Multivariable Control Systems

Ali Karimpour Professor Ferdowsi University of Mashhad

Lecture 2

References are appeared in the last slide.

Linear Algebra

Topics to be covered include:

- Vector Spaces, Norms
- Singular Value Decomposition
- Unitary, Primitive, Hermitian and positive(negative) definite Matrices
- Relative Gain Array (RGA)
- Matrix Perturbation

Vector Spaces

A set of vectors and a field of scalars with some properties is called vector space.

To see the properties have a look at Linear Algebra written by Hoffman.

$$\forall \alpha_1 \text{ and } \alpha_2 \in Field$$

$$\Rightarrow$$

$$\alpha_1 v_1 + \alpha_2 v_2 \in \text{VectorSpace}$$

 $\forall v_1 \text{ and } v_2 \in \text{Vector Space}$

Important vector spaces are:

 R^n over the field of real numbers (R)

 C^n over the field of complex numbers (C)

Continuous functions on the interval [0,1] over the field of real numbers (R)

Norms

To meter the lengths of vectors in a vector space we need the idea of a norm.

Norm is a function that maps a vector x to a nonnegative real number

$$\| \cdot \| \colon F \to R^+$$

A Norm must satisfy following properties:

1-Positivity
$$||x|| > 0$$
, $\forall x \neq 0$ and $||x|| = 0$ for $x = 0$

2 – Homogeneity
$$\|\alpha x\| = |\alpha| \|x\|$$
, $\forall x \in F$ and $\forall \alpha \in C$

3 – Triangle inequality
$$||x + y|| \le ||x|| + ||y||$$
, $\forall x, y \in F$

Norm of vectors

$$\|x\|_p = \left(\sum_i |a_i|^p\right)^{\frac{1}{p}}$$

$$p \ge 1$$

For p=1 we have 1-norm or sum norm

$$||x||_1 = \left(\sum_i |a_i|\right)$$

For p=2 we have 2-norm or euclidian norm

$$||x||_2 = \left(\sum_i |a_i|^2\right)^{1/2}$$

For
$$p=\infty$$
 we have ∞ -norm or max norm

$$||x||_{\infty} = \max_{i} \{|a_i|\}$$

Norm of vectors

Let
$$x = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$
 Then $\|x\|_1 = (1+1+2) = 4$

$$\|x\|_2 = \sqrt{1^2 + 1^2 + 2^2} = \sqrt{6}$$

$$\|x\|_{\infty} = \max(1,1,2) = 2$$

Exercise 2-1: Introduce a non-scalar vector with identical 1, 2 and ∞ norm.

Norm of matrices

We can extend norm of vectors to matrices

Sum matrix norm (extension of 1-norm of vectors) is:
$$||A||_{sum} = \sum_{i,j} |a_{ij}|$$

Frobenius norm (extension of 2-norm of vectors) is:
$$||A||_F = \sqrt{\sum_{i,j} |a_{ij}|^2}$$

Max element norm (extension of max norm of vectors) is: $||A||_{\max} = \max_{i} |a_{ij}|$

Matrix norm

A norm of a matrix is called matrix norm if it satisfies

$$||AB|| \le ||A||.||B||$$

Define the induced-norm of a matrix A as follows:

$$||A||_{ip} = \max_{||x||_p=1} ||Ax||_p$$

Any induced-norm of a matrix, is a matrix norm

Matrix norm for matrices

$$||A||_{ip} = \max_{||x||_p=1} ||Ax||_p$$

If we put p=1 so we have

$$||A||_{i1} = \max_{\|x\|_1=1} ||Ax||_1 = \max_j \sum_i |a_{ij}|$$
 Maximum column sum

If we put p=inf so we have

$$||A||_{i\infty} = \max_{||x||_{\infty}=1} ||Ax||_{\infty} = \max_{i} \sum_{i} |a_{ij}| \qquad \text{Maximum row sum}$$

If we put p=2 so we have

$$||A||_{i2} = \max_{||x||_2=1} ||Ax||_2 = \max_{||x||_2=1} \frac{||Ax||_2}{||x||_2} = \sigma_1(A) = \sigma_{\max}(A) = \overline{\sigma}(A)$$

