injective m—homjng?phism between C*-algebras and is therefomg

metric. Its image is (A), so this space is necessarily complete and therefgte

closed in B. | O ' o : W

3.1.7. Theorem. Let B and I be respectively a C*-subalgebra and a . ,
closed ideal in a C*-algebra A. Then B + I is a C*-subalgebra of A. 0
Proof. We show only that B 4 I is complete, because the rest is trivial. 4 'H'F C_ G—

Since I is complete

tl_mt tl}e quotient (B + I)/I is d éf‘l apm

3.1.3. Remark. The
e:Bf{(BNI)—= (B+I)/I, b+BNI—b+1, ?’(_q(m) °

in the preceding proof is in fact clearly a »-isomorphism. U& i_w
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We return to the topic of multiplier algebras, because we can now say 3# -FJ " lE-r ] _o
i

a little more about them using the results of this section.
Suppose that I is a closed ideal in a C*-algebra A. If a € A, define L,
and R, in B(I) by setting L.(b) = ab and R.(b) = ba. It is a straightfor-

ward exercise to verify that (L,, R,) is a double centraliser on I and tha
t 5“ i } se(:n(m) R’#((’):ﬂ

the map
wird — M(I), aw— (L;, R;), 1

is a #-homomorphism. Recall that we identified I as a closed ideal in M(I) O i - I"’ % \‘ o
by identifying a with (L., R,) if a € I. Hence, ¢ is an extension of the
inclusion map I — M/(T).

If1, 1,. .‘_’Harg”seﬁ?r?ﬂ we define I, I; ... I, to be the closed linear a CU I CJO
span of all products ajas ... a,, where a; € I;. ]f I J are closed ideals in I CT -'; J-_
A, then 1' nJ=1IJ. The mr;:lusmn IJ € InJ is obvious. To show the

d h hat 1f i 1 fInJg,
reverSE1m}usmnwe ee unl show that if a i1s a posptive element of I'N Léé—n;]) __>bel-$

b >L,L*bl

Let I be a closed 1dea.1 I'in A We say [ is csscnnd in Aifal =0=
a = 0 (equivalently, Ja = 0 = a = 0). From the preceding observations
it is easy to check that I is essential in A if and only if 7O J ;E fms.lﬂl7 L—;J m
non-zero closed ideals J in A, 9) itx'a ﬂ a ﬂk '-' h of H"’Hl 13
Every C*-algebra I is an essential ideal in 1ts mult E:hra M(I). (é) ﬂ- 5 Jno 0
"ol X
Nonowlkighve Gwm%%(% ’ “ had))
3.1.8. Theorem. Let I be a closed ideal in a’C*-algebra A. Then thereisa fa-tq_ % w/) (4]
unique *-homomorphism n,p ﬁ Mteﬂdmg the mmclusion I — M{I). s ‘z‘
Moreover, ¢ is injective if I 15"35 QL (1, r%} o ‘%
Proof. We have seen above that the inclusion map I — M(]) admits a
*-homomorphic extension w: A — M(I). Suppose that : 4 — M(I) is a A 2 v

another such extension. If a € A and b € I, then p(a)bh = ¢( ab =
¥(ab) = y(a)b. Hence, (p(a) — ¥(a))l = 0, so @(a) = ,p(a;‘b}&me Iis |la- uom I (Ilﬁvblﬂl]-]'
essential in M(TI). Thus, ¢ = . A

Suppose now that I is essential in A and let a € ker(y). Then uI = !U (ﬂ _.ql.k))
E =0

La(f)=0,80a=0. Thus, ¢ is :ruectweﬂ f)

Theorem 3.1.8 tells us that the multiplmr algebra M(7) of I is the
largest unital C*-algebra containing I as an essentlal cl i ideal )

} W,&‘Eﬂ Lt TIA.S ‘e

.1.2. Ezample. If H is a Hilbe en K(H) is an essential ideal ~
in B(H). For if u is an operator in uch that uK(H) = 0, then for N(K(H’) :BC
all z € H wehave u(z)® z = u(z®z) = 0¥so u(z) = 0. By Theorem 3.1.8,
the inclusion map K(H) — M(K(H)) extends uniquely to an injective
*-homomorphism w: B(H) — M(K(H)). We show that y is surjective,
that is, a *-isomorphism. Suppose that (L, R) € M(K(H)), and fix a unit

vector e in H. The linear map I«H) — k(H) .,
wH—=H, z— (L(z g’]]{e}, £ho fﬂh@’]]ﬁﬂl‘\ cf owofﬂ r; !

