Engineering Mathematics

All Karimpour
Professor
Ferdowsi University of Mashhad




Lecture 3

Content of this course

1. Fourier Series and Fourier Integral.

2. Partial Differential Equation and Its Solutions.

3. Complex Analysis. (The theory of functions of a complex variable)
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Lecture 3

Partial Differential Equation and Its Solutions

4 Introduction to Partial Differential Equations
O Derivation of Partial Differential Equations

4 D'Alembert Solution for Wave Equations

U Classification of Partial Differential Equations

4 Solving Partial Differential Equations by Separation of Variables
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Lecture 3

Introduction to Partial Differential Equations

0 An ordinary differential equation (ODE) is a differential equation that
Involves functions of a single independent variable and its derivatives.

Q The order of a differential equation is the order of the highest derivative
present in the equation.

Example 1: Mass-Spring System

= my” =r(t) —cy’—ky
§ S my” +cy’ +ky = r(t)
QSME)SS m Y(t) ?

External
force r(t)

@ Dashpot t 1s the independent variable
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Lecture 3

Introduction to Partial Differential Equations

An example of an ordinary differential equation:
Y DL 5y = STt
y(t) ? y(t) = f(, kq, k)

Initial conditions are required to solve an ordinary
differential equation.

y(0) =2 y'(0) =1
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Lecture 3

Introduction to Partial Differential Equations

v A partial differential equation (PDE) Is a differential equation that
Involves partial derivatives of one or more dependent variables
with respect to multiple independent variables.

v The order of a partial differential equation is the highest order of
partial derivative that appears in the equation.

Example 2: The following equation, known as the wave equation, Is
an example of a partial differential equation.

0%u 0%u ’

i i |
i x4 | &
u(x,t) ?

t and x are independent variables
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Lecture 3

Introduction to Partial Differential Equations

Wave equation as an example of a partial differential equation

u

d0%u 2 0%u

Pl i £

o0t? 0x?2 ! —
u(x,t) =7 WXty = PRt Ty Jemi At

To find the solution to a partial differential equation, boundary
conditions and initial conditions are necessary.

Examples of boundary conditions
u(0,t) =0 ulhityr=-0 t=>0

Examples of initial conditions

0
u(x,0) = @(x) —(x,0) = 6() 7
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Lecture 3

Partial Differential Equation and Its Solutions

4 Introduction to Partial Differential Equations
U Derivation of Partial Differential Equations

4 D'Alembert Solution for Wave Equations

U Classification of Partial Differential Equations

4 Solving Partial Differential Equations by Separation of Variables
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Lecture 3

Derivation of Partial Differential Equations

Vibration Study of a Stretched Flexible String

i

ol s

|

|

1
=

~

P -
—r———z0 | .
o | QR _—
T, | | \ P ‘—”?%
- i
I I
| 1 T
0 x x4+ Ax L 1
Trsinf — T;sina = ma Ticosa = Tocosp =T = const.

. . 0°u
Torsinf — Tysina V

T,sinf Tisina pAx d%u Ju du pAx 0%u

it 7 277 tanf — tana . |x+Ax “E G |x 77 T U

T,cosfp Ticosa T gt 0x Ox T Ot2
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Lecture 3

Derivation of Partial Differential Equations

Vibration Study of a Stretched Flexible String

~
=2

u ?1_‘:;)-,_212

R i—————-0""

]

0%u , 0%u
_— C —_—
at* ~ 0x?
One-Dimensional

Wave Equation
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Lecture 3

Derivation of Partial Differential Equations

One-Dimensional Wave Equation

u

Flexible String 2 0%u _ 0%u
dx52dpe , I
Arod with one end fixed .2 0%6 070 | C 0
0.4 Dsite?
2 2
A rod with both ends fixed 229 _ 9°° o
Bt L
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Lecture 3

Derivation of Partial Differential Equations
Two-Dimensional Wave Equation

u(x,y,t)
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Lecture 3

Derivation of Partial Differential Equations

One-Dimensional Heat Equation

2
a_uzczg_z’f u(x,t) u=0| x
ot dx?
Two-Dimensional Heat Equation Y w=0°C
& &
ou z(azu ; azu) et = S
— =C u(x,y, I
ot 9xZ " 9y ’ 3 .
u=0°C
Three-Dimensional Heat Equation
durld 0 g 0
Ly gl o WX, Y, 7, t)

13
Dr. Ali Karimpour Sep 2024



Lecture 3

Derivation of Partial Differential Equations

Two-Dimensional Laplace Equation 32y, / 0 0
dx2  dy? He )

Three-Dimensional Laplace Equation

0°u 0%u 0%u
= u(x,vy,z)
EREE G e R

Two-Dimensional Poisson Equation

2°u  0%u

Three-Dimensional Poisson Equation

62u+ 62u+ 0%u £ )
BT — X,V, Z u\x,vy, 4
9x2 " ay? ' 972 4 (14y )




Lecture 3

Exercises

Exercise 1: Check whether the following functions satisfy the wave equation or not.

1) u = x3+ 3xt>
2) u = sin(wct) sin(wx)

Exercise 2: Prove that the vibration of an elastic string under the influence of an
external force p(x,t) per unit length, applied perpendicular to the string, satisfies the
following equation.

p(x,t)
P

Y o= 02U
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Lecture 3

Partial Differential Equation and Its Solutions

4 Introduction to Partial Differential Equations

4 Derivation of Partial Differential Equations

d D'Alembert Solution for One-Dimensional Wave Equations
U Classification of Partial Differential Equations

4 Solving Partial Differential Equations by Separation of Variables
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Lecture 3

D'Alembert Solution for One-Dimensional Wave Equations

One-Dimensional Wave Equation

U
Flexible String 20U _0%u
0x?2 dt2 I I X
A rod with one end fixed 2970 _9°0 I ad
dx? Ot?
. : 320 426 0
A rod with both ends fixed 22— — | C I

dx2 Ot?
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Lecture 3

D'Alembert Solution for One-Dimensional Wave Equations

Suppose f(x—at) is a function with a second derivative. Then, according to
the chain rule:

OZ(xa; 7 = —af ' (x —at) Zaf(xa; g = f'(x — at)
: f(axtz_ A a’ [ (x~at) ? f(axx; i f"(x — at)

Given these rules, it is clear that the function u=f(x—at) satisfies the wave
equation.