Linear Algebra

- Vector Spaces, Norms
- Singular Value Decomposition (SVD)
- Unitary, Primitive, Hermitian and positive(negative) definite Matrices
- Relative Gain Array (RGA)
- Matrix Perturbation

Singular Value Decomposition (SVD)

Theorem 2-1: Let $M \in C^{l \times m}$. Then there exist $\Sigma \in R^{l \times m}$ and unitary matrices

 $Y \in C^{l \times l}$ and $U \in C^{m \times m}$ such that

$$M = Y \Sigma U^H$$

$$\Sigma = \begin{bmatrix} S & 0 \end{bmatrix} \quad or \begin{bmatrix} S \\ 0 \end{bmatrix} \quad S = \begin{bmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & \sigma_r \end{bmatrix} \quad \sigma_1 \ge \sigma_2 \ge \sigma_3 \ge \dots \ge \sigma_r \ge 0$$

$$r = \min\{l, m\}$$

$$Y = [y_1, y_2, ..., y_l], U = [u_1, u_2, ..., u_m]$$

Singular Value Decomposition (SVD)

Example 2-1

$$M = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 4 & 1 \\ 4 & 2 & 8 \end{bmatrix}$$

$$M = \begin{bmatrix} 0.04 & -0.53 & -0.85 \\ 0.38 & -0.77 & 0.51 \\ 0.92 & 0.34 & -0.17 \end{bmatrix} \begin{bmatrix} 9.77 & 0 & 0 \\ 0 & 4.53 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.50 & -0.33 & -0.80 \\ 0.35 & -0.77 & 0.53 \\ 0.79 & 0.55 & 0.27 \end{bmatrix}^{H}$$

$$u_{1} = \begin{bmatrix} 0.50 \\ 0.35 \\ 0.79 \end{bmatrix} \qquad Mu_{1} = 9.77 \begin{bmatrix} 0.04 \\ 0.38 \\ 0.92 \end{bmatrix} = 9.77 y_{1} \qquad u_{2} = \begin{bmatrix} -0.33 \\ -0.77 \\ 0.55 \end{bmatrix} \qquad Mu_{2} = 4.53 \begin{bmatrix} -0.53 \\ -0.77 \\ 0.34 \end{bmatrix} = 4.53 y_{2}$$

$$u_3 = \begin{bmatrix} -0.80 \\ 0.53 \\ 0.27 \end{bmatrix}$$

 $u_3 = \begin{bmatrix} -0.80 \\ 0.53 \end{bmatrix}$ Has no affect on the output or

$$Mu_3 = 0$$

Singular Value Decomposition (SVD)

Theorem 2-1: Let $M \in C^{l \times m}$. Then there exist $\Sigma \in R^{l \times m}$ and unitary matrices

 $Y \in C^{l \times l}$ and $U \in C^{m \times m}$ such that

$$M = Y \Sigma U^H$$

Y can be derived from eigenvectors of MM^{H}

U can be derived from eigenvectors of $M^H M$

 $\sigma_1, \sigma_2, ..., \sigma_r$ are roots of nonzero eigenvalues of $M^H M$ or $M M^H$

Exercise 2-2: Introduce a non-vector matrix with identical 1, 2 and ∞ norm.

Linear Algebra

- Vector Spaces, Norms
- Singular Value Decomposition (SVD)
- Unitary, Primitive, Hermitian and positive(negative) definite Matrices
- Relative Gain Array (RGA)
- Matrix Perturbation

Norm of real functions(signals)

Consider continuous signals on the interval $[0,\infty)$ and $p \ge 1$

p-norm is defined as

$$||u(t)||_p = \left(\int_0^\infty |u(t)|^p dt\right)^{1/p}$$

∞-norm is defined as

$$||u(t)||_{\infty} = \sup_{t} |u(t)|$$

2-norm is defined as

$$||u(t)||_2 = \left(\int_0^\infty |u(t)|^2 dt\right)^{1/2}$$

1-norm is defined as

$$||u(t)||_1 = \int_0^\infty |u(t)|dt$$

Norm of real functions(signals)

