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Lecture 3

Introduction to Multivariable Control

Topics to be covered include:
« Multivariable Connections

« Multivariable System Representation

Polynomial Matrix Description & Rosenbrock’s System Matrix
General Control Problem Formulation

Matrix Fraction Description (MFD)
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Lecture 3

Multivariable Connections

« Cascade (series) interconnection of transfer matrices

U(s)

Y(s)

—

G,(s)

»G,(S)

—

Y(8) =G,(8)G,(s)U(s) = G(s)U (s)

G(s) =G, (8)G,(S)

e Parallel interconnection of transfer matrices

U(s)

—

> Gl(S) ]

:Gz(s)'

+
+

:
|

Y(s)

#G,(5)G,(s)

Generally

Y(8) =(Gy(8) +G,(s)U(s) =G(s)U (s)

G(5) = G,(5) + G,(5)
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Lecture 3

Multivariable Connections

e Feedback interconnection of transfer matrices

uGs),

Y(s)

—>T_’ G,(s)

"G, (s)

-

Y(5) = G,(8)G,()U(5) - Y (5))

Y (s) = (1 +G,(5)G,(5)) "G, (s)Gy(s)U () =G(s)U(s)

G(s) = (I +G,(5)G,(5)) "G,(s)G.(5)

A useful relation in multivariable is push-through rule

N\

(I +G,(5)G,(8)) "G, (5) =G, (s)(1 +G,(s)G,(s)) ™

Exercise 3-1: Proof the push-through rule s
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Lecture 3

Multivariable Connections

MIMO rule: To derive the output of a MIMO system,

Start from the output and write down the blocks as you meet
them when moving backward (against the signal flow)
towards the input.

If you exit from a feedback loop then include a term(1 -L)™
or (1+L)* according to the feedback sign where L is the
transfer function around that loop (evaluated against the
signal flow starting at the point of exit from the loop).

Parallel branches should be treated independently and their
contributions added together. °
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Lecture 3

Multivariable Connections

Example 3-1: Derive the transfer function of the system shown in figure

—=
Py, —-;-5'—- K

s

z=P,K(l - P,K) Py

>

':"q-l" =

z=P,0

L= (Pll + P, K(I =P,K)™ le) @
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Lecture 3

Introduction to Multivariable Control

Topics to be covered include:

<+ Multivariable Connections

<« Multivariable System Representation

Polynomial Matrix Description & Rosenbrock’s System Matrix
General Control Problem Formulation

Matrix Fraction Description (MFD)
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Lecture 3

Polynomial Matrix Description

General form of a polynomial matrix description

System Variables \ /
d d

0=k (%]5(:)% [%]y(f)

System Inputs

System Outputs

P(s)é(s)=
Y (s)=R(s)

e 1Q

(5)U ) - P(s) Q(S)__f(S)__[ 0 }

G e R (s) W (s)|[-Us)] [ )

Rosenbrock’s system matrix
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Lecture 3

Polynomial Matrix Description

Example 3-2: A position control system.




Lecture 3

Polynomial Matrix Description

Example 3-2(Continue): A position control system.

Polynomial matrix description

B 2 ] g(t)
R d_z Pk oY [0
dt dt [ _ }ea (t)
K, a L, a +R, 1, (t) _7
} dt dt 1
_ o(t) t
y(t)=[1 o{ia(t)} u(t)

[P(s) Q(s)}[f:(s)H 0 ] s —K L 0p6(s) ] [0

R(s) W (s)||~ue) || ] | s LsER L) L8 =) O

__________________________________

-1 0 O0|-Ex(s)] |-Y(s)

Rosenbrock’s system matrix
10

Dr. Ali Karimpour Feb 2022



Lecture 3

Polynomial Matrix Description

Transfer function matrix from Rosenbrock’s system matrix.

} Rosenbrock’s system matrix

{—Y (s)

P(s) Qfs) F(s)}

R(s) W (s)|[-Us)
Suppose P is nonsingular.
Y (5)=(R(S)P(8)Q(S) +W (S)U (5)

G(s) = R(5)P(8)Q(8) +W ()
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Lecture 3

Polynomial Matrix Description

System order

P(s) 0(s) F(S)H o }

—R(s) W (s)||[-U@)| [¥ ()

System order is the number of independent initial condition that is necessary to
describe the system.

System order in Rosenbrock’s system matrix is equal to degree of det(P(s)).