Similarly, the function u=g(x+at) will also satisfy the wave equation.

Therefore, the general solution of the wave equation can be written as
follows:
u = flx—at) + g(x+ at)
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Lecture 3

D'Alembert Solution for One-Dimensional Wave Equations

Therefore, in the wave equation:

The general solution of the wave equation for any f and g that have a
second derivative can be written as follows:

u=f(x—at) +g(x+ at)

For example, all of the following functions are solutions to the wave
equation.

u = sin(x — at) +10(x + at) - u = sin(cos(x — at))+ cos(e**%)

u = cos(x — at) + e*tat
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Lecture 3

D'Alembert Solution for One-Dimensional Wave Equations

Therefore, in the wave equation:

The general solution of the wave equation for any f and g that have a
second derivative can be written as follows:

u= flx—at) +'g(x+ at)

A valid solution must satisfy the initial conditions. Therefore,
suppose:

u(x,0) = () ko = 000
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Lecture 3

D'Alembert Solution for One-Dimensional Wave Equations

Therefore, in the wave equation:

52u_ 0o u = f(x—at) + g(x + at)

The Initial conditions are;

u(x,0) = o(x) - u(x,0) =lpx) = f(x) + g(x)
G
10 = 6 - 2 = 0 = ~af () + ag' ()

d

j 8(s)ds = —a(f(x) ~ f(xo)) + a(g(0) — g(xs))

X0
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Lecture 3

D'Alembert Solution for One-Dimensional Wave Equations

Therefore, in the wave equation:

2 2
0 u , 07U w =9Eb = aty £ gEAat)

_:a_

dt2 0x?

To satisfy the initial conditions, it is necessary to:

fx) + g(x) = p(x) —f(x) + g(x) = %JxH(s)ds — f(xg) + g(x0)
v} 1 (*
gx) = 5 @(x) +Ef 0(s)ds — f(xo) + g(X0) | — u = f(x — at) + g(x + at)
= : 1
76 =350 - | 06)as +1x0) = 960

—at)+ o(x+at) 1 (*+at
(17 ol A ol 5 NS ) 5 j 0(s)ds
x—at

2 2a
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Lecture 3

D'Alembert Solution for One-Dimensional Wave Equations

Example 3: Consider a string that extends infinitely in both directions. The initial

displacement of the points on the string is given by the following function, and then
the string is released from rest. Find the equation of motion for the string.

A
1+ 8x?2

p(x) =

Solution: Since the string has no initial velocity, 6(x)=0, and therefore, the equation
of motion for the string is:

i ) o(x — at) -; o(x + at) v Zla jx;%)ds

u(x’t):go(x—at)+<p(x+at) :1[ 1 1 ]

_I_
2 2114+ 8(x —at)? 1+ 8(x+ at)?
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Lecture 3

D'Alembert Solution for One-Dimensional Wave Equations

1 ol 0.5 0.5
p(x) = 1 + 8x2 P Sy 8(x — at)? + 8(x + at)?

@(x)

v

v

v
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Lecture 3

D'Alembert Solution for One-Dimensional Wave Equations

Example 4: A semi-infinite string is released from rest as shown in the
figure below. Determine the state of the string as a function of time and

position.
b u(x, 0)/\

0 1 2 X

»

Solution: Since the string has no initial velocity, 0(x)=0, and the
equation of motion for the string is:

4 u(x,0)

o(x — at) + o(x + at) 1 at = 1.5
PRSIt L R TN AN

Boundary conditions are not satisfied. 25
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Lecture 3

D'Alembert Solution for One-Dimensional Wave Equations

Example 4: A semi-infinite string is released from rest as shown in the
figure below. Determine the state of the string as a function of time and
position.

4 u(x,0)
| /\
0 1 2 X

Virtual Imagery . /’,\

Boundary conditions are satisfied. 26
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Lecture 3

D'Alembert Solution for One-Dimensional Wave Equations

Example 4: A semi-infinite string is released from rest as shown in the
figure below. Determine the state of the string as a function of time and

position. $u(x,0) = p(x)

Solution: Since the string has no initial velocity, 6(x)=0, and the

equation of motion for the string is:
o(x —at) + o(x + at)

W)=

2
4 u(x,0.5/a)
1
at = 0.5 L/\/\
0 1 2 X The shape of the string at t=0.5




Lecture 3

D'Alembert Solution for One-Dimensional Wave Equations

Example 4: A semi-infinite string is released from rest as shown in the
figure below. Determine the state of the string as a function of time and

position.

tux,0) = o)

sy - ] .
’ 0 1 2 X
» u(x, 1.5/a)
1
) at = 1.5
S AN N, >
o 1 x

N

The shape of the string at t=1.5
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Lecture 3

D'Alembert Solution for One-Dimensional Wave Equations

Example 4: A semi-infinite string is released from rest as shown in the
figure below. Determine the state of the string as a function of time and

position.

tux,0) = o)

———————

= I\/ h

The shape of the string at t=2
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Lecture 3

D'Alembert Solution for One-Dimensional Wave Equations

Exercise 3: A finite string Is released from rest as shown in the
figure below. Determine the subsequent motion of the string.
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Lecture 3

D'Alembert Solution for One-Dimensional Wave Equations

Example 5: A uniform string stretched along the x-axis from x =0 to
X =oo IS struck at t=0 such that the part of the string between x=1 and
X=4 obtains an initial velocity of one. Determine the subsequent
displacement of the string and plot the displacement at the point x =1
as a function of t.