is bounded, since ||u(z)|| < [[L(z ® ¢)|| < [ILllllz @ el = [ Lll[|=]l- Jf z,y, 2 €

A then o M so It
(Lalz @)= (u(2) @ ¥)eLy ol UK

= (s, y}(Ltzwl{eJ N e e A~



g N
(Hb’@m)( 2) =(Lz@e)({z)e) \7Y )
(&LJ N5 E& jy](z
Hence, Ly(z ®y) = L(x@e]{e@y]—Lx@y} all z,y
(w(u) — (L, R))K(H) = 0, so p(u) =TL,
Thus, we may regard B(H ) as the :rnult:lpher algebra of K'(H). This ex-
ample is t.he motivating one for the use of the multiplier algebra in K- thz

3.1.3. Example. /nga loeally compact H
easy to check that”Cy(S}) is an_esgential jdea

Therefore, by Theorem 3.1.8 there is a unique imjedtive *-homomorphism
w: Cs(2) — M(Co(Q)) extending the inclusion Co(f2) — M(Co(82)). We C(Q) C(SI
show that ¢ 18 surjective, that is, a *-isomorphism. To see this, 1t suffices to b

show that if g € M(Cyp(f2)) is positive, then it is the range of . If (uy)sea
is an approximate unit then for each w € Q the net of real
numbers (gu(w)) is incréasing and bounded above by |[g][;

it converges to a number, h(w) say. The function™y nﬁflﬂ}'{ m&“
\
h:! = C, wr h[w)ﬁllq.gﬂ{&?

is bounded. Moreover, if f € Cy(§2), then hf = gf, since f = limy fuy. \ipfgl
To see that h is continuous, let (w,).em be a net in £} converging to a 5 G’"
point w. Let K be a compact neighbourhood of w in ﬂ To show that .F)m Aﬂ# _f_

h(w) = lim, h(w, ), we may suppose w, € K for all indices it (there exists [a ) ulﬂa)- a%
po such that w, € K for all indices u > po, so, if neccessary, replace the net

(wu)uem by the net (wy)uzu,). Use Uryschn's lemma to choose a function = \._.. 3 &) = {W)
f € Cy(€2) such that f =1 on K. Since fh € Cy(2), Lk W)

h(w) = Fh() = m fh(,) = lim h(w,) —'Eﬁﬁ(u)
Therefore, h is continuous, so h € Cy({2). For f an arbitrary function
in Co(8) we have (h)] = 9(hf) = hf = of, s0 (4(h) - 9)Co(@) = 0. AR,
Consequently, ¢ = ¢(h). C(-Q]. j‘
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t A4 be osttive linear functional on A.

V.

f;ﬁgc.ﬁ@tion N

v (b0\:- 7i¢ A? = C, (a,b) = (5%a), ‘
0): ) — _,,.

is a positive sesquilinear formon A. Hence, 7(b*a) = r(a*b)™ and |r(b*a)| < ago (2
r(a*a)!/?7(b"b)!/2. Moreover, the function a — 7(a*a)!/? is a semi-norm LYoy 3
on A.

Suppose now only that 7 is a linear functional on A and that M is ‘(‘(I‘J—ﬁq\’}‘
an element of R* such that |r(a)] £ M for all positive elements of the A
closed unit ball of A. Then 7 is bounded with norm ||7|| € 4M. We show ,{( ) 'z(b
this: First suppose that a is a hermitian element of A such that ||a|| < 1. *< )
Then a*,a™ are positive elements of the closed unit ball of A, and therefore
I7(a)| = |r(a*)—7(a™)| < 2M. Now suppose that a is an arbitrary element
of the closed unit ball of A, so a = b+1ic where b, ¢ are its real and ; a.giﬁ{y

parts, and_||b]l, ||l < 1. ;Then |r(a)] = |7(b) +it(c)| < 4M._ ;‘H; A
'((rt_r)g chu?-qsg, Z{AM)E r.'m'l(&):’((g"‘.h& )=1(a )-'Céi)c-';ﬂa
3.3.1. Theorem. Ifr isa ;Fr.‘?itiv linear functional on a C*-algebra A,