For previous example:

- o o i
I8+ 1s -K | 0 ©@) 0 IP(s)| = (Js* + fs)(L,s + R,) + KK,s
Kys  Ls+R 1) L(s) |=| O

1 0 o0 —E,(5)] |-Y(s) System order is 3

: - and P(s) is 2x2
12
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Lecture 3

Polynomial Matrix Description

State Space Model and Rosenbrock’s system matrix
X = Ax+Bu P(s) Q(s)|l &(s) | | ©
y =Cx + Du ~R(s) W (s)||[-U(s)| [Y (s)

sl—-A B X(s)] [ ©
{—c D}{—U(s)}_{—Y(s)}

G(s)=C(sl —A)'B+D

Remarkl: (sl-A) is nxn and also system order is n. But generally dimension of P(s) in
Rosenbrok’s system matrix is not the same as system order.(See previous example)

Remark2: G(s) is strictly proper if D=0 otherwise it is propetr.
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Lecture 3

Polynomial Matrix Description

Example(Two important remarks)

(s +2)2&(s) = sU(s) {(s+1){ g3 }{ () }{ 0 }

Y(s)=£&(s)+(2—s)U(s) —1 | 2—s|-U(s) -Y(s)
4 R . 35+2
G(s)=R(s)P (s)Q(s)+W(s)_(S+1)2+ _(s+1)2

Remarkl: G(s) Is strictly proper but W(s)=2-s !

Remark 2: Another form of Resenbrock’s system matrix.

1 0 0 syl [ 07 °
0 (s+)° s | &s) |=| O
0 -1 2-s|-U(@B)] [-Y(s) y
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Lecture 3

Introduction to Multivariable Control

Topics to be covered include:

<+ Multivariable Connections

<« Multivariable System Representation

Polynomial Matrix Description & Rosenbrock’s System Matrix
General Control Problem Formulation

Matrix Fraction Description (MFD)
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Lecture 3

General Control Problem Formulation

System without uncertainty (weighted) (weighted)

CXOZENOuSs inputs w :xugenuuﬁ (uli] L'FI'I.IL’S
—_— il

11 tr
control signals sensed outputs

w exogenous inputs: Inputs that are not used to control the system. 1.e. references,
disturbances, noises

Z exogenous outputs: Outputs that we want to control them and push them to zero.

u control signals: Signals that produced by controller to control the system.

v sensed outputs: Signals that used by controller.

Problem description: Derive K(s) such that closed loop system be stable and z be

as small as possible for bounded w. 16
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Lecture 3

General Control Problem Formulation

Problem description: Derive K(s) such that (weighied) Cropenon outputs

closed loop system be stable and z be as small Ep—' P
as possible for bounded w. Jo
control signals sensed outputs
gn - p
z] [Py P,fw
v Py Py u
u=Kvy
Z=(|311+|312K(| _PzzK)_lpzl)‘N:NW N =F (P, K)

Problem description: Make N stable and as small as possible.
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Lecture 3

General Control Problem Formulation

R R T N d —lg (s)
Example 3-3: Change following system to general -
control problem formulation. " oo K ()]G (5 e

r | [
w = d] — P Z=1r—y +
" n
u K

§
I Gl 0i-Gs ] i z=(P, +P,K(I —P,K) P, Jw=Nw
u

r
z=( —Ga(s) 01=GEKES)U+GEKE)™ I —Gals) —1D H
n

r
2= U+ 6OKE)™ ~6EU+EOKE)™ GEREU+GORE) ™)
S(S') S(S') T(S)Y Dr. Al KarimpouTrl Feb 2022




Lecture 3

Introduction to Multivariable Control

Topics to be covered include:

<+ Multivariable Connections

<« Multivariable System Representation

Polynomial Matrix Description & Rosenbrock’s System Matrix
General Control Problem Formulation

Matrix Fraction Description (MFD)
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Lecture 3

Matrix Fraction Description (MFD)

Let g(s)=— s+1 IS a SISO transfer function

S°+55+6
We can write g(s)=(s +1)(52+55+6)_1

polynomial ~/ \_— polynomial

This is a Right Matrix Fraction Description (RMFD)

We can alsowrite g(s):(52+53+6)_1(s+1)

polynomial ~/ \-— polynomial

This is a Left Matrix Fraction Description (LMFD)

Remark: Are LMFD and RMFD the same for any system? 20
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Lecture 3

Matrix Fraction Description (MFD)

Let g(s)=— s+1 IS an SISO transfer function

S°+55+6
We can write g(s)=(s +1)(52+55+6)_1

polynomial ~/ \_— polynomial

This is a Right Matrix Fraction Description (RMFD)

We can also write g(s)=((s +1)(s+a))((s+a)(s2 +5s+6))_1

polynomial —/ \-— polynomial

This is a also a Right Matrix Fraction Description (RMFD)