Solution: It is clear that the initial position is given by:

p(x) =0
On the other hand, the given initial velocity Is:

8(x)
1 1
4 1

1 4 X 1

-1

O(x) =ulx+1)—ulx+4)+ulx —1) — ulx —4)
31



Lecture 3

D'Alembert Solution for One-Dimensional Wave Equations

Now, given the initial velocity and position, the solution is:

p(x) =0

O(x) =ulx+1)—ul(x+4)+ulx—1) —u(x —4)

o(x —at) + ¢(x + at) % 1 j’”“t

u(x,t) = 5 o O(s)ds

x—at

x+at
u(x,t) = %f_ : [u(s+1) —u(s+4)+u(s—1) —u(s —4)|ds

32
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Lecture 3

D'Alembert Solution for One-Dimensional Wave Equations

u(x,t)

7 % [+ Du(s+1) —(s+Duls+4) + (s — Duls — 1) — (s — Hu(s — 4)] 3+

1
u(x,t) =%[(x+at+1)u(x+at+1)—(x+at+4)u(x+at+4)

+(x+at—Dulx+at—1) — (x + at — 4)u(x + at — 4)
—(x—at+ Du(x—at+1)+ (x—at +4dulx —at +4)

—(x—at—Du(x—at—1)+ (x —at —4)u(x — at — 4)]
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Lecture 3

D'Alembert Solution for One-Dimensional Wave Equations

At x=1

1
u(l,t) =%[(1+at+1)u(1+at+1)—(1+at+4)u(1+at+4)

+(14+at—Du(l+at—1)— (A +at —4)u(l + at — 4)
—(1l—at+Du(l—at+1)+ A —at+dHu(l —at +4)

<=l i) ull ~at =1y (Ll —at 54t~ at =4))
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Lecture 3

D'Alembert Solution for One-Dimensional Wave Equations

At x=1
u(l,t) = % [(at + 2)u(at + 2) — (at + 5)u(at + 5)
+(at)u(at) — (at — 3)u(at — 3)
—(—at + 2)u(—at + 2) + (—at + 5)u(—at + 5)

—(=at)u(—at) + (—at — 3u(—at = 3)]

35
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Lecture 3

D'Alembert Solution for One-Dimensional Wave Equations

Ut )= % [(at + 2)u(at + 2) — (at + 5)u(at + 5) +(at)u(at) — (at — 3)u(at — 3)

—(=at+ 2)ul=at + 2) + (=at +5)u(—at+5) = (at)u(-at) + (~at = 3u(-at — 3)]

u(l,t)=%[(at+2)—(at+5)+at—(—at+2)+(—at+5)] =§ 0<at<2
u(1,t)=%[(at+2)—(at+5)+at+(—at+5)]=§ 2 <at<3
u(1,t) = —[(at+2) - (at +5) +at — (@t —3) + (-at + 5] === 3<at<5
u(1,t) =—[(at +2) ~ (@t +5) + at — (at = 3)] =0 5 < at

The position of the string at x=1 as a
function of time Is:




Lecture 3

Exercises

Exercise 4: Determine the displacement u(x,t) of an oscillating string
of length L with fixed endpoints and c=1. The initial velocity is zero
and the initial displacement is f(x).

1D)f(x) = kx(1-x)

2)f(x) = ksin?(nx)

Exercise 5: Determine the solution to the following wave equation.

u, -u;,=0, 0<x<L, t>0
u(x,0) = sin=x ,uy(x,0) = -sincx , 0<x<L
u(o,t) = u(L,t) =0 forall t.
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Lecture 3

Partial Differential Equation and Its Solutions

U Introduction to Partial Differential Equations

U Derivation of Partial Differential Equations

 D'Alembert Solution for One-Dimensional Wave Equations
U Classification of Partial Differential Equations

1 Solving Partial Differential Equations by Separation of Variables
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Lecture 3

Classification of Partial Differential Equations

Can other partial differential equations be solved using the d'Alembert
method?

Answer: Consider the following equation:

PRB R0
0x? 0xdy dy?

First, the possibility of finding solutions in the form
u=f(x+A4y) for the equation is examined.

Af'"(x + Ay) + 2BAf" (x + Ay) + CA*f"(x + Ay) = 0

CA*+2BA+A=0
39
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Lecture 3

Classification of Partial Differential Equations

pm—

d%u d0°u 0°u Hyperbolic p2 _ »4¢
A-——1¥5p gy el >0
% dxdy dy?
—  Parabolic B2 —AC =0
=1 (xi+Ay)
e 2 _
P22 opl e N=—10 _ Elliptical B -AC<0

For example, in the wave equation:

d0%u 202u

_=a_

ot? 0x?

u=f(x+at)+ glx —lat)

40
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Lecture 3

Classification of Partial Differential Equations

In general, the equation:
A(Cx, y)uyy + 2B(x, y)uxy e Y)uyy = g(u, uy, Uy, X, V)

Is called hyperbolic, parabolic, or elliptical depending on the sign of
the following expression:

Bz(x'y) —A(X,y)C(X,y)

pm—

Hyperbolic  B%(x,y) — A(x,y)C(x,y) >0

=~  Parabolic  B?(x,y) — A(x,v)C(x,y) =0

Elliptical ~ B*(x,y) — A(x,y)C(x,y) <0
— 41
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Lecture 3

Classification of Partial Differential Equations

In general, the equation:

AQx, Y)Uyx + 2B(x, Y)Uyy + C(x, Y)Uyy = g(U, Uy, Uy, X, V)

Is called hyperbolic, parabolic, or elliptical depending on the sign of
the following expression:

B%(x,y) — A(x,¥)C(x,y)
The wave equation

0°u  0%u )
¢2 = B2 — AC =0 —c%(—1) = ¢2>0 Hyperbolic
The heat equation (heat transfer)
ou 0°u :
Frats Czﬁ B =0 =R Parabolic

The Laplace equation

d%u azu_o B2—AC=0—-1=-1<0 Elliptical
0x2 15 6y2 7 42
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Lecture 3

Classification of Partial Differential Equations

Theorem: Consider the following equation:
A(x) Y)uxx + ZB(X, y)uxy + C(x) Y)uyy = g(ul ux; uy; X y) I

Form the following auxiliary equation from the above equation:
ACe, y)(¥")? = 2B(x,y)y' + C(x,y) =0

Independent solutions of the auxiliary equation are the characteristics

of the equation I.