P

then it is bounded. S*PIT (0N —+ O3
r?e, Nengy
Proof. If ris nqt bounded, then by the preceding remarks sup,cs7(a) =
+oo, where 5 1s the set of all positive elements of A of norm not greater L S

then 1. Hence, there is a sequenge~a,) in § such that 2" < 7(a,) for all " j;l-ﬂ
n€N. Seta= 3522 a,/2", so A*. Naw 1 < 7(an/2") and therefore a}. =0
VN < Z::ul rlan/2") = T(E::J an/2") <4#(a). Hence, 7(a) is an upper {y
¥“bound for the set N, which is impossible. This shows that 7 is bounded. O}/ & _“ﬁ““ (“ﬁh
i\ . LU Rl LY ,
%.03.3.2. Theorem. If r is a positive linear functional on a C*-algebra A, M/
then r(a*) = r(a)™ and LT_(H)I?' < |Ir|lr(a*a) for all a € A. )& - Nal! “‘q‘m
Proof. Let (ux)aea be an approximate unit for A. Then R/
s, 2
r{a”) = lii'n r(a*uy) = li;n r(uxa)” = r(a)”.

?
Also, |7(a)? = limy |r(upa)|? < Sup;\T(“i}"'(ﬂ*ﬂ)@|lf||f[ﬂ*ﬂ]- B ](( ";ajkml
N E e (Hh(da) /,
)R () (0% < P T ) <)

3.3.3. Theorem. Let r be a bounded linear functional on a C*-
A, The following conditions are equivalent: N 11~( )
(1) 7 is positive,

(2) For each approximate unit (uy)aea of A, ||7|| = limy r(uy).

(3) For some approximate unit (uy)aea of A4, [|7]| = limy 7(uy).

- gy
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Proof. We may suppose that ||r| = 1. First we show the implication

(1) = (2) holds. Suppose that T is positive, and let Jaea be an ap- u}téu}‘o
proximate unit of A. Then (r{ux),)rea is an incre et in R, so it

converges to its supremum, which is obviously not greater than 1. Thus, T(u \(t( )
limy 7(uy) < 1. Now supp hat a € 4 and |la|| < 1. Then |r(uxa)|? < f
ug(ui‘hr'(e:r."'a::j < t(ux)r(a*a) % limy t(uy), soyr(a)]® < limy 7 A)- Hence, <1
< limyx 7(uy). Therefore, 1 = limy 7(u.), so )::»Lojm\r% 1 Ay 'r 'q
N That (2) = (3) is obvious. ?.( U‘-“’I
Now we show that (3) = (1). Suppose that (u;.}ha, is an approximate h "A

unit such that 1 = limy 7(uy). Let a be a self-adjoint element of A such
@\that |le|| € 1 and write 7(a) = a+ i3 where a, § are real numbers. To show U} SL{:}
that r(a) € R, we may suppose that # < 0. If n is a positive integer, then

zr.mHﬂ( [a — inux|[* = l|(a + inua)(a = inuy)|
= |la® 4+ n?u? — in(auy — uxa)|

'd‘ﬁ&‘il """“ <1+ n? +n|lauy — uxal
{9 . A — uaa,
GeR "o ives Ulin

|r{a-—mu,\]|2!gl+n + nllauy —upal. ) =KR—=*

However, limy r(a — inuy) = -r(a) in, and limy auy — uya = 0, so in the

litnit as A — co we get )
|a+iﬂ—in£251+n2. ]E—| :_ZZ

The left-hand side of this inequality is a® + 8% — 2nf + n?, so if we cancel
and rearrange we get

2 k3
-2mB<1-p4%-afor NZ "*-/22"0{

Since 8 is not positive and this inequality holds for all positive integers n,
# mus ero. Therefore, 7(a) is real if a is hermitian.
N i e . R !{
U~a ;
o

that a is positive and ||a|| € 1. Then uj — a is hermitian
and || o 7(uy—a) < 1. But then 1—7(a) = limy r(uy—a) < 1,
and therefore\r(a) > 0. Thus, 7 is positive and we have shown (3) = (1).0

3.3.4. Corollary. Ifr is a bounded linear functional on a unital C*-algebra, g 'ul l”-—ﬁ “
then r is positive if and only if (1) = ||7||.