Exercise 2-3: Derive 1, 2 and ∞ norm of following signals.

$$u_1(t) = \frac{1}{(2t+3)^2}$$

Ans: 1/6, 0.0786 and 1/9

$$u_2(t) = \frac{1}{2t+3}$$

Ans: ∞ , 0.4082 and 1/3

$$u_3(t) = sint$$

Ans: ∞ , ∞ and 1

Norm of transfer functions(systems)

$$u \to G(s) \to y$$

Let G(s) is a stable transfer matrix with impulse response matrix g(t). To evaluate the performance:

Given u(t), how large can be the output y(t)?

large ?? We consider 2-norm for signals.

 H_2 norm: When u(t) is a series of unit impulses.

 H_{∞} norm: When u(t) is a any non-zero, finite 2-norm signal.

H_2 norm for transfer functions(systems)

$$u \to G(s) \to y$$

Let G(s) is a stable and strictly proper transfer matrix G(s), (D=0 in state space realization). H_2 norm is defined by:

$$||G(s)||_2 = \sqrt{\frac{1}{2\pi}} \int_{-\infty}^{\infty} tr(G(j\omega)^H G(j\omega)) d\omega$$

By Parseval's theorem, we have

$$\sum_{ij} |G_{ij}(j\omega)|^2 = ||G(j\omega)||_F^2$$

$$||G(s)||_{2} = ||g(t)||_{2} = \sqrt{\int_{0}^{\infty} \underbrace{tr(g(\tau)^{T}g(\tau))}_{18} d\tau} \frac{d\tau}{\sum_{ij} |g_{ij}(\tau)|^{2} = ||g(\tau)||_{F}^{2}}$$

H_{∞} norm for transfer functions(systems)

$$u \to G(s) \to y$$

Let G(s) is a stable and strictly proper transfer matrix G(s), (D=0 in state space realization). H_{∞} norm is defined by:

$$||G(s)||_{\infty} = \max_{\substack{u(t)\neq 0 \\ ||u(t)||_{2} < \infty}} \frac{||y(t)||_{2}}{||u(t)||_{2}} = \max_{\substack{||u(t)||_{2}=1}} ||y(t)||_{2}$$

It can be shown that:

$$||G(s)||_{\infty} = \max_{\omega} \overline{\sigma}(G(j\omega))$$

Remark: H_2 *norm* is not a matrix norm but H_{∞} *norm* is a matrix norm.

Norm of transfer functions(systems)

Exercise 2-4: Derive H_2 of following systems with both formula.

$$g_1(s) = \frac{1}{s+2}$$

$$g_2(s) = \frac{1}{\varepsilon s + 1} \quad \varepsilon \to 0$$

$$g_3(s) = \frac{\varepsilon s}{s^2 + \varepsilon s + 1} \quad \varepsilon \to 0$$

$$G_4(s) = \begin{bmatrix} \frac{2}{s+10} \\ \frac{20}{s+1} \end{bmatrix}$$

Norm of transfer functions(systems)

Exercise 2-5: Derive H_{∞} of following systems.

$$g_1(s) = \frac{2}{s+1}$$

$$g_2(s) = \frac{1}{\varepsilon s + 1} \quad \varepsilon \to 0$$

$$g_3(s) = \frac{\varepsilon s}{s^2 + \varepsilon s + 1} \quad \varepsilon \to 0$$

$$G_4(s) = \begin{bmatrix} \frac{2}{s+10} \\ \frac{20}{s+1} \end{bmatrix}$$

Linear Algebra

- Vector Spaces, Norms
- Singular Value Decomposition (SVD)
- Unitary, Primitive, Hermitian and positive(negative) definite Matrices
- Relative Gain Array (RGA)
- Matrix Perturbation

Unitary and Hermitian Matrices

A matrix $U \in C^{n \times n}$ is unitary if

$$U^H U = I$$

A matrix $Q \in C^{n \times n}$ is Hermitian if

$$Q^H = Q$$

For real matrices Hermitian matrix means symmetric matrix.