In this case:
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Lecture 3

Classification of Partial Differential Equations

a) If the given equation is hyperbolic, with a change of variables:

s=@(xy) r=y(x,y)
the original equation (Eqg. 1) is transformed into the following equation:

Wio = Gty ey 80

b) If the given equation is parabolic, with a change of variables:

r=Xx S = l/)(x) y)
the original equation (Eg. 1) is transformed into the following equation:

W= G0 W 75

c) If the given equation is elliptical, with a change of variables:

_(p(x,y)+l/J(x,y) _<p(xry)_l/)(xry)
/7% 2 e 2i

the original equation (Eq. 1) Is transformed into the following equation:

44
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Lecture 3

Classification of Partial Differential Equations

Example 6: In the wave equation:

0%u . 0%u
—_— a _—
dt? 0x?2

AQx, Y)Uyy + 2B(x, Y)uxy + C(x, Y)uyy = g(U, Uy, Uy, X, y)

A, y)(¥')2 = 2B(x,y)y' + C(x,y) =0

——a’?—=0 KX ) 7 ar =10 Hierd

=
I

'=—a > x=—-at+c¢ S =x+at hyperbolic s =x+at
—

X =a = X8 At s - C; =x—at = x~=at

45
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Lecture 3

Classification of Partial Differential Equations

Example (continued): Using substitutions from the theorem

L= X ==L ST X1/ 0t

And according to the chain rule for partial derivatives, the following relationships
are obtained.

du OJudr Jduds OJu OJdu 0%u 02%u 92u  9%u
= + = T —_— = =42 -
ONEEAPdN-~ 0s 0% ., 107 /508 0x2 Or2 ords = 0s2
ou ouor 3 ou ds ou % ou 0%u ; 0%u 52 0%u i 9%u
Ll —_ 2 5l St AR a —_— a a S TI
R R Rl T 2 P T or2 0o ERP
02u 02%u d0%u ou

W:azﬁ — 57"85:0 = EZk(s) - u=f(s)+g()

Sutai(x; t) = flxdat) 3 gl ="at) i
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Lecture 3

Classification of Partial Differential Equations

Example 7: Determine the characteristics of the following equation,

assuming that y is not zero. Then, if possible, transform the equation into

Its canonical form and solve it.
0%u 0%u & ou
* ox? yaxay G

Solution: The characteristics are obtained by solving the following auxiliary equation.

0

AQ, Y uyy + 2B(x, y)uyy, + CO6 ) uyy™= g(u, uy, Uy, X, y)

A, y)(¥')2 = 2B(x,y)y' + C(x,y) =0

x(¥')2+yy ' +0=0 v'(xy' +v) =0
y'=0 Yy =0

dy =k i
xa+y—0 Xy = Cy i
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Lecture 3

Classification of Partial Differential Equations

Example (continued): Since B>—~AC>0, it is hyperbolic. Therefore,

using substitutions from the theorem and according to the chain rule for
partial derivatives, the following relationships are obtained.

S =Xy 1=
ou dudr OJuds ou 0%u 0%u
Tsr i + o A e =yl = 7"2 P it - AT
dx Ordx O0s0x ds 0 x2 0s2

02w g F4u 0r> S ocaas ) on 2%u d0%u
= st S

dyodx ~ 0s Ty [61‘85 dy 2 0s? ay] ~ 0s ords 0s?

d%u d’u  du ; Sl 0°u . d0%u 5
o e = Ve = e =
T A 0x0y 2 ox orads drds
ou
BT sy g s = S Y g g

ds 48
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Lecture 3

Partial Differential Equation and Its Solutions

4 Introduction to Partial Differential Equations

O Derivation of Partial Differential Equations

d D'Alembert Solution for One-Dimensional Wave Equations
U Classification of Partial Differential Equations

4 Solving Partial Differential Equations by Separation of Variables
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Lecture 3

Separation of Variables

To solve the following equation: 978 7 a0
9tz " ox2
Assuming that the angle of twist 4 is expressed as the product of two
functions, one depending only on x and the other depending only on t,
we have:
O(x,t) = X(x)T(t)

By substituting into the wave equation and dividing both sides by XT,

we get:
629 M XTII 626 — X”T
o2z : dxdl)
2 2
6_9 — q2 0_9 S X SR T
dt? 0x?
r 2 X 50

A4
I
Q
I
=
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Lecture 3

Separation of Variables

0%  ,0%6 B
9tz " ox? e
i X"=ﬁzx
a
o A= 0700 < 0
_ Bl
Case 1: Assuming that u > 0 817,
e A _A
Y g X =;X X'= Cea’ +De a*
7 it

T" = A°T T = Ae#t + Be =t
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Lecture 3

Separation of Variables

Case 2: Assuming that u = 0

D X =10 X=Cx+D
— =A==l
? - 17510 T=At+B

0(x,t) = X(x)T(t) = (€Cx + D)(At + B)

Case 3: Assuming that u < 0 u=—2°
22 2 7
T X! X”=——2X X=Ccos —x+Dsin—x
=g’ —=—-)? a a a
T X
T" = —)A?T T = Acos At + Bsin At

@(x, t) = X(x)T(t) = (C cos %x + D Sinix) (Acos At + Bsin At)
2
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Lecture 3

Separation of Variables

Case 1: Assuming that u > 0, u = A*

/'{2
X' =2y
a? y =& A A
: O(x,t) = X(x)T(t) = (Ce”a+ De "a)(Ae’t + Be™ ")
e

Case 2: Assuming that u = 0

X" =0 O(x,t) = X(x)T(t) = (Cx+ D)(At + B)
T” — 0

Case 3: Assuming that u < 0, u= —A?