Proof. The sequence which is constantly 1 is an agn roximate unit for the 'S.‘ . 1 T

C*-algebra. Apply Theorem 3.3.3. U.= 1
3.3.5. Corollary. If r,7' are positive linear functionals on a C*-algebra,
then || + 7| = ||7|| + [|']|.

Proof. If (ux)aea is an approximate unit for the algebra, then |7+ 7'| =
Limy(r + 7' )us) = limy 7(us) + limy 7'(ua) = |I7]] + [|7']]- S

A state on a C*-algebra A is a positive linear functional on A of norm
one. We denote by S(A) the set of states of A.



3.3.6. Theorem. If a is a normal element of a non-zero C*-algebra A, :['g'
then there is a state r of A such that ||a|| = |r(a)|.

Proof. We may assume that a 9‘: 0. Let B be the C*-algebra generated ‘r

d?

by 1 and a in A. Since B j an and a is continuous on the cnmpactd}(('o d.‘l'L
space §J(B), there is a char “1y_on B such that [|a|| = |é]le = |72(a)]!
By the Hahn-Banach tﬁeorem, there is a bounded linear functional r; on A x

extending 72 and preserving the norm, so ||| = 1. Since (1) = m2(1) =1

71 is positive by Corollary 3.3.4. If 7 denotes the restriction of 7; to A}F(p‘( l%’ﬂ ( lgm
then 7 is a positive linear functional on A such that [a||.& |7( a)l Hence,
I~ lllall = |r(a)] = ||la], so ||7|| = 1, and the reverse inequi%f is ol:wmus
Therefore, 7 is a state of A.
=T, ) =) =%, (03] -lo (o]

3.3.7. Theorem. Suppose that r is a positive linear functional on a

C*-algebra A.

(1) For eacha € A, 7(a*a) = 0 if and only if 7(ba) = 0 for all b € A.
(2) The inequality

r(b*a*ab) < |[a*a|r(b*b) ¥ 0ﬂ< l‘&!&“
holds for all a,b € A. Vh G 9’)\:,4: Y !100*“\0 b

Proof. Condition (1) follows from the Cauchy- Sciwarz mequalztyk(bm)&((b ]U'“)]
To show Condition (2), we may suppose, using Condition (1), that
7(b*b) > 0. The function 2 ((Lb )z‘(a ﬂ)

p: A — C, ¢ r(b°ch)/(b*b), 0

is positive and linear, so if (u))res is any approximate unit for A, then

lpll = lim p(ux) = lim 7(5"uxb)/r(8°b) = m(57b)/7(578) = 1.

Hence, p(a*a) < ||a*a||, and therefore 7(b*a*ab) < |[a*a|r(b*b). 0

We turn now to the problem of extending positive linear functionals.

~J
3.3.8. Theorem. Let B be a C*-subalgebra of a C*-algebra A, and sup- \BEB@Q:‘
pose that T is a positive linear functional on B. Then there is a positive

linear functional ' on A extending r such that ||7'|| = ||7||. @

Proof. Suppose first that A = B. Define a linear functional 7' on A
by setting 7'(b + A) = 7(b) + A||r|| (b € B, A € C). Let (ur)xea be an
approximate unit for B. By Theorem 3.3.3, ||7|| = lim,, 7(u,). Now suppose
that b € B and u € C. Then |7'(b+ u)| = |limy 7(buy) + plimy 7(uy)| =
[lima (b + ) ()] < sup [l (b + whuall < 7o+ al, since Jlur]l < 1.
Hence, ||7'|| < ||7]l, and the reverse inequality is obvious. Thus, ||']] = fr‘}}
7|l = r'(1), so ' is positive by Corollary 3.3.4. This proves the theorem

in the case A = B @
Now suppose that A is an arbitrary C*-algebra containing B as a



C*-subalgebra. Replacing B and A by B and A if necessary, we may
suppose that A has a unit 1 which lies in B. By the Hahn-Banach theorem,
there is a functional v’ € A* extending r and of the same norm. Since
(1) = 7(1) = ||7]| = ||7']l, it follows as before from Corollary 3.3.4 that 7'
is positive. O

In the case of hereditary C*-subalgebras, we can strengthen the above
result—we can even write down an “expression” for r':

3.3.9. Theorem. Let B be a hereditary C*-subalgebra of a C*-algebra
A. If r is a positive linear functional on B, then there is a unique positive
linear functional ' on A extending T and preserving the norm. Moreover,
if (ux)rea is an approximate unit for B, then

'(a) = liin T(ujrauy) (a € A).