Remark: Uniqueness of MFD? )1
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Lecture 3

Matrix Fraction Description (MFD)

Matrix Fraction Description for Transfer Function Matrix

G(s) = 1 N (s) G is a pxq matrix
d(s)

G(s) = (d ()l ) )1 N(s) = DEl (3)@ Left Matrix Fraction Description

(LMFD)
polynomiil/ \ polynomial

matrix matrix

— 1 _ -1 Right Matrix Fraction Description
G(9)=NEEE)1,)* =[P 6) Pt
polynomiil/ \— polynomial

matrix matrix
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Lecture 3

Matrix Fraction Description (MFD)

Matrix Fraction Description for Transfer Matrix

1
G(s) = ﬁ N (s) Suppose G is a pxg matrix so

G(s) = (d (s)1, }1 N(s) = DA (s)N, (s) -t Matrx (F[ah;gg; Description

Degree of denominator matrix is defined as: deg D, (s) =degdet D, (S) =rp

G(s) =N (S)(d (S) | : )1 — NR (S) Dle (S) Right Matrix(:;rl\f;c;ilcj);] Description

Degree of denominator matrix is defined as: ~ deg D (s) =deg det D, (s) =rq
23
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Lecture 3

Matrix Fraction Description (MFD)

We can show that the MFD is not unique, because, for any nonsingular

mxm matrix Q(s) we can write G(s) as:
G(s) = Np (5)(Q)25) DR () = (N (5)(5) (Dg (8)€(s))
Q(s) i1s said to be a right common factor.

When the only right common factors of N.(s) and D;(s) Is unimodular
matrix, then, we say that the RMFD (N (s),D:(s)) is irreducible.

24
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Lecture 3

Matrix Fraction Description (MFD)

Example 3-4 Consider

4
1 -1 1 -1
If D, (s) and N, (s) are not irreducible, ~ G(s) =D ()N, (s) = {_1 3+1] L HJ
find irreducible one.

Checking irreducibility(left common factor):

S R B
Form: [V, (5) x%ggL{; o 3+J

Do preliminary transformation(on columns) to make right part zero:

1)Add-C,onc, |1 1 1 O} 2) Add -C, on C, F -0 0}
1 s+1 -1 0 1 s+1 -2 0

3)Addc,onc, |1 O O 0} 4) Add 0.5(s+2)C, on C, F 0 0 0}
1 s+2 -2 0 1 0 -2 0
5) Change C;andC, |1 0 0 0 - {10
1 .20 0 Common factoris: Q(s) = 1 _o

Since Q(s) is unimodular so D (s) and N (s) are irreducible. o5
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Lecture 3

Matrix Fraction Description (MFD)

Example 3-5 Consider

—s sP+s| [ s sP+s
If D,(5) and N, () are not G(S>=DL1(S’NL(S>:L_2 s+2} L+2 s+2}
irreducible, find irreducible one.

Checking irreducibility(left common factor):
S s°+s —S S°+s
Form: N, (s) D,(s)|=
NG D) L+2 s+2 s-2 s+2}
Do preliminary transformation(on columns) to make right part zero:

1)Add-C,onC,| s s°+s -s 0| 2)AddC,onCs| s s’+s 0 0
s+2 s+2 s-2 0 s+2 s+2 25 O

3) Add —(s+1)C, on C, S 0 00
s+2 —-s(s+2) 2s O

4) Add 0.5(s+2)C; 0on C, {s 0 0 O}

s+2 0 25 O 26
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Lecture 3

Matrix Fraction Description (MFD)

Example 3-5 Consider

—s sP+s| [ s sP+s
If D,(5) and N, () are not G(S>:DL1(S’NL(S>:L_2 s+2} L+2 s+2}
irreducible, find irreducible one.

Checking irreducibility s s?4+s _s s24s
(left common factor): [N.(s) D.(9)]= S12 S42 S_2 42
1) Add -C,on C, 2)Add C,onC; 3)Add—(s+1)C,onC, 4)Add0.5(s+2)C;0nC,
{ s 0 0 O}

5) Change C, and C, s+2 0 25 0
S 0O 0 O . S 0
{ } Common factoris: Q(S) :{ }
s+2 25 0 O S+2 2S
O(s) D, (s) = D, (s) O(s) N, (s) = N,(s)

A | -1 s+1 ‘ 1 s+1 N )
DL(S)_{ ] s+2} N (s) _{ 0 _S+2:| G(s)=D; (s)N,(s) = Dis)NL(,g)
2 27
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Lecture 3

Matrix Fraction Description (MFD)

Why previous procedure leads to greatest left common factor:

Let: G(s)=D;*(s)N,(s) Gis pxq

By suitable preliminary transformation :

[N.(s) D.(s)] — [Q(s) O]

We must show that Q(S) is the greatest left common devisor.

