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Content of this course

1. Fourier Series and Fourier Integral.

2. Partial Differential Equation and Its Solutions.

3. Complex Analysis. (The theory of functions of a complex variable)
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Partial Differential Equation and Its Solutions

❑ Introduction to Partial Differential Equations

❑ Derivation of Partial Differential Equations

❑ D'Alembert Solution for Wave Equations

❑ Classification of Partial Differential Equations

❑ Solving Partial Differential Equations by Separation of Variables 
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❑ An ordinary differential equation (ODE) is a differential equation that 
involves functions of a single independent variable and its derivatives.

❑ The order of a differential equation is the order of the highest derivative 
present in the equation.

Example 1: Mass-Spring System
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Introduction to Partial Differential Equations
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An example of an ordinary differential equation:

Initial conditions are required to solve an ordinary 

differential equation.

𝑦 0 = 2 𝑦′ 0 = 1

𝑦′′ + 5𝑦′ + 5𝑦 = 𝑠𝑖𝑛𝑡

𝑦 𝑡  ? 𝑦 𝑡 = 𝑓(𝑡, 𝑘1, 𝑘2)

Introduction to Partial Differential Equations
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v A partial differential equation (PDE) is a differential equation that 

involves partial derivatives of one or more dependent variables 

with respect to multiple independent variables.

v The order of a partial differential equation is the highest order of 
partial derivative that appears in the equation.

Example 2: The following equation, known as the wave equation, is 

an example of a partial differential equation.

6

st variableindependen are  and  xt

?),u( tx

𝜕2𝑢

𝜕𝑡2
 = 𝑐2

𝜕2𝑢

𝜕𝑥2

Introduction to Partial Differential Equations
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Wave equation as an example of a partial differential equation

𝜕2𝑢

𝜕𝑡2
= 𝑐2

𝜕2𝑢

𝜕𝑥2

𝑢 𝑥, 𝑡 =? 𝑢 𝑥, 𝑡 = 𝑓(𝑥, 𝑡, 𝑘1, 𝑘2, … . .)

𝑢 0, 𝑡 = 0 𝑢 𝐿, 𝑡 = 0 𝑡 ≥ 0

Examples of boundary conditions

To find the solution to a partial differential equation, boundary 

conditions and initial conditions are necessary.

Introduction to Partial Differential Equations

𝑢 𝑥, 0 = φ 𝑥  
𝜕𝑢

𝜕𝑡
𝑥, 0 = θ 𝑥  

Examples of initial conditions
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❑ Introduction to Partial Differential Equations

❑ Derivation of Partial Differential Equations

❑ D'Alembert Solution for Wave Equations

❑ Classification of Partial Differential Equations

❑ Solving Partial Differential Equations by Separation of Variables 
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Derivation of Partial Differential Equations

Vibration Study of a Stretched Flexible String

𝑇2𝑠𝑖𝑛𝛽 − 𝑇1𝑠𝑖𝑛𝛼 = 𝑚𝑎

𝑇2𝑠𝑖𝑛𝛽 − 𝑇1𝑠𝑖𝑛𝛼 = 𝜌∆𝑥
𝜕2𝑢

𝜕𝑡2

𝑇1𝑐𝑜𝑠𝛼 = 𝑇2𝑐𝑜𝑠𝛽 = 𝑇 = 𝑐𝑜𝑛𝑠𝑡.

𝑇2𝑠𝑖𝑛𝛽

𝑇2𝑐𝑜𝑠𝛽
−

𝑇1𝑠𝑖𝑛𝛼

𝑇1𝑐𝑜𝑠𝛼
=

𝜌∆𝑥

𝑇

𝜕2𝑢

𝜕𝑡2 = 𝑡𝑎𝑛𝛽 − 𝑡𝑎𝑛𝛼
𝜕𝑢

𝜕𝑥
|𝑥+∆𝑥 −

𝜕𝑢

𝜕𝑥
|𝑥 =

𝜌∆𝑥

𝑇

𝜕2𝑢

𝜕𝑡2
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𝜕𝑢

𝜕𝑥
|𝑥+∆𝑥 −

𝜕𝑢

𝜕𝑥
|𝑥 =

𝜌∆𝑥

𝑇

𝜕2𝑢

𝜕𝑡2

1

∆𝑥

𝜕𝑢

𝜕𝑥
|𝑥+∆𝑥 −

𝜕𝑢

𝜕𝑥
|𝑥 =

𝜌

𝑇

𝜕2𝑢

𝜕𝑡2

𝜕2𝑢

𝜕𝑡2
= 𝑐2

𝜕2𝑢

𝜕𝑥2
𝑐2 =

𝑇

𝜌

𝜕2𝑢

𝜕𝑥2
=

𝜌

𝑇

𝜕2𝑢

𝜕𝑡2

One-Dimensional 

Wave Equation

Derivation of Partial Differential Equations

Vibration Study of a Stretched Flexible String
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One-Dimensional Wave Equation

Flexible String

A rod with one end fixed

A rod with both ends fixed

𝑐2
𝜕2𝑢

𝜕𝑥2
=

𝜕2𝑢

𝜕𝑡2

𝑐2
𝜕2θ

𝜕𝑥2
=

𝜕2θ

𝜕𝑡2

𝑐2
𝜕2θ

𝜕𝑥2
=

𝜕2θ

𝜕𝑡2

θ

θ

Derivation of Partial Differential Equations
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𝜕2𝑢

𝜕𝑡2
= 𝛼2

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
𝛼2 =

𝑇𝑔

𝑤

𝑢 (𝑥, 𝑦, 𝑡)     ?

Two-Dimensional Wave Equation

Derivation of Partial Differential Equations
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One-Dimensional Heat Equation

𝜕𝑢

𝜕𝑡
= 𝑐2

𝜕2𝑢

𝜕𝑥2
𝑢(𝑥, 𝑡)

𝜕𝑢

𝜕𝑡
= 𝑐2(

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
)

Three-Dimensional Heat Equation

𝑢(𝑥, 𝑦, 𝑧, 𝑡)

Two-Dimensional Heat Equation

𝜕𝑢

𝜕𝑡
= 𝑐2(

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) 𝑢(𝑥, 𝑦, 𝑡)

Derivation of Partial Differential Equations
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Two-Dimensional Laplace Equation
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0 𝑢(𝑥, 𝑦)

Derivation of Partial Differential Equations

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
= 0 𝑢(𝑥, 𝑦, 𝑧)

Three-Dimensional Laplace Equation

Two-Dimensional Poisson  Equation

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 𝑓(𝑥, 𝑦) 𝑢(𝑥, 𝑦)

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
= 𝑓(𝑥, 𝑦, 𝑧) 𝑢(𝑥, 𝑦, 𝑧)

Three-Dimensional Poisson Equation
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Exercises

Exercise 1: Check whether the following functions satisfy the wave equation or not.

1) 𝑢 = 𝑥3 + 3𝑥𝑡2

2) 𝑢 = sin 𝑤𝑐𝑡 sin(𝑤𝑥)

Exercise 2: Prove that the vibration of an elastic string under the influence of an 

external force p(x,t) per unit length, applied perpendicular to the string, satisfies the 

following equation.

𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥 +
𝑝(𝑥, 𝑡)

𝜌
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❑ Introduction to Partial Differential Equations

❑ Derivation of Partial Differential Equations

❑ D'Alembert Solution for One-Dimensional Wave Equations

❑ Classification of Partial Differential Equations

❑ Solving Partial Differential Equations by Separation of Variables 
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Partial Differential Equation and Its Solutions
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One-Dimensional Wave Equation

Flexible String

A rod with one end fixed

A rod with both ends fixed

𝑐2
𝜕2𝑢

𝜕𝑥2
=

𝜕2𝑢

𝜕𝑡2

𝑐2
𝜕2θ

𝜕𝑥2
=

𝜕2θ

𝜕𝑡2

𝑐2
𝜕2θ

𝜕𝑥2
=

𝜕2θ

𝜕𝑡2

θ

θ

D'Alembert Solution for One-Dimensional Wave Equations
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Suppose f(x−at) is a function with a second derivative. Then, according to 

the chain rule:

18

𝜕𝑓 𝑥 − 𝑎𝑡

𝜕𝑡
= −𝑎𝑓′ 𝑥 − 𝑎𝑡  

𝜕𝑓 𝑥 − 𝑎𝑡

𝜕𝑥
= 𝑓′(𝑥 − 𝑎𝑡)

𝜕2𝑓(𝑥 − 𝑎𝑡)

𝜕𝑡2
= 𝑎2𝑓′′ 𝑥 − 𝑎𝑡  

𝜕2𝑓(𝑥 − 𝑎𝑡)

𝜕𝑥2
= 𝑓′′(𝑥 − 𝑎𝑡)

𝑢 = 𝑓 𝑥 − 𝑎𝑡 + 𝑔(𝑥 + 𝑎𝑡)

D'Alembert Solution for One-Dimensional Wave Equations

Given these rules, it is clear that the function u=f(x−at) satisfies the wave 

equation.

Similarly, the function u=g(x+at) will also satisfy the wave equation.

Therefore, the general solution of the wave equation can be written as 
follows:
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Therefore, in the wave equation:
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𝜕2𝑢

𝜕𝑡2
= 𝑎2

𝜕2𝑢

𝜕𝑥2

D'Alembert Solution for One-Dimensional Wave Equations

𝑢 = 𝑓 𝑥 − 𝑎𝑡 + 𝑔(𝑥 + 𝑎𝑡)

The general solution of the wave equation for any f and g that have a 
second derivative can be written as follows:

𝑢 = 𝑐𝑜𝑠 𝑥 − 𝑎𝑡 + 𝑒𝑥+𝑎𝑡

𝑢 = 𝑠𝑖𝑛 𝑥 − 𝑎𝑡 + 10(𝑥 + 𝑎𝑡) 𝑢 = sin(𝑐𝑜𝑠 𝑥 − 𝑎𝑡) + cos(𝑒𝑥+𝑎𝑡)

…………………………

For example, all of the following functions are solutions to the wave 
equation.
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Therefore, in the wave equation:
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𝜕2𝑢

𝜕𝑡2
= 𝑎2

𝜕2𝑢

𝜕𝑥2

D'Alembert Solution for One-Dimensional Wave Equations

𝑢 = 𝑓 𝑥 − 𝑎𝑡 + 𝑔(𝑥 + 𝑎𝑡)

The general solution of the wave equation for any f and g that have a 
second derivative can be written as follows:

𝜕𝑢

𝜕𝑡
|𝑥,0 = 𝜃 𝑥𝑢 𝑥 , 0 = 𝜑 𝑥

A valid solution must satisfy the initial conditions. Therefore, 
suppose:
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The initial conditions are:
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𝜕2𝑢

𝜕𝑡2
= 𝑎2

𝜕2𝑢

𝜕𝑥2
𝑢 = 𝑓 𝑥 − 𝑎𝑡 + 𝑔(𝑥 + 𝑎𝑡)

𝜕𝑢

𝜕𝑡
|𝑥,0 = 𝜃 𝑥

𝑢 𝑥 , 0 = 𝜑 𝑥 𝑢 𝑥, 0 = 𝜑 𝑥 = 𝑓 𝑥 + 𝑔(𝑥)

𝜕𝑢

𝜕𝑡
|𝑥,0 = 𝜃 𝑥 = −𝑎𝑓′ 𝑥 + 𝑎𝑔′(𝑥)

න
𝑥0

𝑥

𝜃 𝑠 𝑑𝑠 = −𝑎(𝑓 𝑥 − 𝑓 𝑥0 ) + 𝑎(𝑔 𝑥 − 𝑔 𝑥0 )

D'Alembert Solution for One-Dimensional Wave Equations

Therefore, in the wave equation:
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To satisfy the initial conditions, it is necessary to:

22

𝜕2𝑢

𝜕𝑡2
= 𝑎2

𝜕2𝑢

𝜕𝑥2
𝑢 = 𝑓 𝑥 − 𝑎𝑡 + 𝑔(𝑥 + 𝑎𝑡)

𝑓 𝑥 + 𝑔 𝑥 = 𝜑(𝑥) −𝑓 𝑥 + 𝑔 𝑥 =
1

𝑎
න

𝑥0

𝑥

𝜃 𝑠 𝑑𝑠 − 𝑓 𝑥0 + 𝑔(𝑥0)

𝑔 𝑥 =
1

2
𝜑 𝑥 +

1

𝑎
න

𝑥0

𝑥

𝜃 𝑠 𝑑𝑠 − 𝑓 𝑥0 + 𝑔(𝑥0) 

𝑓 𝑥 =
1

2
𝜑 𝑥 −

1

𝑎
න

𝑥0

𝑥

𝜃 𝑠 𝑑𝑠 + 𝑓 𝑥0 − 𝑔(𝑥0)

𝑢(𝑥, 𝑡) =
𝜑 𝑥 − 𝑎𝑡 + 𝜑 𝑥 + 𝑎𝑡

2
+

1

2𝑎
න

𝑥−𝑎𝑡

𝑥+𝑎𝑡

𝜃 𝑠 𝑑𝑠

𝑢 = 𝑓 𝑥 − 𝑎𝑡 + 𝑔(𝑥 + 𝑎𝑡)

D'Alembert Solution for One-Dimensional Wave Equations

Therefore, in the wave equation:
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Example 3: Consider a string that extends infinitely in both directions. The initial 

displacement of the points on the string is given by the following function, and then 
the string is released from rest. Find the equation of motion for the string.

