Engineering Mathematics

Ali Karimpour Professor Ferdowsi University of Mashhad

Introduction

What do we mean by engineering mathematics?

Engineering mathematics: is a branch of applied mathematics that applies mathematical theory to complex real-world problems, combing theoretical concepts with practical engineering challenges to solve today's technological issues.

Any Example?

□ Advanced Engineering Mathematics, E. Kreyszig

Advanced Engineering Mathematics, C. R. Wylie

Complex Variables and Applications, J. Brown and R. Churchill

The content of this course

1. Fourier Series and Fourier Integral.

2. Partial Differential Equation and Its Solutions.

3. Complex Analysis. (The theory of functions of a complex variable)

Lecture 1

Engineering Mathematics Course Syllabus.

Part One: Fourier Series and Fourier Integral.

- Introduction to Fourier Series
- Determining Fourier Series Coefficients and Related Theorems
- Half-Range Expansions
- Different Representations of Fourier Series
- Applications of Fourier Series in Engineering
- Fourier Integral
- Applications of Fourier Integral in Engineering

Engineering Mathematics Course Syllabus.

Part Two: Partial Differential Equation and Its Solutions.

Introduction to Partial Differential Equations

Derivation of Partial Differential Equations

D'Alembert Solution for One-Dimensional Wave Equations

Classification of Partial Differential Equations

Solving Partial Differential Equations by Separation of Variables

Engineering Mathematics Course Syllabus.

Part Three: Complex Analysis. (The theory of functions of a complex variable)

Fundamentals

Analytic Functions and Differentiability

□ Integration in the Complex Plane

Complex Series

Residue Theory and Calculation of Real Integrals

Prerequisite and Grading

Prerequisite

v English Knowledge, Primary Mathematics

Grading

- v Pop quizzes (15% / 3 points or 1.5 points).
- v Assignments (10% by your TA / 2 points).
- v Make-up Exam (if class time permits, 50% of quizzes / 1.5 points)
- v Midterm (25% around 8th week / 5 points).
- v Final (50% scheduled by office of the registrar / 10 points).
- v Extra credit with Strict and Fair Assessments (10% additional to your grade / 2 extra points)

Vector decomposition

Application? Vector decomposition W

Dr. Ali Karimpour Sep 2024

Lecture 1

Vector decomposition

$\vec{X} = a\vec{\imath} + b\vec{\jmath} + c\vec{k}$

At which condition we can decompose \vec{X} to \vec{i} , \vec{j} , and \vec{k} ?

How can we find a, b, and c?

Vector space

A vector space (also called a linear space) is a set whose elements, often called vectors, may be added together and multiplied by numbers called scalars. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field.

Vector space property:

- 1- Closure Property of addition: $\forall x, y \in V$, then $x + y \in V$
- 2- Closure Property of scalar multiplication:

 $\forall \alpha \in F \& y \in V, then \alpha y \in V$

3- Commutative property:

 $\forall x, y \in V, then x + y = y + x$

4- Associative property:

 $\forall x, y, z \in V, then \ x + (y + z) = (x + y) + z$

Vector space

Vector space property(continue): 5- Additive identity property: $\exists 0 \in V s.t. \forall x \in V, x + 0 = x$ 6- Additive inverse property: $\forall x \in V, \exists -x \in V \text{ s.t. } x + (-x) = 0$ 7- Vector distribution property: $\forall \alpha \in F \& x, y \in V$, then $\alpha(x + y) = \alpha x + \alpha y$ 8- Scalar distribution property: $\forall \alpha, \beta \in F \& x \in V, then (\alpha + \beta)x = \alpha x + \beta x$ 9- Scalar associative property: $\forall \alpha, \beta \in F \& x \in V, then \alpha(\beta x) = (\alpha \beta) x$ 10- Scalar identity property: $\exists 1 \in F \text{ s.t.} \forall x \in V, then 1x = x$ Dr. Ali Karimpour Sep 2024

Some famous vector spaces

 R^n over the field of R

 C^n over the field of C

$$\begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} x_1, x_2, \dots, x_2 \in R$$
$$\begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} x_1, x_2, \dots, x_2 \in C$$
$$\begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$

A periodic function with period of T over the field of R

Sep 2024

Basis in vector space

A set of vectors in a vector space V is called a **basis**, if every element of V may be written in a **unique** way as a finite linear combination of that basis.

[1]		[0]		[0]	一部为世纪下了上方。一部为世纪下	
0	,	1	and	0	are a set of basis for R ³	百百万日
	P		24	11		2449.1
[1]		[1]		[1]		
0	,	1	and	1	are a set of basis for R ³	百万百百
		0		11		
[1]		[0]		[1]	CROTTER SEATON FEETS	12 14 C
0	,	1	and	! 1	are not a set of basis for R ³	Why?
	4			Lo		(4) 起来
F 11	2	F01	F1		F01	AR G
0	2	1	. 1	and	$1 0$ are not a set of basis for \mathbb{R}^3	Why?
0		0	0		1 1000000000000000000000000000000000000	14
-01	1		/ -01			Dr. Ali Karimpour

Inner product in vector space

$$\forall x, y \in \mathbb{R}^n \qquad \langle x, y \rangle = \sum_{i=1}^n x_i y_i$$

 $\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} and \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} are a set of orthogonal basis for R³$

 $\forall f(x), g(x) \in Periodic functions$

$$\langle f(x), g(x) \rangle = \int_{d}^{d+T} f(x)g(x)dx$$

n

Dr. Ali Karimpour Sep 2024

15

Vector decomposition

Example: Present $x = \begin{bmatrix} 2 \\ 4 \\ \sqrt{2} \end{bmatrix}$ with respect to following basis:

$$b_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, b_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} and b_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Vector decomposition

Example: Present $x = \begin{bmatrix} 2 \\ 4 \\ \sqrt{2} \end{bmatrix}$ with respect to following basis:

$$b_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, b_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} and b_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Response of an electric circuit?

Consider the following system. Given the input E(t), it is desired to calculate I(t).

Electrical analog of the system (RLC-circuit)

$$LI'' + RI' + \frac{1}{C}I = E'(t)$$

Periodic function decomposition (Fourier series)

Periodic function:

f(x) T=2p x

What is the basis for this space?

Lightning

Partial differential equation

21 Dr. Ali Karimpour Sep 2024

Shaft rotation

Partial differential equation

Dr. Ali Karimpour Sep 2024

22

Temperature analysis

Partial differential equation

Dr. Ali Karimpour Sep 2024

23

Integral computation

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} cosmx dx$$

$$\int_{0}^{2\pi} \frac{d\theta}{1 + asin\theta} - 1 < a < 1$$

Complex analysis

24