>
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3.3.9. Theorem. Let B be a hereditary C*-subalgebra of a C*-algebra 0<0.£ %’-‘)th
A. If r is a positive linear functional on B, then there is a unigue positive b
linear functional ' on A extending v and preserving the norm. Moreover,

if (ux)rea Is an approximate unit for B, t
jB] s
7'(a) = lim (& au ‘ (a € A). T T
T a2 650 =) A0
Proof. Of course we already have existence, so we only prove uniqueness. @{L
Let 7' be a positive linear functional on A extending r and preserving the /

norm. We may in turn extend *r'hin a norm-preserving fashion to a positive H.E_) d:
functional (also denoted 7') on A. Let (uy)rea be an approximate unit for 0 A
B. Then limy r(u)) = ||7|| = ||7'|| = 7'(1), so limy 7'(1 — uy) = 0. Thus, 1 I"“z“

for any element a € A,

L

|7'(a) — T(upauy)| < |r'(a — ura)| + |7’ (ura — uprauy)| ‘k(b*ﬂ ] Yb 2 a%)

"{f & T’((l _ UA)E)I;ZTI(G‘H)IHZ ﬁ/ ) (t(b ’ 2((
+ r'ja*uia}”zrr((l — u;.)z)]” u g |

< (7'(1 — )21 (a*a)/? + r'(a*a) 2 (' (1 — uy))'/2. s *

(r'(1 = un))' (@ @)/ + 7'(a" @) /3 (r'(1 - uy)) a"u;@gaa

Since limy 7'(1 — uy) = 0, these inequalities imply limy r(uyauy) = 7'(a).0

Let 2 be a compact Hausdorff space and denote by C(§2, R) the real J
Banach space of all real-valued continuous functions on §2. The operations
on C(€},R) are the pointwise-defined ones and the norm is the sup-norm. C(‘Q ) @
The Riesz—Kakutani theorem asserts that if 7: C(f2,R) — R is a bounded | - ’D g,ﬂo"t‘
real-linear functional, then there is a unique real measure p € M(Q) such \
for all f € C(Q2,R). Moreover, ||p|| = ||7]|, and p is M (__(1)
ve-if ar if 7 is positive; that is, 7(f) > O for all f € C(§2, R) such '-
that f > 0. The Jordan decomposition for a real measure u € M(§2) asserts M= /HJI-'— -
that there are positive measures u, u~ € M(Q) such that g = p* —p~ and 7/ /‘{
Il = llet I+~ |- We translate this via the Riesz—Kakutani theorem into J?aﬂJH}ﬁf@
a statement about linear functionals: If 7: C(€2,R) — R is a bounded real- __~ °, = 7, 'y
linear functional, then there exist positive bounded real-linear functionals
74+, 7-:C(},R) — R such that 7 = ry — 7_ and ||7|| = ||7%|| + [|7=||- We z - ( -T
are now going to prove an analogue of this result for C*-algebras. 4 -

Let A be a C*-algebra. If T is a bounded linear functional on A, then

ze N

7ll = sup |Re(t(a))l|. 1
{ial ||a]|£l| (r(a))l (1) %\‘T"If -
(@7 ()
Forifa € A and ||a| < 1, then there is a number A € T such that Ar(a) € R, - (@l’( & )
so |T(a)| = |Re(r(Aa))| < ||7]l, which implies Eq. (1). Df?
If - € A*, we define * € A" by setting 7*(a) = r(a*)” for all a € A.
Note that r** = 7, |[|[7*|| = ||7|l, and the map 7 + 7* is conjugate-linear. ¥



'y

We say a tunctional 7 € A" 1s self-adjoint 1t r = r*. For any bounded L Z_ (:-:_\, - S
linear functional 7 on A, there are unique self-adjoint bounded linear func- ' :
tionals 7, and m on A such that 7 = r +im; (take 1, = (7 + 7*)/2 and Eut}fig
T2 = (1 — 7%)/2i).