Exercise 2-6: Show that for any matrix V, V^HV and VV^H are Hermitian matrix and their eigenvalues are real nonnegative.

Primitive Matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is nonnegative if its entries are nonnegative numbers.

A matrix $A \in \mathbb{R}^{n \times n}$ is positive if all of its entries are strictly positive numbers.

Definition 2.1

A primitive matrix is a square nonnegative matrix where some power (positive integer) of it is positive.

Perron Theorem

Suppose A is a primitive matrix, with spectral radius $\lambda = \rho(A)$. Then λ is a simple root of the characteristic polynomial which is strictly greater than the modulus of any other root, and λ has strictly positive eigenvectors. (Note that Perron theorem is a necessarily condition)

Primitive Matrices

$$A_1 = \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix}$$

 $A_1 = \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix}$ with eigenvalues 2 and -1 is primitive.

$$A_{2} = \begin{bmatrix} 0 & 4 \\ 1 & 0 \end{bmatrix}$$

 $A_2 = \begin{bmatrix} 0 & 4 \\ 1 & 0 \end{bmatrix}$ with eigenvalue s - 2 and 2 is not primitive.

$$A_{3} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

 $A_3 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ with eigenvalue s 1 and 1 is not primitive.

$$A_{4} = \begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix}$$

 $A_4 = \begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix}$ with eigenvalues 4 and 0 is not primitive.

Positive (Negative) Definite Matrices

A matrix $Q \in C^{n \times n}$ is positive definite if for any $x \in C^n, x \neq 0$ $x^H Q x$ is real and positive

A matrix $Q \in C^{n \times n}$ is negative definite if for any $x \in C^n, x \neq 0$

 $x^{H}Qx$ is real and negative

A matrix $Q \in C^{n \times n}$ is positive semi definite if for any $x \in C^n, x \neq 0$

 $x^{H}Qx$ is real and nonnegative

Linear Algebra

- Vector Spaces, Norms
- Singular Value Decomposition (SVD)
- Unitary, Primitive, Hermitian and positive(negative) definite Matrices
- Relative Gain Array (RGA)
- Matrix Perturbation

Relative Gain Array (RGA)

The relative gain array (RGA), was introduced by Bristol (1966).

For a square matrix A

$$RGA(A) = \Lambda(A) = A \times (A^{-1})^T$$

For a non square matrix A

$$RGA(A) = \Lambda(A) = A \times (A^{\dagger})^{\mathrm{T}}$$

Linear Algebra

- Vector Spaces, Norms
- Unitary, Primitive, Hermitian and positive(negative) definite Matrices
- Inner Product
- Singular Value Decomposition (SVD)
- Relative Gain Array (RGA)
- Matrix Perturbation

Matrix Perturbation

1- Additive Perturbation

2- Multiplicative Perturbation

3- Element by Element Perturbation

Additive Perturbation

Theorem 2-2

Suppose $A \in \mathbb{C}^{m \times n}$

has full column rank (n). Then

$$\min_{\Delta \in C^{m \times n}} \left\{ \left\| \Delta \right\|_{2} | rank(A + \Delta) < n \right\} = \sigma_{n}(A) = \sigma(A)$$

$$\sigma(A)$$
 1

Additive Perturbation

Example 2-2

$$A = \begin{bmatrix} 100 & 100 \\ 100.2 & 100 \end{bmatrix}$$

$$A = \begin{bmatrix} 100 & 100 \\ 100.2 & 100 \end{bmatrix} \qquad A^{-1} = \begin{bmatrix} -5 & 5 \\ 5.01 & -5 \end{bmatrix}$$