Bty = Xl o =a(C: cos 2% 4+D Sin&x)(Acos At + Bsin At)
T" = —A2T 2 i

53
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Lecture 3

Separation of Variables

The remaining part is to calculate the values of the unknowns
A,B,C,D,and A

Consider following situations:

v a. Two-ended fixed shaft: I v I

v Db. Two-ended free shaft: - ]

v C. One-ended free and one-ended fixed shaft: I ]

o4
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Lecture 3

Separation of Variables

Two-ended fixed shaft: l l
)
9(0,t)=0 Vvt Bl o(Lt)=0 Yt B2
a0
0(x,0) = f(x) I1 E(X'O) = g(x) I2

Assuming that u < 0, u= —A?
O(x,t) = (C cos %x + D Sin%x) (Acos At + Bsin At)

Applying boundary condition 1 (B1)

0(0,t) = 0 = C(Acos At + Bsin At) Mo or C =0

Gty (Sin%x) (Acos At + Bsin At) Noteto D ?7?

29
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Lecture 3

Separation of Variables

Two-ended fixed shaft: l l
)
0(0,T) =0—Vv-+¢ Bl oLt) =0 VYt B2
a0
0(x,0) = f(x) £ E(X'O) = g(x) I2

Assuming that u <0, u= —A*

A
0(x,t) =50sin Ex) (Acos At + Bsin At)
Applying boundary condition 2 (B2)

gy : 87
Oty =05 Smal(Acos At + Bsin At) Mo or Smal =1
Al 7. nma
—l=nnm SR AL
a n I

0.(x,t) = (sin n—ln x)(A,cos # t + B,sin # t) Eq
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Lecture 3

Separation of Variables

Two-ended fixed shaft: I ]
v
0(0,T) =0—Vv-+¢ Bl O(LT) =0 —YV-¢ B27
70,
0(x,0) = f(x) 11 E(X'O) = g(x) I2
Assuming that u <0, u= —A*
nrt nima nma
el = (sinTx) (AncosTt + aninT t)

Applying initial condition 1 (11)

- nm nma nma
O(x,t) = z g, 6t) = z SinTx(AncosTt + B, SinTt)
n=1

n=1

= l
0(x,0) = f(x) 0(x,0) = ZAnSin$x =f(x) A,= %j f(x) sinnTnxdx
n=1 0

o iF
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Lecture 3

Separation of Variables

Two-ended fixed shaft: —
0(0,T) =0—Vv-+¢ Bl O(LT) =0 —YV-¢ B27
%
) I1 — (x,0) = g(x) 12

H(xl U) — J X))
Assuming that u <0, u= —A*

= nn nra _ nma 2 nmw
O(x,t) = z Sme(AncosTt S SlTth) A, = 7] f(x) sinTxdx
0

n=1

Applying initial condition 2 (12)

a0 ~ nm nma nma _nma = nra . nm

e z SinTx(—AnSinTt + B,,cos l t) l gx) = (TB") sin—x
n=1

n=1

nmta 270k . nm 25 nm
TBn = TJO g(x) Smedx B, = a7 Og(x) SlnTxdx -
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Lecture 3

Separation of Variables

Two-ended fixed shaft: I ]
v

000, Ty =0—Vv-+¢ B O T =0 V¢ B77)

] H

0%, 0 =1 iy —~ & =g [2

Assuming that u <0, u= —A?

(0]

nm nma nma
O(x,t) = z SinTx(AncosTt + B, sinTt)

=1

20l . NI 2 ; . nn
An—TfOf(x)Smedx an% Og(x)smedx v
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Lecture 3

Exercises

Exercise 6: Solve the following equation.
Uyy = AUy +3Uy5,=0
(Hint: v=x+y , z=3Xx+Yy)

Exercise 7: We know that the heat equation is a parabolic equation.
Explain why?

Exercise 8: If Auy, + 2Bu,,+Cu,,= f(X, Y, u,, u,) be ahyperbolic

equation, then by changing of variable to v=¢(X, y) and z=y(X, y), it
can be transform to u,,, = F (v, z, U, u,, u,). Show that for the wave
equation y =x-ct and ¢ =x+ct.

Exercise 9: If Au,, + 2Bu,,+Cu,,,= f(X, Yy, u,, u,) be aparabolic
equation, then by changing of variable to v=x and z=y(X, y), it can be
transform to u,,,, = F (v, z, U, u,, u,). Investigate the validity of this
for the equation u,, + 2u,,,+u,,,=0. 60
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Lecture 3

Separation of Variables

Two-ended free shaft: . .

v
7 7
a(o,t)—O Vit B1 a(l,t)—O Vit B2
%,
0(x,0) = f(x) 11 E(x, 0) = g(x) 12
Assuming that u < 0, u = —A?
O(x,t) = (C cos %x + D Singx)(Acos At + Bsin At)
Applying boundary condition 1 (B1)
@(O t=0 —D&(Acoslt+BSin/1t) = —
5 0,t)=0=D~ e —OorD—OorN

Gty (cos%x) (Acos At + Bsin At) Noteto C ??

61
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Lecture 3

Separation of Variables

Two-ended free shaft: . .

il gt 7,
a( ,t)— V- TC 5 dx

0(x,0) = f(x) I1 %(x, 0) = g(x) 12

(L) =070Vt B2

Assuming that u < 0, u = —A?
A
O(x,t) = (cos ax) (Acos At + Bsin At)

Applying boundary condition 2 (B2)

%(l,t} =T (V= —gsingl(Acos At + Bsin At) — /}Bé) or sin&l =0

a
7 nma or><

—l=nm e
a [

Gt t=5(cos nTnx) (Ancosg f anin@ t) 5
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Lecture 3

Separation of Variables

Two-ended free shaft: . .

v
7 _38
i =9 e i = V+— B
ﬁx((),t) 00—t % ﬁx(l,t) 0V = 20 by f)
%)
0(x,0) = f(x) 11 E(x, 0) = g(x) 12
Assuming that u < 0, u = —A?
nim nma nma
Gt~ (cosTx)(AncosTt + aninTt)

Applying initial condition 1 (11)

(00]

— nim nma nra
glx, )= Z O Cxst)y = z cosTx(AncosTt + B, SinTt)
n=1

n=1

2 l
0(x,0) = f(x) 0(x,0) = z AncosnTnx = f(x) A= %f f(x)COS?xdx
0
n=1
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Lecture 3

Separation of Variables

Two-ended free shaft: . .

v
Ui AN, _ 38
Do =9 - R1 i = v B
ﬁx((),t) 00—t % ﬁx(l,t) § — = 20 by f)
Sit L %)
0(x,0) =) i or E(x, 0) = g(x) 12
Assuming that u < 0, u = —A?
- nr nra  nma 25 nr
O(x,t) = Z cosTx(AncosTt e SlTlTl’) A, = 7] f(x) cosTxdx
n=1 0
Applying initial condition 2 (12)
a0 - nm nma nma _nma - nma nr
— = z cos — x(—A,sin—t + B, cos t) gx) = ) (—Bn)cos—x
ot [ [ [ [ i)
n=1
nma Z nm 250 nm

L
TBn = Tjog(x) cosTxdx B, = a7 Og(x) cosTxdx 2
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Lecture 3

Separation of Variables

Two-ended free shaft; . .