The condition * = 7* is equivalent to 7(A:s) C R, and therefore if
T is self-adjoint, the restriction v': A,, — R of 7 is a bounded real-linear
functional. Moreover, ||7| = ||7'||; that is,

Irll = sup Ir(a)l.

lali< L 'f'Ji N

For if a € A, we have Re(r(a)) = 7(Re(a)), so

|l = e | Re(7(a))| < 3 IT(b)] < [TID ‘H WJW(

IIbII{I

We denote by A}, the set of self-adjoint functionals in A%, and by A%
the set of positive functionals in A*.

We adopt some temporary notation for the proof of the next theorem:
If X is a real-linear Banach space, we denote its dual (over R) by XU.

The space A,, is a real-linear Banach space and it 1s an easy exercise
to verify that A}, 15 a real-linear vector subspace of A* and that the map
A%, = Al,, 7 — 7', is an isometric real-linear isomorphism. We shall use
these observations in the proof of the following result.

3.3.10. Theorem (Jordan Decomposition). Let r be a self-adjoint
bounded linear functional on a C*-algebra A. Then there exist positive
linear functionals ry,7_ on A such that r = 74 —7_ and ||7|| = ||7&||+||7=]I-

[fomT-
The Gelfand—-Naimark Representation > ﬁ]g B( H )

In this section we introduce the important GNS construction and pr
that every C*-algebra can be regarded as a C*-subalgebra of B(H) for put HO“'
some Hilbert space H. It is partly due to this concrete realisation of the t jl’éﬁ €
C*-algebras that their theory is so accessible in comparison with more gen-
eral Banach algebras.

A representation of a C*-algebra A is a pair (H, ¢) where H is a Hilbert
space and @: A — B(H) 15 a ¢-homomorphism. We say (H, ) is faithful if

@ 18 injective. C -
If (Hx,@a)aen is a family of representations of A, their direct sum is % A.a

the representation (H,y) got by setting H = @;,H;,,, and p(a)((za)r) =

(pa(a)(za))a for all @ € A and all (zx)x € H. It is readily verified that §
(H, ) is indeed a representation of A. If for each non-zero element a € A H@?( 3
there is an index A such that ¢y(a) # 0, then (H, ) is faithful.

Recall now that if H is an inner product space (that is, a pre-Hilber@@ (ﬂ) .*QLI'“)@}'L



ace ), LN LIOEDTE 15 a unique Inner product ol tilc ballacll space COINpICL1on
H of H extending the inner product of H and having as its associated norm (
the norm of H. We call H endowed with this inner product the Hilbert space )h(?b‘}(j\'}}
completion of H.

With each positive linear functional, there is associated a represent-
ation. Suppose that 7, 15 a pqgitive linear functmna.l C*- a.l ¥,
Setting, Oy **90“'} ‘f&d"‘*ﬂd “Gﬂ T(?L :H:ﬁ l: l!ﬁ&}\({bb
%"(( )‘_?'(fa ) _{aEA 'r(a a]—[]}
LY Py ity
r«‘L sfg

=0 30 (T‘
it is %asy to check (using T eorem 3.3.7) that N, is a closed left. i

and that the map
Z‘ (A/N.)* = C, (a+ Ns b+ N.)— r[b"a} wmw*awlg Or
(o, 04N ) =T (B0) =0 sacn Iy NoT ens

ell-defined inder prmiuct on A“\' We denote by W&

etion of A/N,.”" O

fa€ A, define an o {a) o (A;N,) by setting =/
&S 091

o(a)(b +'§T_ ab+N, < 4033*}‘[1: , ab+N }

The inequality ||p(a)|| < |la|| holds since we have |w(a)(b + N, )Y T
T(b*a*ab) < ||a||*r(d*b) = ||al|?||b + N+||* (the latter inequality is given by TDQX
. %Y