= [N.(s) D.(s)(s)=[Q(s) O]
Since U is unimodular so its inverse is also unimodular thus
= [N.(s) D.(s)]=[Q(s) 0Ju(s)
-1 —V(s) = V11(S) V12 (S)
So we have ﬂ - (S) _V( ) |:V21(S) V22 (S)}

Clearly Q(s) is a left common divisor but why greatest common divisor?
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Lecture 3

Matrix Fraction Description (MFD)

Why previous procedure leads to greatest left common factor:

N (8) =Q(s)V,.(s) D.(s) =Q(s)V,.(s)

Clearly Q(s) is a left common divisor but why greatest common divisor?

Ull (S) U12 (S):|

Now let: U(S):{U ) U (s)

[N.(s) D.(s)M(s)=[Q(s) 0] = N (5)U,(s)+D,(s)U,,(s)=Q(s)

Let W(s) is another left common divisor so:
W (s)N, (s)U,,(s) +W (s)D, (s)U,,(s) = Q(s)
So W(s) is a left common divisor of Q(s), = Q(s) is gcd.

29
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Lecture 3

Matrix Fraction Description (MFD)

An important theorem.

Theorem 1: D, (s) and N, (s) are left coprime (irreducible) if and only i
there exist two polynomial matrix X, (s) and Y, (s) such that following

equation satisfied.
N, ()X, (s)+ D, (s)Y,(s) =

This equation is called simple Bezout identity.

Example 3-6: Let N, (s)=s+2 and D (s)=s?+5s+6, are they left coprime?
One cannot derive X(s) and Y(s) s.t. N (s)X(s)+D_(s)Y(s)=1

Example 3-7: Let N, (s)=s+1 and D, (s)=s?+5s+6, are they left coprime?

Example 3-8: Let N(s)=2s and D (s)=2s°+10s+2, are they left coprime?

Let X(s)=-s-2 and Y(s)=0.5 s.t. N (s)X(s)+D,(s)Y(s)=1 30
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Lecture 3

Matrix Fraction Description (MFD)

Left MFD
G(s)=D_(s)N_(s) Gis pxq
! )
Pxp pPxq

Are they coprime?

N.(s) D(s)] - [Q() 0
N.(s) D.(s)M(s)=[Q(s) O

If Q(s) is unimodular

IN.Gs) DM ©S)=[I 0]

Bezout identity:
N, (s)X,(s)+D,(s)Y,(s) =1

Right MFD
G(s)=N.(s)D.(s) Gis pxqg
J J

pPxq  gxq
Are they coprime?

{NR(S)} {Q(S)}
—>
D, (s) 0
V(S){NR(s)} :{Q(S)}
D, (s) 0
If Q(s) is unimodular
N (s) I

Ol o] = Lo
Bezout identity:
X, ()N, (5) +Y,(s)D,(5) =



Lecture 3

In the reminder of course ............

Coprime Factorizations over Stable Transfer Functions

Now let P be a proper real-rational matrix. A right-coprime factorization
(rcf) of P is a factorization of the form

P=NM"

where N and M are right-coprime in the set of stable transfer matrices.

Similarly, a left-coprime factorization (Icf) of P has the form

P=M"N

32
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Lecture 3

Exercises

Exercise 3-1: Proof the push-through rule.
Exercise 3-2: Derive Rosenbrock’s system matrix for following system. What is the

order of system? d&,  d3¢,
+ 3 _gl
dt dt
dg,
22 =_£ +u
i St
y= ‘51
Exercise 3-3: Derive Rosenbrock’s system matrix for following system. What is the
order of system? 3 2
y d§1+d€2+d€3=§1+§z
dt dt dt
d*&
dt22 = 52 + ul
d
% = &3+ U,
Yi= 651

Y, = 52 33
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Exercises

Exercise 3-4: a)Derive two different order MFD for

following system.
b) Check the irreducibility of derived MFD 1n part “a”

c) Derive an irreducible MFD for the system.

G(s) =

Exercise 3-6: Derive an irreducible RMFD for following system.

Lecture 3

[ 5+2 s |
(s+1)° (s+2)°
—5s S
| s+2  (s+2)°

S+2 0
G(s)=| 3

2

.S _

Exercise 3-7: Derive general control problem formulation for following system

and derive N.(we need y track r)

—>h(S)

—O—»K(S)

A\ 4

G(s)
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