- nm nma nma
G0ty = Z cosTx(AncosTt +'B sinTt)

n=1

2 L ni

2 rl ATa e
An =2 f(x) cos ™" xdx g |
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Lecture 3

Separation of Variables

One-ended free and one-ended ;igxed shaft: I =
0(0,t) =0 'Vt B1 %(l,t)=0 Vit B2
0(x,0) = f(x) 11 %(x, 0) = g(x) 12
Assuming that 1 <0, u= —A?
O(x,t) = (C cos %x + D sin%x) (Acos At + Bsin At)
Applying boundary condition 1 (B1)
0(0,t) = 0 = C(Acos At + Bsin At) R —0o0orC=0

Gty (Sin%x) (Acos At + Bsin At) Noteto D ?7?
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Lecture 3

Separation of Variables

One-ended free and one-ended fixed shaft: I :
v
60t =0—V¢t Bl %(l,t)=0 Vit B2
0(x,0) = f(x) 11 %(x, 0) = g(x) 12

Assuming that 1 <0, u= —A?

A
O(x,t) = (sinax) (Acos At + Bsin At)

Applying boundary condition 2 (B2)

7 A A . A
E(l’t) ¥ 0= Zcos;l(Acos At + Bsin Aty —— -5 >r<= 0 or C"Sal =0

/1l _(@n-Dm 7 (2n — 1)ma
gy 2 e 21
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Separation of Variables

One-ended free and one-ended fixed shaft

- ]
: M. I ¥
60 t=0—_Y¢t Bil=7: %U,U—G - B21E,
7]
0(x,0) = f(x) 11 E(x, 0) = g(x) 12

Assuming that u <0, u= —A7*
(e it) —isin Sl L

2n—1
x(Ancos( Ll

t+B (Zn 1)ma

21 21 t)
Applying initial condition 1 (11)
0(x,t) = Z:l sin (an—l 1)nx A, cos Py 1 (2n — Dma

o] t+ B, sin

AL

= on— D
P )= Z A, sin ( )
n=1

2 x=f(x) 4n j f(x)sin i) 2_l pr xdx

68
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Separation of Variables

One-ended free and one-ended fixed shaft:

]
__ & I v
60 t=0—_Y¢t Bl a(l,é)—ﬂ Yt B2
43 Sl do
0(x, 0 =ftx % E(x, 0) = g(x) 12
Assuming that 1 <0, u= —A?
= 2 —l)im 2n — 1)ma 2 hyra
DG = z sin( ) x(Ancos( ) kB Sin( ) t)
21 21 21
n=1
2 - (2n—-Dnm
il 8 an == [ @) sin xdx
Applying initial condition 2 (12) L Jg 21

6 - (2n — 1)ma (2n1)mx
g(x) = ;[ 5] Bn] sin 5]

% 4 jl - (2n-Drm d
e e I e

69
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Lecture 3

Separation of Variables

One-ended free and one-ended fixed shaft: I :
v
. 5 L P
60 t=0—_Y¢t Bl %u,t)—G Lt B2
S ) %)
G =) % o (x,0) = g(x) 12

Assuming that 1 <0, u= —A?

g7 ) Z ) (2n —D)m (2n — Dma (2n — 1)mna 0

5] x (A, cos o1 t+ B, sin 5]

n=1

2n— )m

i ..
gy Of(x)sm 5] xdx

: i (20—
g(x) sin xdx

B
h 21

4
- (2n — 1)7taj0
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Lecture 3

Separation of Variables

Example 8: Consider a metal sheet in y

steady-state as shown. N

The heat flow in the sheet can be B o [
considered two-dimensional. LLLRARARAET "

The two-dimensional heat equation is:

ou
ou _0%u 0% G u i
ot 0x2 0y?2 dx2  0y?

u(x,y) = X()Y () oy M

/1
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Separation of Variables

62u+02u 7
Axs. . .0y8
XII_ YII_
T T

Lecture 3

72
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Lecture 3

Separation of Variables

Case 1: Assuming that u < 0, pu = —A?

X" = 22X
u(x,y) = X(x)Y(y) = (Acos Ax + Bsin Ax)(Ccosh Ay + Dsinh Ay)
Y" = 22y

Case 2: Assumingthat u =0

X" =0
i uCx,y) = X()Y(y) = (Ax + B)(Cy + D)

Case 3: Assuming that u >0, u = A?

X" = A*X
u(x,y) = X(x)Y(y) = (Acosh Ax + Bsinh Ax)(Ccos Ay + Dsin 1y)
Y" = A%y

73
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Lecture 3

Separation of Variables

y
Problem Statement N
w(0, ) | u(x,y)| w1 y)
=0 =7 | =)
IIIIIIIIII1 x
6‘2u+62u .
dx?. ~0ys
M ovan
u(0,y) =0 B1 0 x,0) =

ou
;D=0 B3 u(Ly) =f() B4

74

Dr. Ali Karimpour Sep 2024



Lecture 3

Separation of Variables

Tk TR T
ou

y —(x,0) =0 B2
dy

1
(0, y) u(x, y) u(1,y)

ou
—(x,1)=0 B3
ady

X u(l,y) =f(y) B4
Assume that p < 0, p= —A?
u(x,y) = X(x)Y(y) = (Acos Ax + Bsin Ax)(Ccosh 1y + Dsinh Ay)
Applying boundary condition 1 (B1)
u(0,y) = (A)(Ccosh Ay + Dsinh ly) =0 —— M: 0 ordA=0

u(x,y) = sin Ax(Ccosh Ay + Dsinh Ay) B-=2
75
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Lecture 3