Theorem 3.3.7). The operator ¢(a) has a unique extension to a bounded
operator ¢,(a) on H,. The map

Pri A — a a ?: ﬁﬁ\/
6 A — B(H,), a~ . (a), i ':\\T“

is a *-hmomorphism (this is an easy exercise).
The representation (H,,p,) of A is the Gelfand-Naimark-Segal repre—
sentation (or GNS representation) associated to 7.
If A is non-zero, we define its universal representation to be the dlrect qﬂ (b ) (f’()))
sum of all the representations (H,, ), where T ranges over S(A). ﬁ%;
4
3.4.1. Theorem (Gelfand—Naimark). If A isa C*-algebra, then/it has aE/}"Lu {H re
)

faithful representation. Specifically, its universal representatio

suppose that Z i
there is a state
Stale

\(@ q;(a}*u

Proof. Let (H ,{;5 be the universal representation of A an
a is an element of A such that ¢(a) = 0. By Theorem 3 3
T on A such that ||a*a|| = 7(a%a). Hence, i

r(a*a) = r(8*)= llpr(5)(b + Ny)|F = 0 (since wf(b**} = p.(a%a) = 0,
+(8) = 0). HenPwemOand ¢ _
wr(b) = 0). Henc is injective. L b b Nf»’ b 4)
The Gelfand-Naimark theorem is one of those-results that are use
of the time. For the present we give just two applications.

all

The first application i1s to matrix algebras. If A 1s an algebra, MH(A}



denotes the algebra of all n x n matrices with entries in A. (The operations
are defined just as for scalar matrices.) If A is a *-algebra, so is M,(A),

where the involution is given by (a; iy = (a%)i; Aﬂ%{b@rgfr
:%n is

If p:A — B is a *- homomorphlsm between x-algebras, its
the *-homomorphism (also denoted )

w: Mp(A) = Mn(B), (ai;) — (p(ai,)).

If H is a Hilbert space, we write H(®) for the orthogonal sum of n
copies of H. If u € M,(B(H)), we define :p(uj € B(H'™) by setting

@)

o(u)(z1, ... m—(Zuu(zJ) Zun;(:--,})

for all (zy,...,2,) € H("). It is readily verified that the

@: Mo(B(H)) » B(H™), u s w(“@
is a *-isomorphism. We call ¢ the canonical *-isomorphism of M,(B(H))
onto B(H'™), and use it to identify these two algebras. If v is an operator
in B(H™) such that v = ¢(u) where u € M,,(B(H)), we call u the operator
matriz of v e define a norm on M, (B(H)) making it a C*-algebra by
setting ||ul|z= |l¢(u)||. The following inequalities for u € M, (B(H)) are
easy to verify and are often useful:

A

luiill < Null € D lumll (i =1,...,n).

kil=1
3.4.2. Theorem. If A is a C*-algebra, then there is a unique norm on
M, (A) making it a C*-algebra.

Proof. Let the pair (H,y) be the universal representation of A, so the
*-homomorphism ¢: M,,(A) — M,(B(H)) is injective. We define a norm
on Myp(A) making it a C*-algebra by setting ||a|| = ||¢(a)|| for a € ML(A)
(completeness can be easily checked using the inequalities preceding this
theorem). Uniqueness is given by Corollary 2.1.2. 0O

3.4.1. Remark. If A is a C*-algebra and a € M,(A), then

n
laill < llall < Y llagll (i =1,...,n).

k=1
These inequalities follow from the corresponding inequalities in M,(B(H)).

Matrix algebras play a fundamental role in the K-theory of C*-algebras.
The idea is to study not just the algebra A but simultaneously all of the

A

“frg C“%
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matrix algebras M,(.A) over A also.

Whereas it seems that the only way known of showing that matrix
algebras over general C*-algebras are themselves normable as C*-algebras
is to use the Gelfand—Naimark representation, for our second application
of this representation alternative proofs exist, but the proof given here has
the virtue of being very “natural.”

3.4.3. Theorem. Let a be a self-adjoint element of a C*-algebra A. Then
a € At if and only if 7(a) > 0 for all positive linear functionals T on A.

Proof. The forward implication is plain. Suppose conversely that r(a) >
0 for all positive linear functionals 7 on A. Let (H,y) be the universal
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