$$\Delta A = \begin{bmatrix} 0.04995 & -0.05 \\ -0.05 & 0.04995 \end{bmatrix}$$

$$(A + \triangle A)^{-1} = ?$$

$$\sigma(A) = 0.1 = \overline{\sigma}(\Delta A)$$

$$\Delta A = \begin{bmatrix} 0 & 0 \\ -0.1 & 0 \end{bmatrix}$$

$$(A + \Delta A)^{-1} = \begin{bmatrix} -10 & 10 \\ 10.01 & -10 \end{bmatrix}$$

$$A + \Delta A = \begin{bmatrix} 100 & 100 \\ 100.1 & 100 \end{bmatrix}$$

$$\Delta(A^{-1}) = \begin{bmatrix} -5 & 5 \\ 5 & -5 \end{bmatrix}$$

Multiplicative Perturbation

Theorem 2-3

Suppose $A \in \mathbb{C}^{n \times n}$. Then

$$\min_{\Delta \in C^{n \times n}} \left\| \Delta \right\|_{2} | rank(I - A\Delta) < n \right\} = \frac{1}{\overline{\sigma}(A)}$$

$$\bar{\sigma}(A) \downarrow$$

Element by element Perturbation

Theorem 2-4: Suppose $A \in C^{n \times n}$ is non-singular and suppose λ_{ij} is the ijth element of the RGA of A.

The matrix A will be singular if ijth element of A perturbed by

$$a_{ijp} = a_{ij} (1 - \frac{1}{\lambda_{ij}})$$

Element by element Perturbation

Example 2-3

$$A = \begin{bmatrix} 100 & 100 \\ 100.2 & 100 \end{bmatrix}$$

$$\Lambda(A) = \begin{bmatrix} -500 & 501\\ 501 & -500 \end{bmatrix}$$

Now according to mentioned theorem if a_{11} multiplied by $(1 - \frac{1}{\lambda}) = 1.002$

$$(1-\frac{1}{\lambda_{11}})=1.002$$

then the perturbed A is singular or

$$A_P = \begin{bmatrix} 100*1.002 & 100 \\ 100.2 & 100 \end{bmatrix} = \begin{bmatrix} 100.2 & 100 \\ 100.2 & 100 \end{bmatrix}$$

Exercises

- 2-1 till 2-6 Mentioned in the lecture.
- 2-7 The spectral radius of a matrix is: $\rho(A) = \max_{i} |\lambda_{i}|$

where λ_i is the eigenvalue of A. Show that the spectral radius is not a norm.

- 2-8 Suppose A is Hermitian. Find the exact relation between the eigenvalues and singular values of A. Does this hold if A is not Hermitian?
- 2-9 Verify that if Q is Hermitian then its eigenvalues are real.
- 2-10 Show that Frobnius norm can be derived by $\sqrt{tr(A^H A)}$
- 2-11 Show that if rank(A)=1, then $||A||_F = ||A||_2$

Exercises

$$A = \begin{bmatrix} 3 & 4 & 7 \\ -2 & 7 & 5 \end{bmatrix}$$

- a) Find SVD of A and then by use of SVD:
- b) Find the null space of A.
- c) Find the range space of A.
- d) If $||x||_2 = 2.75$ what is the maximum and minimum of $||Ax||_2$
- 2-13 Find a non primitive matrix such that its spectral radius is a simple root of the characteristic polynomial and its spectral radius is strictly greater than the modulus of any other eigenvalues.

Exercises

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 0 & 1 \\ 3 & 2 & 4 \end{bmatrix}$$

- a) Derive induced norm of A (p=2). $\begin{bmatrix} 0.3620 & -0.8562 & 0.3685 \\ 0.4866 & 0.5107 & 0.7088 \\ 0.7951 & 0.0773 & -0.6015 \end{bmatrix}$ Derive least gain of A and corresponding incomplete nullity and rank of $^{\wedge}$

 - d) Derive unreachable output direction.
 - e) Suppose rank of A+B is 2. Derive minimum of $||B||_2$.
 - 2-15 Show that any induced norm is a matrix norm(just PhD students).

References

References

- Multivariable Feedback Design, J M Maciejowski, Wesley, 1989.
- Multivariable Feedback Control, S. Skogestad, I. Postlethwaite, Wiley,2005.
 - تحلیل و طراحی سیستم های چند متغیره، دکتر علی خاکی صدیق
 - کنترل مقاوم H_{∞} ، دکتر حمید رضا تقی راد، محمد فتحی و فرینا زمانی اسگویی H_{∞}

Web References

http://karimpor.profcms.um.ac.ir/index.php/courses/9319