23

𝜑 𝑥 =
1

1 + 8𝑥2

𝑢 𝑥, 𝑡 =
𝜑 𝑥 − 𝑎𝑡 + 𝜑 𝑥 + 𝑎𝑡

2

𝑢(𝑥, 𝑡) =
𝜑 𝑥 − 𝑎𝑡 + 𝜑 𝑥 + 𝑎𝑡

2
+

1

2𝑎
න

𝑥−𝑎𝑡

𝑥+𝑎𝑡

𝜃 𝑠 𝑑𝑠

0

=
1

2

1

1 + 8(𝑥 − 𝑎𝑡)2 +
1

1 + 8(𝑥 + 𝑎𝑡)2

D'Alembert Solution for One-Dimensional Wave Equations

Solution: Since the string has no initial velocity, θ(x)=0, and therefore, the equation 
of motion for the string is:
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𝑢 𝑥, 𝑡 =
0.5

1 + 8(𝑥 − 𝑎𝑡)2
+

0.5

1 + 8(𝑥 + 𝑎𝑡)2

−1 0 1 𝑥

𝜑 𝑥

1 

𝜑 𝑥 =
1

1 + 8𝑥2

𝑎𝑡 = 0

𝑢(𝑥, 𝑡) 

−1 0 1 𝑥

𝑢 𝑥, 𝑡

1 

𝑎𝑡 = 0.5

−1 0 1 𝑥

𝑢 𝑥, 𝑡

1 

𝑎𝑡 = 1

D'Alembert Solution for One-Dimensional Wave Equations

24
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Example 4: A semi-infinite string is released from rest as shown in the 

figure below. Determine the state of the string as a function of time and 

position.

25

𝑢 𝑥, 𝑡 =
𝜑 𝑥 − 𝑎𝑡 + 𝜑 𝑥 + 𝑎𝑡

2

Solution: Since the string has no initial velocity, θ(x)=0, and the 
equation of motion for the string is:

Boundary conditions are not satisfied.

0 1 2 𝑥

𝑢 𝑥, 0

1 

0 1 2 𝑥

𝑢 𝑥, 0

1 
𝑎𝑡 = 1.5

D'Alembert Solution for One-Dimensional Wave Equations
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0 1 2 𝑥

𝑢 𝑥, 0

1 

0 1 2 𝑥

𝑢 𝑥, 0 = 𝜑(𝑥)

1 
Virtual Imagery

D'Alembert Solution for One-Dimensional Wave Equations

Boundary conditions are satisfied.

Example 4: A semi-infinite string is released from rest as shown in the 

figure below. Determine the state of the string as a function of time and 

position.
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0 1 2 𝑥

𝑢 𝑥, 0 = 𝜑(𝑥)

1 

0 1 2 𝑥

𝑢 𝑥, 0.5/𝑎
1 

𝑎𝑡 = 0.5

The shape of the string at t=0.5

D'Alembert Solution for One-Dimensional Wave Equations

𝑢 𝑥, 𝑡 =
𝜑 𝑥 − 𝑎𝑡 + 𝜑 𝑥 + 𝑎𝑡

2

Solution: Since the string has no initial velocity, θ(x)=0, and the 
equation of motion for the string is:

Example 4: A semi-infinite string is released from rest as shown in the 

figure below. Determine the state of the string as a function of time and 

position.
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0 1 2 𝑥

𝑢 𝑥, 0 = 𝜑(𝑥)

1 

0 1 2 𝑥

𝑢 𝑥, 1.5/𝑎
1 

𝑎𝑡 = 1.5

The shape of the string at t=1.5

D'Alembert Solution for One-Dimensional Wave Equations

Example 4: A semi-infinite string is released from rest as shown in the 

figure below. Determine the state of the string as a function of time and 

position.
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0 1 2 𝑥

𝑢 𝑥, 2/𝑎
1 

𝑎𝑡 = 2

D'Alembert Solution for One-Dimensional Wave Equations

0 1 2 𝑥

𝑢 𝑥, 0 = 𝜑(𝑥)

1 

The shape of the string at t=2

Example 4: A semi-infinite string is released from rest as shown in the 

figure below. Determine the state of the string as a function of time and 

position.



Dr. Ali Karimpour  Sep 2024

Lecture 3

Exercise 3: A finite string is released from rest as shown in the 
figure below. Determine the subsequent motion of the string.

30

D'Alembert Solution for One-Dimensional Wave Equations
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Example 5: A uniform string stretched along the x-axis from x =0 to 

x =∞ is struck at t=0 such that the part of the string between x=1 and 

x=4 obtains an initial velocity of one. Determine the subsequent 

displacement of the string and plot the displacement at the point x =1 
as a function of t.

Solution: It is clear that the initial position is given by: 

On the other hand, the given initial velocity is:

31

𝜑 𝑥 = 0

𝜃 𝑥 = 𝑢 𝑥 + 1 − 𝑢 𝑥 + 4 + 𝑢 𝑥 − 1 − 𝑢(𝑥 − 4)

D'Alembert Solution for One-Dimensional Wave Equations
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Now, given the initial velocity and position, the solution is:

32

𝜑 𝑥 = 0

𝑢(𝑥, 𝑡) =
1

2𝑎
න

𝑥−𝑎𝑡

𝑥+𝑎𝑡

[𝑢 𝑠 + 1 − 𝑢 𝑠 + 4 + 𝑢 𝑠 − 1 − 𝑢 𝑠 − 4) 𝑑𝑠

𝜃 𝑥 = 𝑢 𝑥 + 1 − 𝑢 𝑥 + 4 + 𝑢 𝑥 − 1 − 𝑢(𝑥 − 4)

𝑢(𝑥, 𝑡) =
𝜑 𝑥 − 𝑎𝑡 + 𝜑 𝑥 + 𝑎𝑡

2
+

1

2𝑎
න

𝑥−𝑎𝑡

𝑥+𝑎𝑡

𝜃 𝑠 𝑑𝑠

D'Alembert Solution for One-Dimensional Wave Equations
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𝑢 𝑥, 𝑡

=
1

2𝑎
[(𝑠 + 1)𝑢 𝑠 + 1 − (𝑠 + 4)𝑢 𝑠 + 4 + (𝑠 − 1)𝑢 𝑠 − 1 − (𝑠 − 4)𝑢 𝑠 − 4 ]𝑥−𝑎𝑡

𝑥+𝑎𝑡

𝑢 𝑥, 𝑡 =
1

2𝑎
[ 𝑥 + 𝑎𝑡 + 1 𝑢 𝑥 + 𝑎𝑡 + 1 − 𝑥 + 𝑎𝑡 + 4 𝑢 𝑥 + 𝑎𝑡 + 4

                            + 𝑥 + 𝑎𝑡 − 1 𝑢 𝑥 + 𝑎𝑡 − 1 − 𝑥 + 𝑎𝑡 − 4 𝑢 𝑥 + 𝑎𝑡 − 4

                            − 𝑥 − 𝑎𝑡 + 1 𝑢 𝑥 − 𝑎𝑡 + 1 + 𝑥 − 𝑎𝑡 + 4 𝑢 𝑥 − 𝑎𝑡 + 4

                            − 𝑥 − 𝑎𝑡 − 1 𝑢 𝑥 − 𝑎𝑡 − 1 + 𝑥 − 𝑎𝑡 − 4 𝑢(𝑥 − 𝑎𝑡 − 4)]
                         

                        

D'Alembert Solution for One-Dimensional Wave Equations
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34

𝑢 1, 𝑡 =
1

2𝑎
[ 1 + 𝑎𝑡 + 1 𝑢 1 + 𝑎𝑡 + 1 − 1 + 𝑎𝑡 + 4 𝑢 1 + 𝑎𝑡 + 4

                            + 1 + 𝑎𝑡 − 1 𝑢 1 + 𝑎𝑡 − 1 − 1 + 𝑎𝑡 − 4 𝑢 1 + 𝑎𝑡 − 4

                            − 1 − 𝑎𝑡 + 1 𝑢 1 − 𝑎𝑡 + 1 + 1 − 𝑎𝑡 + 4 𝑢 1 − 𝑎𝑡 + 4

                            − 1 − 𝑎𝑡 − 1 𝑢 1 − 𝑎𝑡 − 1 + 1 − 𝑎𝑡 − 4 𝑢(1 − 𝑎𝑡 − 4)]                       
                        

D'Alembert Solution for One-Dimensional Wave Equations
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x=1 At

35

𝑢 1, 𝑡 =
1

2𝑎
[ 𝑎𝑡 + 2 𝑢 𝑎𝑡 + 2 − 𝑎𝑡 + 5 𝑢 𝑎𝑡 + 5

                            + 𝑎𝑡 𝑢 𝑎𝑡 − 𝑎𝑡 − 3 𝑢 𝑎𝑡 − 3

                            − −𝑎𝑡 + 2 𝑢 −𝑎𝑡 + 2 + −𝑎𝑡 + 5 𝑢 −𝑎𝑡 + 5

                            − −𝑎𝑡 𝑢 −𝑎𝑡 + −𝑎𝑡 − 3 𝑢(−𝑎𝑡 − 3)]                       
                        

D'Alembert Solution for One-Dimensional Wave Equations
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𝑢 1, 𝑡 =
1

2𝑎
𝑎𝑡 + 2 − 𝑎𝑡 + 5 + 𝑎𝑡 − −𝑎𝑡 + 2 + −𝑎𝑡 + 5 =

𝑡

2
          0 < 𝑎𝑡 < 2                       

                        

𝑢 1, 𝑡 =
1

2𝑎
𝑎𝑡 + 2 − 𝑎𝑡 + 5 + 𝑎𝑡 + −𝑎𝑡 + 5 =

1

𝑎
 2 < 𝑎𝑡 < 3                        

                        

𝑢 1, 𝑡 =
1

2𝑎
𝑎𝑡 + 2 − 𝑎𝑡 + 5 + 𝑎𝑡 − 𝑎𝑡 − 3 + −𝑎𝑡 + 5 =

−𝑎𝑡+5

2𝑎
       3 < 𝑎𝑡 < 5                         

                        

𝑢 1, 𝑡 =
1

2𝑎
𝑎𝑡 + 2 − 𝑎𝑡 + 5 + 𝑎𝑡 − 𝑎𝑡 − 3 = 0                                   5 < 𝑎𝑡                

                        

The position of the string at x=1 as a 

function of time is:

𝑢 1, 𝑡 =
1

2𝑎
[ 𝑎𝑡 + 2 𝑢 𝑎𝑡 + 2 − 𝑎𝑡 + 5 𝑢 𝑎𝑡 + 5  + 𝑎𝑡 𝑢 𝑎𝑡 − 𝑎𝑡 − 3 𝑢 𝑎𝑡 − 3

  − −𝑎𝑡 + 2 𝑢 −𝑎𝑡 + 2 + −𝑎𝑡 + 5 𝑢 −𝑎𝑡 + 5 − −𝑎𝑡 𝑢 −𝑎𝑡 + −𝑎𝑡 − 3 𝑢(−𝑎𝑡 − 3)]                       
                        

D'Alembert Solution for One-Dimensional Wave Equations
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Exercises

Exercise 4: Determine the displacement u(x,t) of an oscillating string 

of length L with fixed endpoints and c=1. The initial velocity is zero 

and the initial displacement is f(x).