Separation of Variables

0°u 0%u

ox2 oy 0, = %

du
Y _(xl 0) =0 B2

dy

1 ou
U,(O,.}’) u[:.x_yj U,(j_,.}’) —(x 1) =0 B3

=0 | =72 | =f Oy

TTTTTTITT * u(l,y) = f(y) B4

Assume that p < 0, p= —A?
u(x,y) = sin Ax(Ccosh Ay + Dsinh Ay)
Applying boundary condition 2 (B2)

g—;(x, Q) = sinARE = ()7 = M or D=0

u(x,y) = Csin Ax.cosh Ay o
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Lecture 3

Separation of Variables

OF i) g5l
A * 0y? =0 u(0,y) = 1
ou

y WZO/H?Z

1 | LIl
w(0,¥) | u(x,y)| v

ou
—(x,1)=0 B3
ay

X u(Ly)=f(y) B4
Assumethat p < 0, p= —A?
u(x,y) = Csin Ax.cosh Ay
Applying boundary condition 3 (B3)

u
@(x, 1) = CASinAxssing-= 0 7>

u(x,y) =0 : %o

Assume that p = 0 @

Dr. Ali Karimpour Sep 2024
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Lecture 3

Separation of Variables

d’u  0%u

=i e 0 u(0,y) =0 B1

ou
y —(x,0)=0 B2

oy

1 ou
(0, ¥) | u(x,y) | u(Ly) —(x,1) = B3

=0 | =2 | =f oy
TTTTTTTTTT % u(l,y)=f(y) B4

Assume that 1 =0

ulx,y) = X(x)Y(y) = (Ax + B)(Cy + D)
Applying boundary condition 1 (B1)

u(0,y) =B(Cy +D) =0 C=<0 =0 orB=0

u(x,y) =x(Cy + D) A=?
78
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Lecture 3

Separation of Variables

d0°u  0°u

ox2 oy e 1

ou
y —(x,0)=0 B2

oy

1 ou
(0,3 Ju(x,y) | #(.) —(x,1) =0 B3

=0 | =2 | =f oy
TTTTTTTTTT % u(l,y)=f(y) B4

Assume that 1 =0
u(x,y) = x(Cy + D)
Applying boundary condition 2 (B2)

ou
@(x,O)=Cx=O S C =0

u(x,y) = Dx

79
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Lecture 3

Separation of Variables

0’u  0%u
0x2 + 0y>2 =40 u(0,y) = 1
ou
Y W
y
1 [NERNARNEN a
w(0,¥) [u(x,y)| w@») e ot 3
0| =7 | = e
IIIIIIIIII1 x u(l,:V)=f()7) B4
Assume that 1 =0
u(x,y) = Dx
Applying boundary condition 3 (B3) Z_u 1) =0
s
Applying boundary condition 4 (B4)
u(l,y) =D = f(y) This is valid for constant f

80
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Lecture 3

Separation of Variables

Tk TR T
ou

Y —(x,0) =0 B2
dy

’1 RN
w(0,¥) | u(x,y)| w@y)

ou
—(x,1)=0 B3
ady

x u(l,y)=f(y) B4
Assume that p > 0, p = A?

u(x,y) = X(x)Y(y) = (Acosh Ax + Bsinh Ax)(Ccos Ay + Dsin Ay)
Applying boundary condition 1 (B1)

u(0,y) = (A)(Ccos Ay + Dsindly) =0 —>5 M: 0 orA=0
u(x,y) = sinh Ax(Ccos Ay + Dsin Ay) B2

81
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Lecture 3

Separation of Variables

0%u 2 0°u o

e ol u(0y)=6— B1

Jdu
y _(xl 0) =0 B2

dy

1 ou
U,(O,.}’) u[:.x_yj U,(j_,.}’) —(x 1) =0 B3

=0 | =7 | =/ 0y

TTTTTTITT * u(l,y) = f(y) B4

Assume that p > 0, p = A?
u(x,y) = sinh Ax(Ccos Ay + Dsin Ay)
Applying boundary condition 2 (B2)

du :
E(x, 0) = sinhAx(DA) =0 ——> D=0 or M

82
u(x,y) = Csinh Ax. cos 1y
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Lecture 3

Separation of Variables

62u+02u o

el u(0,)=6—" B1

u
y — (= B2

1 RN y
w(0, ) | u(x,y)| w(@y) a—u(x Lp=0 B3

=0 | =72 | =f Oy

TTTTTTITT * u(l,y) = f(y) B4

Assume that p > 0, p = A?
u(x,y) = Csinh Ax. cos Ay
Applying boundary condition 3 (B3)
u

E(x, 1) = —CAsinhAx.sind = 0 EFITIE( ><(07‘ A =nm OM

83
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Lecture 3

Separation of Variables

82u+02u e

572 ayz — UM

du
y — (= B2

1 | LIl y
w(0,y) | u(x,y)| w(@») s =50 B3

=0 | =7 [ =f( s

T * u(l,y) = f(y) B4

Assume that © > 0, p = A?

u,(x,y) = C,sinh nnx. cos nmy

Applying boundary condition 4 (B4)

u(x,y) = Dx + 2 C,Sinhnmx cosnmy

n=1

ul(l,y)=f(y)=D + Z C,Sinhnm cosnmy

n=1

84
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Lecture 3

Separation of Variables

0°u ] 0°u .
du
y — (0= B2
y
1 | LIl a
u(0,3) [ u(x,y) | (1) - oA L
=0 | =7 [ =rm dy -
IIIIIIIIII1 x U(l,y)=f(y) B4‘
Assume that © > 0, p = A?
u,(x,y) = C,sinh nmx. cos nmy
Applying boundary condition 4 (B4)
u(l,y)=f(y) =D+ z C,sinhnm cosnmy
n=1
rl 1
= ; f(y)dy C, sinhnm = ZJ f(y) cosnmy dy
i
D= = 8
i f(y)dy Cn Smh e f f(y) cosnmy dy :
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Lecture 3