1)f(x) = kx(1-x)

2)f(x) = ksin2(πx)

Exercise 5: Determine the solution to the following wave equation.

uxx -utt = 0 , 0<x<L , t>0

u(x,0) = sin
π

L
x ,ut(x,0) = -sin

π

L
x , 0<x<L

u(0,t) = u(L,t) = 0 for all t.
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Can other partial differential equations be solved using the d'Alembert 

method?

Answer: Consider the following equation:

39

Classification of Partial Differential Equations

𝐴
𝜕2𝑢

𝜕𝑥2
+ 2𝐵

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝐶

𝜕2𝑢

𝜕𝑦2
= 0

𝐴𝑓′′(𝑥 + 𝜆𝑦) + 2𝐵𝜆𝑓′′(𝑥 + 𝜆𝑦) + 𝐶𝜆2𝑓′′(𝑥 + 𝜆𝑦) = 0

𝐶𝜆2 + 2𝐵𝜆 + 𝐴 = 0

First, the possibility of finding solutions in the form 

u=f(x+λy) for the equation is examined.
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𝐶𝜆2 + 2𝐵𝜆 + 𝐴 = 0

𝐴
𝜕2𝑢

𝜕𝑥2
+ 2𝐵

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝐶

𝜕2𝑢

𝜕𝑦2
= 0

For example, in the wave equation:

𝑢 = 𝑓(𝑥 + 𝜆𝑦)

𝜕2𝑢

𝜕𝑡2
= 𝑎2

𝜕2𝑢

𝜕𝑥2

𝐶𝜆2 + 2𝐵𝜆 + 𝐴 = 𝜆2 − 𝑎2 = 0 𝜆 = +𝑎, −𝑎

𝑢 = 𝑓 𝑥 + 𝑎𝑡 + 𝑔 𝑥 − 𝑎𝑡

Classification of Partial Differential Equations
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In general, the equation:

𝐴 𝑥, 𝑦 𝑢𝑥𝑥 + 2𝐵 𝑥, 𝑦 𝑢𝑥𝑦 + 𝐶 𝑥, 𝑦 𝑢𝑦𝑦 = 𝑔(𝑢, 𝑢𝑥, 𝑢𝑦, 𝑥, 𝑦)

Classification of Partial Differential Equations

𝐵2(𝑥, 𝑦) − 𝐴(𝑥, 𝑦)𝐶(𝑥, 𝑦)

is called hyperbolic, parabolic, or elliptical depending on the sign of 
the following expression:
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𝑐2
𝜕2𝑢

𝜕𝑥2
−

𝜕2𝑢

𝜕𝑡2
= 0

The wave equation

𝐵2 − 𝐴𝐶 = 0 − 𝑐2 −1 = 𝑐2>0 Hyperbolic

𝜕𝑢

𝜕𝑡
= 𝑐2

𝜕2𝑢

𝜕𝑥2

The heat equation (heat transfer)

𝐵2 − 𝐴𝐶 = 0 − 0𝑐2 = 0 Parabolic

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0

The Laplace equation

𝐵2 − 𝐴𝐶 = 0 − 1 = −1 < 0 Elliptical

Classification of Partial Differential Equations

In general, the equation:

𝐴 𝑥, 𝑦 𝑢𝑥𝑥 + 2𝐵 𝑥, 𝑦 𝑢𝑥𝑦 + 𝐶 𝑥, 𝑦 𝑢𝑦𝑦 = 𝑔(𝑢, 𝑢𝑥, 𝑢𝑦, 𝑥, 𝑦)

𝐵2(𝑥, 𝑦) − 𝐴(𝑥, 𝑦)𝐶(𝑥, 𝑦)

is called hyperbolic, parabolic, or elliptical depending on the sign of 
the following expression:
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Theorem: Consider the following equation:

43

𝐴 𝑥, 𝑦 𝑢𝑥𝑥 + 2𝐵 𝑥, 𝑦 𝑢𝑥𝑦 + 𝐶 𝑥, 𝑦 𝑢𝑦𝑦 = 𝑔 𝑢, 𝑢𝑥, 𝑢𝑦, 𝑥, 𝑦 𝐼

Classification of Partial Differential Equations

𝐴 𝑥, 𝑦 (𝑦′)2 − 2𝐵 𝑥, 𝑦 𝑦′ + 𝐶 𝑥, 𝑦 = 0

Form the following auxiliary equation from the above equation:

𝜑 𝑥, 𝑦 = 𝐶1𝜓 𝑥, 𝑦 = 𝐶2

Independent solutions of the auxiliary equation are the characteristics 
of the equation I.

In this case:
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Classification of Partial Differential Equations

𝑟 = 𝜓 𝑥, 𝑦𝑠 = 𝜑 𝑥, 𝑦

a) If the given equation is hyperbolic, with a change of variables:

b) If the given equation is parabolic, with a change of variables:

𝑠 = 𝜓 𝑥, 𝑦𝑟 = 𝑥

c) If the given equation is elliptical, with a change of variables:

𝑟 =
𝜑 𝑥, 𝑦 + 𝜓 𝑥, 𝑦

2
𝑠 =

𝜑 𝑥, 𝑦 − 𝜓 𝑥, 𝑦

2𝑖

the original equation (Eq. I) is transformed into the following equation:

𝑢𝑟𝑟 + 𝑢𝑠𝑠 = 𝐺(𝑢, 𝑢𝑟 , 𝑢𝑠, 𝑟, 𝑠)

𝑢𝑟𝑠 = 𝐺(𝑢, 𝑢𝑟 , 𝑢𝑠, 𝑟, 𝑠)

the original equation (Eq. I) is transformed into the following equation:

the original equation (Eq. I) is transformed into the following equation:

𝑢𝑟𝑟 = 𝐺(𝑢, 𝑢𝑟 , 𝑢𝑠, 𝑟, 𝑠)
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Example 6: In the wave equation:

𝜕2𝑢

𝜕𝑡2
= 𝑎2

𝜕2𝑢

𝜕𝑥2

𝐴 𝑥, 𝑦 𝑢𝑥𝑥 + 2𝐵 𝑥, 𝑦 𝑢𝑥𝑦 + 𝐶 𝑥, 𝑦 𝑢𝑦𝑦 = 𝑔(𝑢, 𝑢𝑥, 𝑢𝑦, 𝑥, 𝑦)

𝐴 𝑥, 𝑦 (𝑦′)2 − 2𝐵 𝑥, 𝑦 𝑦′ + 𝐶 𝑥, 𝑦 = 0

𝑥′ = −𝑎 , 𝑎
𝜕2𝑢

𝜕𝑡2
− 𝑎2

𝜕2𝑢

𝜕𝑥2
= 0

𝑥′ = −𝑎 →  𝑥 = −𝑎𝑡 + 𝑐1  → 𝑐1 = 𝑥 + 𝑎𝑡

𝑥′ = 𝑎 →  𝑥 = 𝑎𝑡 + 𝑐2  → 𝑐2 = 𝑥 − 𝑎𝑡

1(𝑥′)2 − 𝑎2 = 0

→
𝑠 = 𝑥 + 𝑎𝑡

𝑟 = 𝑥 − 𝑎𝑡

hyperbolic

Classification of Partial Differential Equations
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𝜕𝑢

𝜕𝑥
=

𝜕𝑢

𝜕𝑟

𝜕𝑟

𝜕𝑥
+

𝜕𝑢

𝜕𝑠

𝜕𝑠

𝜕𝑥
=

𝜕𝑢

𝜕𝑟
+

𝜕𝑢

𝜕𝑠

𝑠 = 𝑥 + 𝑎𝑡𝑟 = 𝑥 − 𝑎𝑡

𝜕2𝑢

𝜕𝑥2
= ⋯ =

𝜕2𝑢

𝜕𝑟2
+ 2

𝜕2𝑢

𝜕𝑟𝜕𝑠
+

𝜕2𝑢

𝜕𝑠2

𝜕𝑢

𝜕𝑡
=

𝜕𝑢

𝜕𝑟

𝜕𝑟

𝜕𝑡
+

𝜕𝑢

𝜕𝑠

𝜕𝑠

𝜕𝑡
= −𝑎

𝜕𝑢

𝜕𝑟
+ 𝑎

𝜕𝑢

𝜕𝑠

And according to the chain rule for partial derivatives, the following relationships 
are obtained.

𝜕2𝑢

𝜕𝑡2
= ⋯ = 𝑎2

𝜕2𝑢

𝜕𝑟2
− 2𝑎2

𝜕2𝑢

𝜕𝑟𝜕𝑠
+ 𝑎2

𝜕2𝑢

𝜕𝑠2

𝜕2𝑢

𝜕𝑡2 = 𝑎2
𝜕2𝑢

𝜕𝑥2
→

𝜕2𝑢

𝜕𝑟𝜕𝑠
= 0 →

𝜕𝑢

𝜕𝑠
= 𝑘(𝑠) → 𝑢 = 𝑓 𝑠 + 𝑔(𝑟)

→ 𝑢 𝑥, 𝑡 = 𝑓 𝑥 + 𝑎𝑡 + 𝑔(𝑥 − 𝑎𝑡)

Classification of Partial Differential Equations
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Example 7: Determine the characteristics of the following equation, 

assuming that y is not zero. Then, if possible, transform the equation into 
its canonical form and solve it.

47

𝑥
𝜕2𝑢

𝜕𝑥2
− 𝑦

𝜕2𝑢

𝜕𝑥𝜕𝑦
+

𝜕𝑢

𝜕𝑥
= 0

𝑦′ 𝑥𝑦′ + 𝑦 = 0 

𝑦 = 𝑐1

𝑥 (𝑦′)2 + 𝑦𝑦′ + 0 = 0

𝑥
𝑑𝑦

𝑑𝑥
+ 𝑦 = 0 𝑥𝑦 = 𝑐2

𝑦′ = 0 

𝐴 𝑥, 𝑦 𝑢𝑥𝑥 + 2𝐵 𝑥, 𝑦 𝑢𝑥𝑦 + 𝐶 𝑥, 𝑦 𝑢𝑦𝑦 = 𝑔(𝑢, 𝑢𝑥, 𝑢𝑦, 𝑥, 𝑦)

𝐴 𝑥, 𝑦 (𝑦′)2 − 2𝐵 𝑥, 𝑦 𝑦′ + 𝐶 𝑥, 𝑦 = 0

Classification of Partial Differential Equations

Solution: The characteristics are obtained by solving the following auxiliary equation.
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Example (continued): Since B2−AC>0, it is hyperbolic. Therefore, 

using substitutions from the theorem and according to the chain rule for 
partial derivatives, the following relationships are obtained.

48

𝜕𝑢

𝜕𝑥
=

𝜕𝑢

𝜕𝑟

𝜕𝑟

𝜕𝑥
+

𝜕𝑢

𝜕𝑠

𝜕𝑠

𝜕𝑥
= 𝑟

𝜕𝑢

𝜕𝑠

𝑟 = 𝑦𝑠 = 𝑥𝑦

𝑥
𝜕2𝑢

𝜕𝑥2
− 𝑦

𝜕2𝑢

𝜕𝑥𝜕𝑦
+

𝜕𝑢

𝜕𝑥
= 0

𝜕2𝑢

𝜕𝑥2
= ⋯ = 𝑟2

𝜕2𝑢

𝜕𝑠2

𝜕2𝑢

𝜕𝑦𝜕𝑥
=

𝜕𝑢

𝜕𝑠
+ 𝑦

𝜕2𝑢

𝜕𝑟𝜕𝑠

𝜕𝑟

𝜕𝑦
+

𝜕2𝑢

𝜕𝑠2

𝜕𝑠

𝜕𝑦
=

𝜕𝑢

𝜕𝑠
+ 𝑟

𝜕2𝑢

𝜕𝑟𝜕𝑠
+ 𝑠

𝜕2𝑢

𝜕𝑠2

→ −𝑟2
𝜕2𝑢

𝜕𝑟𝜕𝑠
= 0 →

𝜕2𝑢

𝜕𝑟𝜕𝑠
= 0

→  
𝜕𝑢

𝜕𝑠
= 𝑘(𝑠) →  𝑢 = 𝑓 𝑠 + 𝑔(𝑟) →  𝑢 = 𝑓 𝑥𝑦 + 𝑔(𝑦)

Classification of Partial Differential Equations
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Partial Differential Equation and Its Solutions
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To solve the following equation: 

Assuming that the angle of twist θ is expressed as the product of two 

functions, one depending only on x and the other depending only on t, 

we have:

50

Separation of Variables 

𝜕2𝜃

𝜕𝑡2
= 𝑎2

𝜕2𝜃

𝜕𝑥2

𝜃 𝑥, 𝑡 = 𝑋 𝑥 𝑇(𝑡)

𝜕2𝜃

𝜕𝑡2
= X𝑇′′ ,  

𝜕2𝜃

𝜕𝑥2
= 𝑋′′𝑇

X𝑇′′ = 𝑎2𝑋′′𝑇𝜕2𝜃

𝜕𝑡2
= 𝑎2

𝜕2𝜃

𝜕𝑥2

By substituting into the wave equation and dividing both sides by XT, 

we get:

𝑇′′

𝑇
= 𝑎2

𝑋′′

𝑋
= μ
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𝜇 > 0 𝜇 = 0 𝜇 < 0

𝜕2𝜃

𝜕𝑡2
= 𝑎2

𝜕2𝜃

𝜕𝑥2

𝑇′′

𝑇
= 𝑎2

𝑋′′

𝑋
= μ

𝑋′′ =
𝜇

𝑎2
𝑋

𝑇′′ = 𝜇𝑇

Separation of Variables 

Case 1: Assuming that  𝜇 > 0 𝜇 = 𝜆2

𝑇′′ = 𝜆2𝑇

𝑋′′ =
𝜆2

𝑎2
𝑋

𝑇 = 𝐴𝑒𝜆𝑡 + 𝐵𝑒−𝜆𝑡

𝑋 = 𝐶𝑒
𝜆
𝑎𝑥 + 𝐷𝑒−

𝜆
𝑎𝑥

𝑇′′

𝑇
= 𝑎2

𝑋′′

𝑋
= μ

𝜃 𝑥, 𝑡 = 𝑋 𝑥 𝑇 𝑡 = (𝐶𝑒
𝜆
𝑎

𝑥 + 𝐷𝑒−
𝜆
𝑎

𝑥)(𝐴𝑒𝜆𝑡 + 𝐵𝑒−𝜆𝑡)
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Separation of Variables 

Case 2: Assuming that  𝜇 = 0

𝑇′′ = 0

𝑋′′ = 0

𝑇 = 𝐴𝑡 + 𝐵

𝑋 = 𝐶𝑥 + 𝐷𝑇′′

𝑇
= 𝑎2

𝑋′′

𝑋
= μ

𝜃 𝑥, 𝑡 = 𝑋 𝑥 𝑇 𝑡 = (𝐶𝑥 + 𝐷)(𝐴𝑡 + 𝐵)

Case 3: Assuming that  𝜇 < 0 𝜇 = −𝜆2

𝑇′′ = −𝜆2𝑇

𝑋′′ = −
𝜆2

𝑎2
𝑋𝑇′′

𝑇
= 𝑎2

𝑋′′

𝑋
= −𝜆2

𝑋 = 𝐶 𝑐𝑜𝑠
𝜆

𝑎
𝑥 + 𝐷 𝑠𝑖𝑛

𝜆

𝑎
𝑥

𝑇 = 𝐴𝑐𝑜𝑠 𝜆𝑡 + 𝐵𝑠𝑖𝑛 𝜆𝑡

𝜃 𝑥, 𝑡 = 𝑋 𝑥 𝑇 𝑡 = (𝐶 𝑐𝑜𝑠
𝜆

𝑎
𝑥 + 𝐷 𝑠𝑖𝑛

𝜆

𝑎
𝑥)(𝐴𝑐𝑜𝑠 𝜆𝑡 + 𝐵𝑠𝑖𝑛 𝜆𝑡)
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𝑇′′ = 𝜆2𝑇

𝑋′′ =
𝜆2

𝑎2
𝑋

𝜃 𝑥, 𝑡 = 𝑋 𝑥 𝑇 𝑡 = (𝐶𝑒𝜆
𝑥
𝑎 + 𝐷𝑒−𝜆

𝑥
𝑎)(𝐴𝑒𝜆𝑡 + 𝐵𝑒−𝜆𝑡)

Separation of Variables 

Case 1: Assuming that  𝜇 > 0, 𝜇 = 𝜆2

𝜃 𝑥, 𝑡 = 𝑋 𝑥 𝑇 𝑡 = (𝐶𝑥 + 𝐷)(𝐴𝑡 + 𝐵)

𝑇′′ = 0

𝑋′′ = 0

Case 2: Assuming that  𝜇 = 0

𝜃 𝑥, 𝑡 = 𝑋 𝑥 𝑇 𝑡 = (𝐶 𝑐𝑜𝑠
𝜆

𝑎
𝑥 + 𝐷 𝑠𝑖𝑛

𝜆

𝑎
𝑥)(𝐴𝑐𝑜𝑠 𝜆𝑡 + 𝐵𝑠𝑖𝑛 𝜆𝑡)

𝑇′′ = −𝜆2𝑇

𝑋′′ = −
𝜆2

𝑎2
𝑋

Case 3: Assuming that  𝜇 < 0, 𝜇 = −𝜆2
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𝐴 , 𝐵,𝐶, 𝐷, 𝑎𝑛𝑑 𝜆

54

Separation of Variables 

Consider following situations:

v a. Two-ended fixed shaft:

v b. Two-ended free shaft:

v c. One-ended free and one-ended fixed shaft:
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𝜃 0, 𝑡 = 0 ∀ 𝑡 𝐵1

𝜃 0, 𝑡 = 0 = 𝐶(𝐴𝑐𝑜𝑠 𝜆𝑡 + 𝐵𝑠𝑖𝑛 𝜆𝑡)

𝜃 𝑥, 𝑡 = (𝑠𝑖𝑛
𝜆

𝑎
𝑥)(𝐴𝑐𝑜𝑠 𝜆𝑡 + 𝐵𝑠𝑖𝑛 𝜆𝑡)    Note to D  ??

𝐴 = 𝐵 = 0 𝑜𝑟 𝐶 = 0

𝜃 𝑥, 𝑡 =  (𝐶 𝑐𝑜𝑠
𝜆

𝑎
𝑥 + 𝐷 𝑠𝑖𝑛

𝜆

𝑎
𝑥)(𝐴𝑐𝑜𝑠 𝜆𝑡 + 𝐵𝑠𝑖𝑛 𝜆𝑡)

𝜃 𝑙, 𝑡 = 0 ∀ 𝑡 𝐵2

𝜃 𝑥, 0 = 𝑓 𝑥  𝐼1
∂𝜃

∂𝑡
𝑥, 0 = 𝑔 𝑥  𝐼2

Separation of Variables 

Two-ended fixed shaft:

Assuming that  𝜇 < 0, 𝜇 = −𝜆2

Applying boundary condition 1 (B1)
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𝜃 𝑙, 𝑡 = 0 = 𝑠𝑖𝑛
𝜆

𝑎
𝑙(𝐴𝑐𝑜𝑠 𝜆𝑡 + 𝐵𝑠𝑖𝑛 𝜆𝑡)

𝜆𝑛 =
𝑛𝜋𝑎

𝑙

𝐴 = 𝐵 = 0 𝑜𝑟 𝑠𝑖𝑛
𝜆

𝑎
𝑙 = 0

𝜃 𝑥, 𝑡 =  ( 𝑠𝑖𝑛
𝜆

𝑎
𝑥)(𝐴𝑐𝑜𝑠 𝜆𝑡 + 𝐵𝑠𝑖𝑛 𝜆𝑡)

𝜆

𝑎
𝑙 = 𝑛𝜋

𝜃𝑛 𝑥, 𝑡 =  ( 𝑠𝑖𝑛
𝑛𝜋

𝑙
𝑥)(𝐴𝑛𝑐𝑜𝑠

𝑛𝜋𝑎

𝑙
𝑡 + 𝐵𝑛𝑠𝑖𝑛

𝑛𝜋𝑎

𝑙
𝑡)

Separation of Variables 

𝜃 0, 𝑡 = 0 ∀ 𝑡 𝐵1 𝜃 𝑙, 𝑡 = 0 ∀ 𝑡 𝐵2

𝜃 𝑥, 0 = 𝑓 𝑥  𝐼1
∂𝜃

∂𝑡
𝑥, 0 = 𝑔 𝑥  𝐼2

Two-ended fixed shaft:

Assuming that  𝜇 < 0, 𝜇 = −𝜆2

Applying boundary condition 2 (B2)



Dr. Ali Karimpour  Sep 2024

Lecture 3

57

𝜃𝑛 𝑥, 𝑡 =  ( 𝑠𝑖𝑛
𝑛𝜋

𝑙
𝑥)(𝐴𝑛𝑐𝑜𝑠

𝑛𝜋𝑎

𝑙
𝑡 + 𝐵𝑛𝑠𝑖𝑛

𝑛𝜋𝑎

𝑙
𝑡)

𝜃 𝑥, 𝑡 = ෍

𝑛=1

∞

𝜃𝑛 𝑥, 𝑡 = ෍

𝑛=1

∞

𝑠𝑖𝑛
𝑛𝜋

𝑙
𝑥(𝐴𝑛cos

𝑛𝜋𝑎

𝑙
t + 𝐵𝑛 𝑠𝑖𝑛

𝑛𝜋𝑎

𝑙
𝑡)

𝜃 𝑥, 0 = ෍

𝑛=1

∞

𝐴𝑛 𝑠𝑖𝑛
𝑛𝜋

𝑙
𝑥 = 𝑓(𝑥)𝜃 𝑥, 0 = 𝑓(𝑥) 𝐴𝑛 =

2

𝑙
න

0

𝑙

𝑓(𝑥) 𝑠𝑖𝑛
𝑛𝜋

𝑙
𝑥𝑑𝑥

Separation of Variables 

𝜃 0, 𝑡 = 0 ∀ 𝑡 𝐵1 𝜃 𝑙, 𝑡 = 0 ∀ 𝑡 𝐵2

𝜃 𝑥, 0 = 𝑓 𝑥  𝐼1
∂𝜃

∂𝑡
𝑥, 0 = 𝑔 𝑥  𝐼2

Two-ended fixed shaft:

Assuming that  𝜇 < 0, 𝜇 = −𝜆2

Applying initial condition 1 (I1)
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𝐴𝑛 =
2

𝑙
න

0

𝑙

𝑓(𝑥) 𝑠𝑖𝑛
𝑛𝜋

𝑙
𝑥𝑑𝑥𝜃 𝑥, 𝑡 = ෍

𝑛=1

∞

𝑠𝑖𝑛
𝑛𝜋

𝑙
𝑥(𝐴𝑛cos

𝑛𝜋𝑎

𝑙
t + 𝐵𝑛 𝑠𝑖𝑛

𝑛𝜋𝑎

𝑙
𝑡)

𝜕𝜃

𝜕𝑡
= ෍

𝑛=1

∞

𝑠𝑖𝑛
𝑛𝜋

𝑙
𝑥(−𝐴𝑛𝑠𝑖𝑛

𝑛𝜋𝑎

𝑙
𝑡 + 𝐵𝑛𝑐𝑜𝑠

𝑛𝜋𝑎

𝑙
𝑡)

𝑛𝜋𝑎

𝑙
𝑔 𝑥 = ෍

𝑛=1

∞

(
𝑛𝜋𝑎

𝑙
𝐵𝑛) 𝑠𝑖𝑛

𝑛𝜋

𝑙
𝑥

𝑛𝜋𝑎

𝑙
𝐵𝑛 =

2

𝑙
න

0

𝑙

𝑔(𝑥) 𝑠𝑖𝑛
𝑛𝜋

𝑙
𝑥𝑑𝑥 𝐵𝑛 =

2

𝑛𝜋𝑎
න

0

𝑙

𝑔(𝑥) 𝑠𝑖𝑛
𝑛𝜋

𝑙
𝑥𝑑𝑥

Separation of Variables 

𝜃 0, 𝑡 = 0 ∀ 𝑡 𝐵1 𝜃 𝑙, 𝑡 = 0 ∀ 𝑡 𝐵2

𝜃 𝑥, 0 = 𝑓 𝑥  𝐼1
∂𝜃

∂𝑡
𝑥, 0 = 𝑔 𝑥  𝐼2

Two-ended fixed shaft:

Assuming that  𝜇 < 0, 𝜇 = −𝜆2

Applying initial condition 2 (I2)
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𝜃 𝑥, 𝑡 = ෍

𝑛=1

∞

𝑠𝑖𝑛
𝑛𝜋

𝑙
𝑥(𝐴𝑛cos

𝑛𝜋𝑎

𝑙
t + 𝐵𝑛 𝑠𝑖𝑛

𝑛𝜋𝑎

𝑙
𝑡)

𝐴𝑛 =
2

𝑙
0׬

𝑙
𝑓(𝑥) 𝑠𝑖𝑛

𝑛𝜋

𝑙
 𝑥𝑑𝑥 𝐵𝑛 =

2

𝑛𝜋𝑎
න

0

𝑙

𝑔(𝑥) 𝑠𝑖𝑛
𝑛𝜋

𝑙
𝑥𝑑𝑥

Separation of Variables 

𝜃 0, 𝑡 = 0 ∀ 𝑡 𝐵1 𝜃 𝑙, 𝑡 = 0 ∀ 𝑡 𝐵2

𝜃 𝑥, 0 = 𝑓 𝑥  𝐼1
∂𝜃

∂𝑡
𝑥, 0 = 𝑔 𝑥  𝐼2

Two-ended fixed shaft:

Assuming that  𝜇 < 0, 𝜇 = −𝜆2
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Exercises

Exercise 7: We know that the heat equation is a parabolic equation. 
Explain why?

Exercise 6: Solve the following equation.

𝑢𝑥𝑥 − 4𝑢𝑥𝑦+3𝑢𝑦𝑦=0

(Hint: v=x+y , z=3x+y)

Exercise 8: If A𝑢𝑥𝑥 + 2𝐵𝑢𝑥𝑦+C𝑢𝑦𝑦= f(x, y, 𝑢𝑥, 𝑢𝑦) be a hyperbolic 

equation, then by changing of variable to v=φ(x, y) and z=ψ(x, y), it 

can be transform to 𝑢𝑣𝑧 = 𝐹 (v, z, u, 𝑢𝑣, 𝑢𝑧). Show that for the wave 
equation ψ =x-ct and φ =x+ct.

 
Exercise 9: If A𝑢𝑥𝑥 + 2𝐵𝑢𝑥𝑦+C𝑢𝑦𝑦= f(x, y, 𝑢𝑥, 𝑢𝑦) be a parabolic 

equation, then by changing of variable to v=x and z=ψ(x, y), it can be 

transform to 𝑢𝑣𝑣 = 𝐹 (v, z, u, 𝑢𝑣, 𝑢𝑧). Investigate the validity of this 

for the equation 𝑢𝑥𝑥 + 2𝑢𝑥𝑦+𝑢𝑦𝑦=0.
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∂𝜃

∂𝑥
0, 𝑡 = 0 ∀ 𝑡 𝐵1

∂𝜃

∂𝑥
0, 𝑡 = 0 = 𝐷

𝜆

𝑎
(𝐴𝑐𝑜𝑠 𝜆𝑡 + 𝐵𝑠𝑖𝑛 𝜆𝑡)

𝜃 𝑥, 𝑡 = (𝑐𝑜𝑠
𝜆

𝑎
𝑥)(𝐴𝑐𝑜𝑠 𝜆𝑡 + 𝐵𝑠𝑖𝑛 𝜆𝑡)    Note to C  ??

𝐴 = 𝐵 = 0 𝑜𝑟 𝐷 = 0 𝑜𝑟 𝜆 = 0 

𝜃 𝑥, 𝑡 =  (𝐶 𝑐𝑜𝑠
𝜆

𝑎
𝑥 + 𝐷 𝑠𝑖𝑛

𝜆

𝑎
𝑥)(𝐴𝑐𝑜𝑠 𝜆𝑡 + 𝐵𝑠𝑖𝑛 𝜆𝑡)

∂𝜃

∂𝑥
𝑙, 𝑡 = 0 ∀ 𝑡 𝐵2

𝜃 𝑥, 0 = 𝑓 𝑥  𝐼1
∂𝜃

∂𝑡
𝑥, 0 = 𝑔 𝑥  𝐼2

Separation of Variables 

Two-ended free shaft:

Assuming that  𝜇 < 0, 𝜇 = −𝜆2

Applying boundary condition 1 (B1)
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∂𝜃

∂𝑥
𝑙, 𝑡 = 0 = −

𝜆

𝑎
𝑠𝑖𝑛

𝜆

𝑎
𝑙(𝐴𝑐𝑜𝑠 𝜆𝑡 + 𝐵𝑠𝑖𝑛 𝜆𝑡) 𝐴 = 𝐵 = 0 𝑜𝑟 𝑠𝑖𝑛

𝜆

𝑎
𝑙 = 0

    𝑜𝑟 𝜆 = 0

𝜃 𝑥, 𝑡 = (𝑐𝑜𝑠
𝜆

𝑎
𝑥)(𝐴𝑐𝑜𝑠 𝜆𝑡 + 𝐵𝑠𝑖𝑛 𝜆𝑡)

𝜆𝑛 =
𝑛𝜋𝑎

𝑙

𝜆

𝑎
𝑙 = 𝑛𝜋

𝜃𝑛 𝑥, 𝑡 =  ( 𝑐𝑜𝑠
𝑛𝜋

𝑙
𝑥)(𝐴𝑛𝑐𝑜𝑠

𝑛𝜋𝑎

𝑙
𝑡 + 𝐵𝑛𝑠𝑖𝑛

𝑛𝜋𝑎

𝑙
𝑡)

Separation of Variables 

∂𝜃

∂𝑥
0, 𝑡 = 0 ∀ 𝑡 𝐵1

∂𝜃

∂𝑥
𝑙, 𝑡 = 0 ∀ 𝑡 𝐵2

𝜃 𝑥, 0 = 𝑓 𝑥  𝐼1
∂𝜃

∂𝑡
𝑥, 0 = 𝑔 𝑥  𝐼2

Two-ended free shaft:

Assuming that  𝜇 < 0, 𝜇 = −𝜆2

Applying boundary condition 2 (B2)
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𝜃 𝑥, 𝑡 = ෍

𝑛=1

∞

𝜃𝑛 𝑥, 𝑡 = ෍

𝑛=1

∞

𝑐𝑜𝑠
𝑛𝜋

𝑙
𝑥(𝐴𝑛cos

𝑛𝜋𝑎

𝑙
t + 𝐵𝑛 𝑠𝑖𝑛

𝑛𝜋𝑎

𝑙
𝑡)

𝜃 𝑥, 0 = ෍

𝑛=1

∞

𝐴𝑛𝑐𝑜𝑠
𝑛𝜋

𝑙
𝑥 = 𝑓(𝑥)𝜃 𝑥, 0 = 𝑓(𝑥) 𝐴𝑛 =

2

𝑙
න

0

𝑙

𝑓 𝑥 𝑐𝑜𝑠
𝑛𝜋

𝑙
𝑥𝑑𝑥

𝜃𝑛 𝑥, 𝑡 =  ( 𝑐𝑜𝑠
𝑛𝜋

𝑙
𝑥)(𝐴𝑛𝑐𝑜𝑠

𝑛𝜋𝑎

𝑙
𝑡 + 𝐵𝑛𝑠𝑖𝑛

𝑛𝜋𝑎

𝑙
𝑡)

Separation of Variables 

∂𝜃

∂𝑥
0, 𝑡 = 0 ∀ 𝑡 𝐵1

∂𝜃

∂𝑥
𝑙, 𝑡 = 0 ∀ 𝑡 𝐵2

𝜃 𝑥, 0 = 𝑓 𝑥  𝐼1
∂𝜃

∂𝑡
𝑥, 0 = 𝑔 𝑥  𝐼2

Two-ended free shaft:

Assuming that  𝜇 < 0, 𝜇 = −𝜆2

Applying initial condition 1 (I1)
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𝐴𝑛 =
2

𝑙
න

0

𝑙

𝑓(𝑥) 𝑐𝑜𝑠
𝑛𝜋

𝑙
𝑥𝑑𝑥𝜃 𝑥, 𝑡 = ෍

𝑛=1

∞

𝑐𝑜𝑠
𝑛𝜋

𝑙
𝑥(𝐴𝑛cos

𝑛𝜋𝑎

𝑙
t + 𝐵𝑛 𝑠𝑖𝑛

𝑛𝜋𝑎

𝑙
𝑡)

𝜕𝜃

𝜕𝑡
= ෍

𝑛=1

∞

𝑐𝑜𝑠
𝑛𝜋

𝑙
𝑥(−𝐴𝑛𝑠𝑖𝑛

𝑛𝜋𝑎

𝑙
𝑡 + 𝐵𝑛𝑐𝑜𝑠

𝑛𝜋𝑎

𝑙
𝑡)

𝑛𝜋𝑎

𝑙
𝑔 𝑥 = ෍

𝑛=1

∞

(
𝑛𝜋𝑎

𝑙
𝐵𝑛) 𝑐𝑜𝑠

𝑛𝜋

𝑙
𝑥

𝑛𝜋𝑎

𝑙
𝐵𝑛 =

2

𝑙
න

0

𝑙

𝑔(𝑥) 𝑐𝑜𝑠
𝑛𝜋

𝑙
𝑥𝑑𝑥 𝐵𝑛 =

2

𝑛𝜋𝑎
න

0

𝑙

𝑔(𝑥) 𝑐𝑜𝑠
𝑛𝜋

𝑙
𝑥𝑑𝑥

Separation of Variables 

∂𝜃

∂𝑥
0, 𝑡 = 0 ∀ 𝑡 𝐵1

∂𝜃

∂𝑥
𝑙, 𝑡 = 0 ∀ 𝑡 𝐵2

𝜃 𝑥, 0 = 𝑓 𝑥  𝐼1
∂𝜃

∂𝑡
𝑥, 0 = 𝑔 𝑥  𝐼2

Two-ended free shaft:

Assuming that  𝜇 < 0, 𝜇 = −𝜆2

Applying initial condition 2 (I2)
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𝐴𝑛 =
2

𝑙
0׬

𝑙
𝑓(𝑥) 𝑐𝑜𝑠

𝑛𝜋

𝑙
 𝑥𝑑𝑥 

𝜃 𝑥, 𝑡 = ෍

𝑛=1

∞

𝑐𝑜𝑠
𝑛𝜋

𝑙
𝑥(𝐴𝑛cos

𝑛𝜋𝑎

𝑙
t + 𝐵𝑛 𝑠𝑖𝑛

𝑛𝜋𝑎

𝑙
𝑡)

𝐵𝑛 =
2

𝑛𝜋𝑎
න

0

𝑙

𝑔(𝑥) 𝑐𝑜𝑠
𝑛𝜋

𝑙
𝑥𝑑𝑥

Separation of Variables 

∂𝜃

∂𝑥
0, 𝑡 = 0 ∀ 𝑡 𝐵1

∂𝜃

∂𝑥
𝑙, 𝑡 = 0 ∀ 𝑡 𝐵2

𝜃 𝑥, 0 = 𝑓 𝑥  𝐼1
∂𝜃

∂𝑡
𝑥, 0 = 𝑔 𝑥  𝐼2

Two-ended free shaft:

Assuming that  𝜇 < 0, 𝜇 = −𝜆2
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𝜃 0, 𝑡 = 0 ∀ 𝑡 𝐵1

𝜃 0, 𝑡 = 0 = 𝐶(𝐴𝑐𝑜𝑠 𝜆𝑡 + 𝐵𝑠𝑖𝑛 𝜆𝑡)

𝜃 𝑥, 𝑡 = (𝑠𝑖𝑛
𝜆

𝑎
𝑥)(𝐴𝑐𝑜𝑠 𝜆𝑡 + 𝐵𝑠𝑖𝑛 𝜆𝑡)    Note to D  ??

𝐴 = 𝐵 = 0 𝑜𝑟 𝐶 = 0

𝜃 𝑥, 𝑡 =  (𝐶 𝑐𝑜𝑠
𝜆

𝑎
𝑥 + 𝐷 𝑠𝑖𝑛

𝜆

𝑎
𝑥)(𝐴𝑐𝑜𝑠 𝜆𝑡 + 𝐵𝑠𝑖𝑛 𝜆𝑡)

∂𝜃

∂𝑥
𝑙, 𝑡 = 0 ∀ 𝑡 𝐵2

𝜃 𝑥, 0 = 𝑓 𝑥  𝐼1
∂𝜃

∂𝑡
𝑥, 0 = 𝑔 𝑥  𝐼2

One-ended free and one-ended fixed shaft:

Separation of Variables 

Assuming that  𝜇 < 0, 𝜇 = −𝜆2

Applying boundary condition 1 (B1)
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∂𝜃

∂𝑥
𝑙, 𝑡 = 0 =

𝜆

𝑎
𝑐𝑜𝑠

𝜆

𝑎
𝑙(𝐴𝑐𝑜𝑠 𝜆𝑡 + 𝐵𝑠𝑖𝑛 𝜆𝑡) 𝐴 = 𝐵 = 0 𝑜𝑟 𝑐𝑜𝑠

𝜆

𝑎
𝑙 = 0

    𝑜𝑟 𝜆 = 0

𝜃 𝑥, 𝑡 =  ( 𝑠𝑖𝑛
𝜆

𝑎
𝑥)(𝐴𝑐𝑜𝑠 𝜆𝑡 + 𝐵𝑠𝑖𝑛 𝜆𝑡)

𝜆

𝑎
𝑙 =

(2𝑛 − 1)𝜋

2
𝜆𝑛 =

(2𝑛 − 1)𝜋𝑎

2𝑙

Separation of Variables 

𝜃 0, 𝑡 = 0 ∀ 𝑡 𝐵1
∂𝜃

∂𝑥
𝑙, 𝑡 = 0 ∀ 𝑡 𝐵2

𝜃 𝑥, 0 = 𝑓 𝑥  𝐼1
∂𝜃

∂𝑡
𝑥, 0 = 𝑔 𝑥  𝐼2

One-ended free and one-ended fixed shaft:

Assuming that  𝜇 < 0, 𝜇 = −𝜆2

Applying boundary condition 2 (B2)
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𝜃𝑛 𝑥, 𝑡 =  𝑠𝑖𝑛
(2𝑛−1)𝜋

2𝑙
𝑥(𝐴𝑛cos

(2𝑛−1)𝜋𝑎

2𝑙
t + 𝐵𝑛 𝑠𝑖𝑛

(2𝑛−1)𝜋𝑎

2𝑙
𝑡)

𝜃 𝑥, 𝑡 = ෍

𝑛=1

∞

𝑠𝑖𝑛
(2𝑛 − 1)𝜋

2𝑙
𝑥(𝐴𝑛cos

(2𝑛 − 1)𝜋𝑎

2𝑙
t + 𝐵𝑛 𝑠𝑖𝑛

(2𝑛 − 1)𝜋𝑎

2𝑙
𝑡)

𝜃 𝑥, 0 = ෍

𝑛=1

∞

𝐴𝑛𝑠𝑖𝑛
(2𝑛 − 1)𝜋

2𝑙
𝑥 = 𝑓(𝑥) 𝐴𝑛 =

2

𝑙
න

0

𝑙

𝑓(𝑥) 𝑠𝑖𝑛
(2𝑛 − 1)𝜋

2𝑙
𝑥𝑑𝑥

Separation of Variables 

𝜃 0, 𝑡 = 0 ∀ 𝑡 𝐵1
∂𝜃

∂𝑥
𝑙, 𝑡 = 0 ∀ 𝑡 𝐵2

𝜃 𝑥, 0 = 𝑓 𝑥  𝐼1
∂𝜃

∂𝑡
𝑥, 0 = 𝑔 𝑥  𝐼2

One-ended free and one-ended fixed shaft:

Assuming that  𝜇 < 0, 𝜇 = −𝜆2

Applying initial condition 1 (I1)
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𝜃 𝑥, 𝑡 = ෍

𝑛=1

∞

𝑠𝑖𝑛
(2𝑛 − 1)𝜋

2𝑙
𝑥(𝐴𝑛cos

(2𝑛 − 1)𝜋𝑎

2𝑙
t + 𝐵𝑛 𝑠𝑖𝑛

(2𝑛 − 1)𝜋𝑎

2𝑙
𝑡)

𝐴𝑛 =
2

𝑙
න

0

𝑙

𝑓(𝑥) 𝑠𝑖𝑛
(2𝑛 − 1)𝜋

2𝑙
𝑥𝑑𝑥

𝑔(𝑥) = ෍

𝑛=1

∞
2𝑛 − 1 𝜋𝑎

2𝑙
𝐵𝑛 𝑠𝑖𝑛

(2𝑛 − 1)𝜋𝑥

2𝑙
𝐵𝑛 =

4

2𝑛 − 1 𝜋𝑎
න

0

𝑙

𝑔(𝑥) 𝑠𝑖𝑛
(2𝑛 − 1)𝜋

2𝑙
𝑥𝑑𝑥

Separation of Variables 

𝜃 0, 𝑡 = 0 ∀ 𝑡 𝐵1
∂𝜃

∂𝑥
𝑙, 𝑡 = 0 ∀ 𝑡 𝐵2

𝜃 𝑥, 0 = 𝑓 𝑥  𝐼1
∂𝜃

∂𝑡
𝑥, 0 = 𝑔 𝑥  𝐼2

One-ended free and one-ended fixed shaft:

Assuming that  𝜇 < 0, 𝜇 = −𝜆2

Applying initial condition 2 (I2)
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𝜃 𝑥, 𝑡 = ෍

𝑛=1

∞

𝑠𝑖𝑛
(2𝑛 − 1)𝜋

2𝑙
𝑥(𝐴𝑛cos

(2𝑛 − 1)𝜋𝑎

2𝑙
t + 𝐵𝑛 𝑠𝑖𝑛

(2𝑛 − 1)𝜋𝑎

2𝑙
𝑡)

𝐴𝑛 =
2

𝑙
න

0

𝑙

𝑓(𝑥) 𝑠𝑖𝑛
(2𝑛 − 1)𝜋

2𝑙
𝑥𝑑𝑥

𝐵𝑛 =
4

2𝑛 − 1 𝜋𝑎
න

0

𝑙

𝑔(𝑥) 𝑠𝑖𝑛
(2𝑛 − 1)𝜋

2𝑙
𝑥𝑑𝑥

Separation of Variables 

𝜃 0, 𝑡 = 0 ∀ 𝑡 𝐵1
∂𝜃

∂𝑥
𝑙, 𝑡 = 0 ∀ 𝑡 𝐵2

𝜃 𝑥, 0 = 𝑓 𝑥  𝐼1
∂𝜃

∂𝑡
𝑥, 0 = 𝑔 𝑥  𝐼2

One-ended free and one-ended fixed shaft:

Assuming that  𝜇 < 0, 𝜇 = −𝜆2
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𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0

𝑢 𝑥, 𝑦
= ?

𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2

𝜕𝑢

𝜕𝑡
= 0

𝑢 𝑥, 𝑦 = 𝑋 𝑥 𝑌(𝑦)
𝑋′′

𝑋
= −

𝑌′′

𝑌
= μ

Separation of Variables 

The heat flow in the sheet can be 

considered two-dimensional.

The two-dimensional heat equation is:



Dr. Ali Karimpour  Sep 2024

Lecture 3

72

𝑋′′

𝑋
= −

𝑌′′

𝑌
= μ

𝑋′′ = 𝜇𝑋 𝑌′′ = −𝜇𝑌

𝜇 > 0 𝜇 = 0 𝜇 < 0

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0

Separation of Variables 
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Separation of Variables 

Case 1: Assuming that  𝜇 < 0, 𝜇 = −𝜆2

𝑢 𝑥, 𝑦 = 𝑋 𝑥 𝑌 𝑦 = (𝐴𝑐𝑜𝑠 𝜆𝑥 + 𝐵𝑠𝑖𝑛 𝜆x)(𝐶𝑐𝑜𝑠h 𝜆𝑦 + 𝐷𝑠𝑖𝑛ℎ 𝜆y)
𝑌′′ = 𝜆2𝑌

𝑋′′ = −𝜆2𝑋

Case 2: Assuming that  𝜇 = 0

𝑢 𝑥, 𝑦 = 𝑋 𝑥 𝑌 𝑦 = (𝐴𝑥 + 𝐵)(𝐶𝑦 + 𝐷)
𝑌′′ = 0

𝑋′′ = 0

Case 3: Assuming that  𝜇 > 0, 𝜇 = 𝜆2

𝑢 𝑥, 𝑦 = 𝑋 𝑥 𝑌 𝑦 = (𝐴𝑐𝑜𝑠ℎ 𝜆𝑥 + 𝐵𝑠𝑖𝑛ℎ 𝜆x)(𝐶𝑐𝑜𝑠 𝜆𝑦 + 𝐷𝑠𝑖𝑛 𝜆y)
𝑌′′ = −𝜆2𝑌

𝑋′′ = 𝜆2𝑋
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𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0

𝑢 𝑥, 𝑦
= ?