Separation of Variables

azu+azu_0
572 ayz_ UM
du
y — (= B2
’1|||||||||| y
w(0, ) | u(x,y)| w(@,¥) i : =:6) B3
=0 | =2 | =7 dy
LLLLLRARRS] " =) B4

Assume that © > 0, p = A?

u(x,y) = Dx + z C,sinhnmx cosnmy

=

1
= J f)dy Cn = J f(y) cosnmy dy
0

sinh nm

86
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Lecture 3

Separation of Variables

Example 9: A rod with a length of | is completely insulated on its lateral surface,

and the rod is so thin that the heat flow in it can be considered one-dimensional.
Determine the temperature at any point of the rod at any given time.

u(x,0) = 100
l |
| |
u(0,t) u(l, t)
i = 100

Solution: The one-dimensional heat equation must be used.

0x?2 ot
u(0,t) = 50 B1 u(l,t) =100 B2 u(x,0) =100 11

XII ; TI
ulx Y =X )T(t) G i e
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Lecture 3

Separation of Variables

dx? ot

XII TI

/7

XII = [,lX

88
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Lecture 3

Separation of Variables

Case 1: Assu

=0, p =

/12

u(x,t) = X(x)T(t) = (Acosh Ax + Bsin (Cexp; t)

Case 2: Assumingthat u =0
X"=0

u(x,t) = X(x)T(t) = (Ax + B)C
T

Case 3: Assuming that u < 0, u= —A?
X" = -1X

/12
12 u(x,t) = X(x)T(t) = (Acos Ax + Bsin Ax) Cexp(— 5 t)
P =ik
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Lecture 3

Separation of Variables

| | wWO4=50 Bl
92y ou u(l,t) =100 B2
2

012 ot u(x,0) =100 11
Assume that n =0

u(x,t) = (Ax + B)
Applying boundary condition 1 (B1)
u(0,t) =B =50 u(x, t) = (Ax + 50)

Applying boundary condition 2 (B2)

50
u(l,t) = Al+ 50 = 100 A =50/1 u(x,t) =Tx+50
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Lecture 3

Separation of Variables

012 ot u(x,0) =100 11
Assume that 1= 0

50
u(x,t) = Tx + 50

Applying initial condition 1 (I11)

50
u(x,0)=7x+50=100 ?7?

Assume that p < 0, p= —A?

91
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Lecture 3

Separation of Variables

| | u(0,t) = 50 B1
92y : ou u(l,t) =100 B2
T u(x,0) =100 11

Assume that n < 0, p= —A?

. 22
u(x, t) = (Acos Ax + Bsin Ax) exp(— = t)
Applying boundary condition 1 (B1)
2
1(0,t) = Aexp(—%t) — 50 Unacceptable

Assume combinationof nu<0, u=0

AZ

50
u(x, t) = T + 50 + (Acos Ax + Bsin Ax) exp(—; t)
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Separation of Variables

I I u(0,t) = 50
92y au u(l,t) =100
T a® at u(x,0) = 100

Assume combinationof u<0, n=20

50 A?
Hix ) = - X + 50 + (Acos Ax + Bsin Ax) exp(— t)

Applying boundary condition 1 (B1)
AZ

u(0,t) = 50 +Aexp(——t) =50 Ar—=10

50 A?
u(x, t) = TX + 50 + Bsin Ax exp(—— t)

Lecture 3

B1
B2
11
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Lecture 3

Separation of Variables

' ' M
I I ) 7 B].

92y : ou u(l,t) =100 B2

_:a_

012 ot u(x,0) =100 11

Assume combinationof u<0, n=20
AZ

50
Ul ty= TX + 50 + Bsin Ax exp(—?t)

Applying boundary condition 2 (B2)

2

A
u(l,t) = 50 + 50 + Bsin Al exp(——t) = 100 B<=0 or Al =nn

a’

(x,t) i + 50 + B,;si 4 4 t
U, \X, = ——X Sin — Xxex =7
i l Geh TRt e
94
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Lecture 3

Separation of Variables

| | wWO4=50 Bl
02y ou uW
2

_:a_

012 ot u(x,0) =100 11

Assume combinationof u< 0, p=

50 o o9t
Uity = T + 50 + anmeexp — t

Applying initial condition 1 (11)

50 — . nm nm?
u(x,t) =50 +Tx + Zanmeexp — P t
n=

(00]

50 - nm 2t B N
u(x,0)=100=50+7x+ anme B”:Tj (SO—Tx)smedx
0

n=1
_ 100 05
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Lecture 3

Separation of Variables

02y au UW

0 x2 =E e BE u(x,0) = i

Assume combinationof u<0, n=20

n?m?
u(x, t)—50+—x+z nsm—xexp( t)

a?l?

~ 100
N
o) = 50450 +100§:1 nm n’n’
u\x, = I X T 1nSlTl I X €Xp q2]2
n=
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Lecture 3

Separation of Variables

0°u  d%u Ozu_
d0x2  dy? 0z2

u(x,y,z) = X(x)Y(y)Z(2)

62u+62u+62u / X”+Y” Z .
e —_—— ol
ST 0N . 0Z° X Y Z
XII YII ZII
I e~ U0 IS 2 =
X Y YA
XII YII ZII

N 2 Z AT " gt R
KR Y 7 /
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Lecture 3

Exercises

Exercise 10: Obtain the solution to the one-dimensional wave
differential equation for the following conditions.

L=x.¢>

=1 .g(x)= 0 . f(x) =ksin(2x)

Exercise 11: Determine the temperature distribution in a rod with a

length of 80 cm, assuming the initial temperature is 100sin(zx/80) and
the temperature at both ends Is zero.

Exercise 12: Determine the temperature of a rod with length L if both
ends are at zero degrees and the initial temperature of the rod is f(x).

Fa)i=s

P ol o) b
L

L—x =—<x<lL
L 2
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