𝑢 0, 𝑦 = 0 𝐵1

𝑢 1, 𝑦 = 𝑓(𝑦) 𝐵4

𝜕𝑢

𝜕𝑦
𝑥, 0 = 0 𝐵2

𝜕𝑢

𝜕𝑦
𝑥, 1 = 0 𝐵3

Separation of Variables 
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𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0 𝑢 0, 𝑦 = 0 𝐵1

𝑢 1, 𝑦 = 𝑓(𝑦) 𝐵4

𝜕𝑢

𝜕𝑦
𝑥, 0 = 0 𝐵2

𝜕𝑢

𝜕𝑦
𝑥, 1 = 0 𝐵3

𝑢 𝑥, 𝑦 = 𝑋 𝑥 𝑌 𝑦 = (𝐴𝑐𝑜𝑠 𝜆𝑥 + 𝐵𝑠𝑖𝑛 𝜆x)(𝐶𝑐𝑜𝑠h 𝜆𝑦 + 𝐷𝑠𝑖𝑛ℎ 𝜆y)

𝑢 0, 𝑦 = 𝐴 𝐶𝑐𝑜𝑠h 𝜆𝑦 + 𝐷𝑠𝑖𝑛ℎ 𝜆y = 0 𝐶 = 𝐷 = 0 𝑜𝑟 𝐴 = 0

𝑢 𝑥, 𝑦 = 𝑠𝑖𝑛 𝜆𝑥 𝐶𝑐𝑜𝑠h 𝜆𝑦 + 𝐷𝑠𝑖𝑛ℎ 𝜆y  B =?

Separation of Variables 

Assume that  μ < 0, μ = −λ2

Applying boundary condition 1 (B1)
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𝜆 = 0 𝑜𝑟 𝐷 = 0 

𝑢 𝑥, 𝑦 = 𝑠𝑖𝑛 𝜆𝑥 𝐶𝑐𝑜𝑠h 𝜆𝑦 + 𝐷𝑠𝑖𝑛ℎ 𝜆y  

𝜕𝑢

𝜕𝑦
𝑥, 0 = 𝑠𝑖𝑛𝜆𝑥 𝐷𝜆 = 0

𝑢 𝑥, 𝑦 = 𝐶𝑠𝑖𝑛 𝜆x . 𝑐𝑜𝑠h 𝜆𝑦

Separation of Variables 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0 𝑢 0, 𝑦 = 0 𝐵1

𝑢 1, 𝑦 = 𝑓(𝑦) 𝐵4

𝜕𝑢

𝜕𝑦
𝑥, 0 = 0 𝐵2

𝜕𝑢

𝜕𝑦
𝑥, 1 = 0 𝐵3

Assume that  μ < 0, μ = −λ2

Applying boundary condition 2 (B2)



Dr. Ali Karimpour  Sep 2024

Lecture 3

77

𝜆 = 0 𝑜𝑟 𝐶 = 0 
𝜕𝑢

𝜕𝑦
𝑥, 1 = 𝐶𝜆𝑠𝑖𝑛𝜆𝑥. 𝑠𝑖𝑛ℎ𝜆 = 0

𝑢 𝑥, 𝑦 = 𝐶𝑠𝑖𝑛 𝜆x . 𝑐𝑜𝑠h 𝜆𝑦

𝑢 𝑥, 𝑦 = 0 𝜇 < 0 

Separation of Variables 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0 𝑢 0, 𝑦 = 0 𝐵1

𝑢 1, 𝑦 = 𝑓(𝑦) 𝐵4

𝜕𝑢

𝜕𝑦
𝑥, 0 = 0 𝐵2

𝜕𝑢

𝜕𝑦
𝑥, 1 = 0 𝐵3

Assume that  μ < 0, μ = −λ2

Applying boundary condition 3 (B3)

Assume that  μ = 0
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𝑢 𝑥, 𝑦 = 𝑋 𝑥 𝑌 𝑦 = (𝐴𝑥 + 𝐵)(𝐶𝑦 + 𝐷)

𝑢 0, 𝑦 = 𝐵 𝐶𝑦 + 𝐷 = 0 𝐶 = 𝐷 = 0 𝑜𝑟 𝐵 = 0

𝑢 𝑥, 𝑦 = 𝑥 𝐶𝑦 + 𝐷  A =?

Separation of Variables 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0 𝑢 0, 𝑦 = 0 𝐵1

𝑢 1, 𝑦 = 𝑓(𝑦) 𝐵4

𝜕𝑢

𝜕𝑦
𝑥, 0 = 0 𝐵2

𝜕𝑢

𝜕𝑦
𝑥, 1 = 0 𝐵3

Assume that  μ = 0

Applying boundary condition 1 (B1)
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𝐶 = 0

𝑢 𝑥, 𝑦 = 𝑥 𝐶𝑦 + 𝐷  

𝜕𝑢

𝜕𝑦
𝑥, 0 = 𝐶𝑥 = 0

𝑢 𝑥, 𝑦 = 𝐷𝑥 

Separation of Variables 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0 𝑢 0, 𝑦 = 0 𝐵1

𝑢 1, 𝑦 = 𝑓(𝑦) 𝐵4

𝜕𝑢

𝜕𝑦
𝑥, 0 = 0 𝐵2

𝜕𝑢

𝜕𝑦
𝑥, 1 = 0 𝐵3

Assume that  μ = 0

Applying boundary condition 2 (B2)
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𝑢 𝑥, 𝑦 = 𝐷𝑥

𝜕𝑢

𝜕𝑦
𝑥, 1 = 0

This is valid for constant f𝑢 1, 𝑦 = 𝐷 = 𝑓(𝑦) 

Separation of Variables 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0 𝑢 0, 𝑦 = 0 𝐵1

𝑢 1, 𝑦 = 𝑓(𝑦) 𝐵4

𝜕𝑢

𝜕𝑦
𝑥, 0 = 0 𝐵2

𝜕𝑢

𝜕𝑦
𝑥, 1 = 0 𝐵3

Assume that  μ = 0

Applying boundary condition 3 (B3)

Applying boundary condition 4 (B4)

Assume that  μ > 0, μ = λ2
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𝑢 𝑥, 𝑦 = 𝑋 𝑥 𝑌 𝑦 = (𝐴𝑐𝑜𝑠ℎ 𝜆𝑥 + 𝐵𝑠𝑖𝑛ℎ 𝜆x)(𝐶𝑐𝑜𝑠 𝜆𝑦 + 𝐷𝑠𝑖𝑛 𝜆y)

𝑢 0, 𝑦 = 𝐴 𝐶𝑐𝑜𝑠 𝜆𝑦 + 𝐷𝑠𝑖𝑛 𝜆y = 0 𝐶 = 𝐷 = 0 𝑜𝑟 𝐴 = 0

𝑢 𝑥, 𝑦 = 𝑠𝑖𝑛ℎ 𝜆𝑥 𝐶𝑐𝑜𝑠 𝜆𝑦 + 𝐷𝑠𝑖𝑛 𝜆y  B =?

Separation of Variables 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0 𝑢 0, 𝑦 = 0 𝐵1

𝑢 1, 𝑦 = 𝑓(𝑦) 𝐵4

𝜕𝑢

𝜕𝑦
𝑥, 0 = 0 𝐵2

𝜕𝑢

𝜕𝑦
𝑥, 1 = 0 𝐵3

Assume that  μ > 0, μ = λ2

Applying boundary condition 1 (B1)
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𝐷 = 0 𝑜𝑟 𝜆 = 0

𝑢 𝑥, 𝑦 = 𝑠𝑖𝑛ℎ 𝜆𝑥 𝐶𝑐𝑜𝑠 𝜆𝑦 + 𝐷𝑠𝑖𝑛 𝜆y  

𝜕𝑢

𝜕𝑦
𝑥, 0 = 𝑠𝑖𝑛ℎ𝜆𝑥 𝐷𝜆 = 0

𝑢 𝑥, 𝑦 = 𝐶𝑠𝑖𝑛ℎ 𝜆𝑥. 𝑐𝑜𝑠 𝜆𝑦

Separation of Variables 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0 𝑢 0, 𝑦 = 0 𝐵1

𝑢 1, 𝑦 = 𝑓(𝑦) 𝐵4

𝜕𝑢

𝜕𝑦
𝑥, 0 = 0 𝐵2

𝜕𝑢

𝜕𝑦
𝑥, 1 = 0 𝐵3

Assume that  μ > 0, μ = λ2

Applying boundary condition 2 (B2)
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𝐶 = 0 𝑜𝑟 𝜆 = n𝜋 𝑜𝑟 𝜆 = 0
𝜕𝑢

𝜕𝑦
𝑥, 1 = −𝐶𝜆𝑠𝑖𝑛ℎ𝜆𝑥. 𝑠𝑖𝑛𝜆 = 0

𝑢 𝑥, 𝑦 = 𝐶𝑠𝑖𝑛ℎ 𝜆𝑥. 𝑐𝑜𝑠 𝜆𝑦

𝑢𝑛 𝑥, 𝑦 = 𝐶𝑛𝑠𝑖𝑛ℎ 𝑛𝜋𝑥. 𝑐𝑜𝑠 𝑛𝜋𝑦

Separation of Variables 

Applying boundary condition 3 (B3)

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0 𝑢 0, 𝑦 = 0 𝐵1

𝑢 1, 𝑦 = 𝑓(𝑦) 𝐵4

𝜕𝑢

𝜕𝑦
𝑥, 0 = 0 𝐵2

𝜕𝑢

𝜕𝑦
𝑥, 1 = 0 𝐵3

Assume that  μ > 0, μ = λ2
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𝑢𝑛 𝑥, 𝑦 = 𝐶𝑛𝑠𝑖𝑛ℎ 𝑛𝜋𝑥. 𝑐𝑜𝑠 𝑛𝜋𝑦

𝑢 𝑥, 𝑦 = 𝐷𝑥 + ෍

𝑛=1

∞

𝐶𝑛𝑠𝑖𝑛ℎ𝑛𝜋𝑥 𝑐𝑜𝑠𝑛𝜋𝑦

𝑢 1, 𝑦 = 𝑓(𝑦) = 𝐷 + ෍

𝑛=1

∞

𝐶𝑛𝑠𝑖𝑛ℎ𝑛𝜋 𝑐𝑜𝑠𝑛𝜋𝑦

Separation of Variables 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0 𝑢 0, 𝑦 = 0 𝐵1

𝑢 1, 𝑦 = 𝑓(𝑦) 𝐵4

𝜕𝑢

𝜕𝑦
𝑥, 0 = 0 𝐵2

𝜕𝑢

𝜕𝑦
𝑥, 1 = 0 𝐵3

Assume that  μ > 0, μ = λ2

Applying boundary condition 4 (B4)
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𝑢𝑛 𝑥, 𝑦 = 𝐶𝑛𝑠𝑖𝑛ℎ 𝑛𝜋𝑥. 𝑐𝑜𝑠 𝑛𝜋𝑦

𝑢 1, 𝑦 = 𝑓(𝑦) = 𝐷 + ෍

𝑛=1

∞

𝐶𝑛𝑠𝑖𝑛ℎ𝑛𝜋 𝑐𝑜𝑠𝑛𝜋𝑦

𝐷 = න
0

1

𝑓 𝑦 𝑑𝑦 𝐶𝑛 sinh 𝑛𝜋 = 2 න
0

1

𝑓 𝑦 cos 𝑛𝜋𝑦 𝑑𝑦

Separation of Variables 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0 𝑢 0, 𝑦 = 0 𝐵1

𝑢 1, 𝑦 = 𝑓(𝑦) 𝐵4

𝜕𝑢

𝜕𝑦
𝑥, 0 = 0 𝐵2

𝜕𝑢

𝜕𝑦
𝑥, 1 = 0 𝐵3

Assume that  μ > 0, μ = λ2

Applying boundary condition 4 (B4)

𝐷 = න
0

1

𝑓 𝑦 𝑑𝑦 𝐶𝑛 =
2

sinh 𝑛𝜋
න

0

1

𝑓 𝑦 cos 𝑛𝜋𝑦 𝑑𝑦
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Separation of Variables 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0 𝑢 0, 𝑦 = 0 𝐵1

𝑢 1, 𝑦 = 𝑓(𝑦) 𝐵4

𝜕𝑢

𝜕𝑦
𝑥, 0 = 0 𝐵2

𝜕𝑢

𝜕𝑦
𝑥, 1 = 0 𝐵3

Assume that  μ > 0, μ = λ2

𝐷 = න
0

1

𝑓 𝑦 𝑑𝑦 𝐶𝑛 =
2

sinh 𝑛𝜋
න

0

1

𝑓 𝑦 cos 𝑛𝜋𝑦 𝑑𝑦

𝑢 𝑥, 𝑦 = 𝐷𝑥 + ෍

𝑛=1

∞

𝐶𝑛𝑠𝑖𝑛ℎ𝑛𝜋𝑥 𝑐𝑜𝑠𝑛𝜋𝑦
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Example 9: A rod with a length of l is completely insulated on its lateral surface, 

and the rod is so thin that the heat flow in it can be considered one-dimensional. 
Determine the temperature at any point of the rod at any given time.

87

𝜕2𝑢

𝜕𝑥2
= 𝑎2

𝜕𝑢

𝜕𝑡

𝑢 0, 𝑡
= 50

𝑢 𝑙, 𝑡
= 100

𝑢 𝑥, 0 = 100

𝑢 0, 𝑡 = 50 𝐵1 𝑢 𝑙, 𝑡 = 100 𝐵2 𝑢 𝑥, 0 = 100 𝐼1

𝑢 𝑥, 𝑡 = 𝑋 𝑥 𝑇(𝑡)
𝑋′′

𝑋
= 𝑎2

𝑇′

𝑇
= μ

Separation of Variables 

Solution: The one-dimensional heat equation must be used.
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𝑋′′ = 𝜇𝑋
𝑇′ =

𝜇

𝑎2
𝑇

𝜇 > 0 𝜇 = 0 𝜇 < 0

𝜕2𝑢

𝜕𝑥2
= 𝑎2

𝜕𝑢

𝜕𝑡

𝑋′′

𝑋
= 𝑎2

𝑇′

𝑇
= μ

Separation of Variables 
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Separation of Variables 

Case 1: Assuming that  𝜇 > 0, 𝜇 = 𝜆2

𝑇′ =
𝜆2

𝑎2
𝑇

𝑋′′ = 𝜆2𝑋

𝑢 𝑥, 𝑡 = 𝑋 𝑥 𝑇(𝑡) = (𝐴𝑐𝑜𝑠ℎ 𝜆𝑥 + 𝐵𝑠𝑖𝑛ℎ 𝜆x)(𝐶𝑒𝑥𝑝
𝜆2

𝑎2
𝑡)

Case 2: Assuming that  𝜇 = 0

𝑢 𝑥, 𝑡 = 𝑋 𝑥 𝑇 𝑡 = 𝐴𝑥 + 𝐵 𝐶
𝑇′ = 0

𝑋′′ = 0

Case 3: Assuming that  𝜇 < 0, 𝜇 = −𝜆2

𝑇′ = −
𝜆2

𝑎2
𝑇

𝑋′′ = −𝜆2𝑋

𝑢 𝑥, 𝑡 = 𝑋 𝑥 𝑇(𝑡) = (𝐴𝑐𝑜𝑠 𝜆𝑥 + 𝐵𝑠𝑖𝑛 𝜆x) 𝐶exp(−
𝜆2

𝑎2
𝑡)
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𝜕2𝑢

𝜕𝑥2
= 𝑎2

𝜕𝑢

𝜕𝑡

𝑢 0, 𝑡 = 50 𝐵1

𝑢 𝑙, 𝑡 = 100 𝐵2

𝑢 𝑥, 0 = 100 𝐼1

𝑢 𝑥, 𝑡 = 𝐴𝑥 + 𝐵

𝑢 0, 𝑡 = 𝐵 = 50 𝑢 𝑥, 𝑡 = 𝐴𝑥 + 50

𝑢 𝑙, 𝑡 = 𝐴𝑙 + 50 = 100 𝐴 = 50/𝑙 𝑢 𝑥, 𝑡 =
50

𝑙
𝑥 + 50

Separation of Variables 

Assume that  μ = 0

Applying boundary condition 1 (B1)

Applying boundary condition 2 (B2)



Dr. Ali Karimpour  Sep 2024

Lecture 3

91

𝜕2𝑢

𝜕𝑥2
= 𝑎2

𝜕𝑢

𝜕𝑡

𝑢 0, 𝑡 = 50 𝐵1

𝑢 𝑙, 𝑡 = 100 𝐵2

𝑢 𝑥, 0 = 100 𝐼1

𝑢 𝑥, 𝑡 =
50

𝑙
𝑥 + 50

Separation of Variables 

Assume that  μ = 0

Applying initial condition 1 (I1)

𝑢 𝑥, 0 =
50

𝑙
𝑥 + 50 = 100 ? ?

Assume that  μ < 0, μ = −λ2
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𝜕2𝑢

𝜕𝑥2
= 𝑎2

𝜕𝑢

𝜕𝑡

𝑢 0, 𝑡 = 50 𝐵1

𝑢 𝑙, 𝑡 = 100 𝐵2

𝑢 𝑥, 0 = 100 𝐼1

Separation of Variables 

Assume that  μ < 0, μ = −λ2

𝑢 𝑥, 𝑡 = (𝐴𝑐𝑜𝑠 𝜆𝑥 + 𝐵𝑠𝑖𝑛 𝜆x) exp(−
𝜆2

𝑎2
𝑡)

Applying boundary condition 1 (B1)

𝑢 0, 𝑡 = 𝐴exp(−
𝜆2

𝑎2
𝑡) = 50 Unacceptable

Assume combination of  μ < 0, μ = 0

𝑢 𝑥, 𝑡 =
50

𝑙
𝑥 + 50 + (𝐴𝑐𝑜𝑠 𝜆𝑥 + 𝐵𝑠𝑖𝑛 𝜆x) exp(−

𝜆2

𝑎2
𝑡)
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𝜕2𝑢

𝜕𝑥2
= 𝑎2

𝜕𝑢

𝜕𝑡

𝑢 0, 𝑡 = 50 𝐵1

𝑢 𝑙, 𝑡 = 100 𝐵2

𝑢 𝑥, 0 = 100 𝐼1

Separation of Variables 

Applying boundary condition 1 (B1)

Assume combination of  μ < 0, μ = 0

𝑢 𝑥, 𝑡 =
50

𝑙
𝑥 + 50 + (𝐴𝑐𝑜𝑠 𝜆𝑥 + 𝐵𝑠𝑖𝑛 𝜆x) exp(−

𝜆2

𝑎2
𝑡)

𝑢 0, 𝑡 = 50 + 𝐴exp(−
𝜆2

𝑎2
𝑡) = 50 𝐴 = 0 

𝑢 𝑥, 𝑡 =
50

𝑙
𝑥 + 50 + 𝐵𝑠𝑖𝑛 𝜆x exp(−

𝜆2

𝑎2
𝑡)
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𝜕2𝑢

𝜕𝑥2
= 𝑎2

𝜕𝑢

𝜕𝑡

𝑢 0, 𝑡 = 50 𝐵1

𝑢 𝑙, 𝑡 = 100 𝐵2

𝑢 𝑥, 0 = 100 𝐼1

Separation of Variables 

Applying boundary condition 2 (B2)

Assume combination of  μ < 0, μ = 0

𝑢 𝑥, 𝑡 =
50

𝑙
𝑥 + 50 + 𝐵𝑠𝑖𝑛 𝜆x exp(−

𝜆2

𝑎2
𝑡)

𝑢 𝑙, 𝑡 = 50 + 50 + 𝐵𝑠𝑖𝑛 𝜆𝑙 exp(−
𝜆2

𝑎2
𝑡) = 100 𝐵 = 0 𝑜𝑟 𝜆l = n𝜋

𝑢𝑛 𝑥, 𝑡 =
50

𝑙
𝑥 + 50 + 𝐵𝑛𝑠𝑖𝑛

𝑛𝜋

𝑙
𝑥exp −

𝑛2𝜋2

𝑎2𝑙2
𝑡



Dr. Ali Karimpour  Sep 2024

Lecture 3

95

𝜕2𝑢

𝜕𝑥2
= 𝑎2

𝜕𝑢

𝜕𝑡

𝑢 0, 𝑡 = 50 𝐵1

𝑢 𝑙, 𝑡 = 100 𝐵2

𝑢 𝑥, 0 = 100 𝐼1

Separation of Variables 

Applying initial condition 1 (I1)

Assume combination of  μ < 0, μ = 0

𝑢𝑛 𝑥, 𝑡 =
50

𝑙
𝑥 + 50 + 𝐵𝑛𝑠𝑖𝑛

𝑛𝜋

𝑙
𝑥exp −

𝑛2𝜋2

𝑎2𝑙2
𝑡

𝑢 𝑥, 𝑡 = 50 +
50

𝑙
𝑥 + ෍

𝑛=1

∞

𝐵𝑛 𝑠𝑖𝑛
𝑛𝜋

𝑙
𝑥exp −

𝑛2𝜋2

𝑎2𝑙2
𝑡

𝑢 𝑥, 0 = 100 = 50 +
50

𝑙
𝑥 + ෍

𝑛=1

∞

𝐵𝑛 𝑠𝑖𝑛
𝑛𝜋

𝑙
𝑥 𝐵𝑛 =

2

𝑙
න

0

𝑙

(50 −
50

𝑙
𝑥) sin

𝑛𝜋

𝑙
𝑥 𝑑𝑥

𝐵𝑛 =
100

𝑛𝜋
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𝜕2𝑢

𝜕𝑥2
= 𝑎2

𝜕𝑢

𝜕𝑡

𝑢 0, 𝑡 = 50 𝐵1

𝑢 𝑙, 𝑡 = 100 𝐵2

𝑢 𝑥, 0 = 100 𝐼1

Separation of Variables 

Assume combination of  μ < 0, μ = 0

𝑢 𝑥, 𝑡 = 50 +
50

𝑙
𝑥 + ෍

𝑛=1

∞

𝐵𝑛 𝑠𝑖𝑛
𝑛𝜋

𝑙
𝑥exp −

𝑛2𝜋2

𝑎2𝑙2
𝑡

𝐵𝑛 =
100

𝑛𝜋

𝑢 𝑥, 𝑡 = 50 +
50

𝑙
𝑥 +

100

𝜋
෍

𝑛=1

∞
1

𝑛
𝑠𝑖𝑛

𝑛𝜋

𝑙
𝑥 exp −

𝑛2𝜋2

𝑎2𝑙2 𝑡
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𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
= 0

𝑋′′

𝑋
+

𝑌′′

𝑌
+

𝑍′′

𝑍
= 0

𝑢(𝑥, 𝑦, 𝑧) = 𝑋 𝑥 𝑌 𝑦 𝑍(𝑧)

𝑋′′

𝑋
= a

𝑌′′

𝑌
= b

𝑍′′

𝑍
= −a − b

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
= 0

𝑋′′

𝑋
= −

𝑌′′

𝑌
−

𝑍′′

𝑍

Separation of Variables 
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Exercises

Exercise 10: Obtain the solution to the one-dimensional wave 
differential equation for the following conditions.

L=π، 𝑐2=1 ، g(x)= 0 ، f(x) =ksin(2x)

Exercise 11: Determine the temperature distribution in a rod with a 

length of 80 cm, assuming the initial temperature is 100sin(πx/80) and 
the temperature at both ends is zero.

Exercise 12: Determine the temperature of a rod with length L if both 
ends are at zero degrees and the initial temperature of the rod is f(x).

𝑓 𝑥 = ቐ
𝑥 0 < 𝑥 < 𝐿/2

𝐿 − 𝑥
𝐿

2
< 𝑥 < 𝐿
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