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v Vector Spaces, Norms  

v Singular Value Decomposition

v Unitary, Primitive, Hermitian and positive(negative) definite Matrices

v Relative Gain Array (RGA) 

v Matrix Perturbation 

Linear Algebra

Topics to be covered include:

v Vector Spaces, Norms
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Vector Spaces

A set of vectors and a field of scalars with some properties

is called vector space.

To see the properties have a look at Linear Algebra written by Hoffman.

 (R) numbers  real of field over thenR

Important vector spaces are:

 (C) numberscomplex   of field over thenC

 (R) numbers  real of field over the[0,  interval    theon  functions  Continuous  

SpaceVector 

&

21

21





vandv

Fieldand

SpaceVector 
2211
+ vv 
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Norms

To meter the lengths of vectors in a vector space we need the 

idea of a norm.

+→ RF:.

Norm is a function that maps a vector x to a nonnegative real number 

A Norm must satisfy following properties: 

0for x0 and 0 x,0x   Positivity 1 ==− x

C  and F x,xy   Homogeneit 2 =−  x

 Fy x,,yx   inequality Triangle 3 ++− yx
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Norm of vectors









= 

i

iax
1

  For p=1 we have  1-norm or  sum norm

2/1

2

2








= 

i

iaxFor p=2 we have  2-norm or  euclidian norm

 i
i

ax max =
For p=∞ we have  ∞-norm or  max norm

1    

1









=  pax

pp

i

ip
p-norm is:
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Norm of vectors

 

2

1-

1

Let   x

















=

2)2,1,1max(x           

6211xThen    

4)211(x            

222

2

1

==

=++=

=++=



1x
2

=

1x 1=

1x =


Exercise 2-1: Introduce a non-scalar vector with identical 1, 2 and ∞ norm.
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Norm of matrices

We can extend norm of vectors to matrices

Sum matrix norm (extension of 1-norm of vectors) is: =
ji

ijsum
aA

,

Frobenius norm (extension of 2-norm of vectors) is:
2

,

=
ji

ijF
aA

Max element norm (extension of max norm of vectors) is: ij
ji

aA
,max

max=
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Matrix norm

A norm of a matrix is called matrix norm if it satisfies

BAAB .

Define the induced-norm of a matrix A as follows:

pxip
AxA

p
1

max
=

=

Any induced-norm of a matrix, is a matrix norm
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Matrix norm for matrices

If we put p=1 so we have

==
=

i

ij
jxi

aAxA maxmax
111

1

Maximum column sum

If we put p=inf so we have

==
=

 j

ij
ixi

aAxA maxmax
1

Maximum row sum

pxip
AxA

p
1

max
=

=

If we put p=2 so we have

)()()(maxmax max1

2

2

1212
22

AAA
x

Ax
AxA

xxi
 =====

==
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v Vector Spaces, Norms  

v Singular Value Decomposition (SVD)

v Unitary, Primitive, Hermitian and positive(negative) definite Matrices

v Relative Gain Array (RGA) 

v Matrix Perturbation 

Linear Algebra
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Singular Value Decomposition (SVD)

Theorem 2-1 mlCM :  Let . Then there exist mlR  and unitary matrices

llCY  and mmCU  such that

HUYM =



















=

r

S







...00

......

0...0

0...0

2

1

],......,,[],,......,,[ 2121 ml uuuUyyyY ==
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Singular Value Decomposition (SVD)

Example 2-1















 −

=

824

143

121

M

H

M

















−

−−

































−

−

−−

=

27.055.079.0

53.077.035.0

80.033.050.0

.

000

053.40

0077.9

.

17.034.092.0

51.077.038.0

85.053.004.0

















=

79.0

35.0

50.0

1u 11 77.9

92.0

38.0

04.0

77.9 yMu =

















=

















−

−

=

55.0

77.0

33.0

2u 22 53.4

34.0

77.0

53.0

53.4 yMu =

















−

−

=















−

=

27.0

53.0

80.0

3u Has no affect on the output or 03 =Mu
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Singular Value Decomposition (SVD)

Theorem 2-1 mlCM :  Let . Then there exist mlR  and unitary matrices

llCY  and mmCU  such that

HUYM =

HMMY  of rseigenvecto  from  derived  becan     

MMU H of rseigenvecto  from  derived  becan     

HH MMMM or      of  seigenvalue  nonzero of roots are   ,...,, r21 

Exercise 2-2: Introduce a non-vector matrix with identical 1, 2 and ∞ 

norm.
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v Vector Spaces, Norms  

v Singular Value Decomposition (SVD)

v Unitary, Primitive, Hermitian and positive(negative) definite Matrices

v Relative Gain Array (RGA) 

v Matrix Perturbation 

Linear Algebra
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Norm of real functions(signals)

p-norm is defined as 𝑢(𝑡) 𝑝 = න
0

∞

𝑢(𝑡) 𝑝𝑑𝑡

1/𝑝

Consider continuous signals on the interval [0,∞) and p ≥ 1

∞-norm is defined as 𝑢(𝑡) ∞ = 𝑠𝑢𝑝𝑡 𝑢(𝑡)

2-norm is defined as 𝑢(𝑡) 2 = න
0

∞

𝑢(𝑡) 2𝑑𝑡

1/2

1-norm is defined as 𝑢(𝑡) 1 = 0׬
∞
𝑢(𝑡) dt
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Norm of real functions(signals)

Exercise 2-3: Derive 1, 2 and ∞ norm of following signals. 

𝑢2 𝑡 =
1

2𝑡 + 3

𝑢1 𝑡 =
1

(2𝑡 + 3)2

Ans: ∞, 0.4082 and 1/3 

Ans: 1/6, 0.0786 and 1/9 

𝑢3 𝑡 = 𝑠𝑖𝑛𝑡 Ans: ∞, ∞ and 1 
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Norm of transfer functions(systems)

Let G(s) is a stable transfer matrix with impulse response 
matrix g(t). To evaluate the performance:

𝑢 → 𝐺 𝑠 → 𝑦

Given u(t), how large can be the output y(t)?

large ?? We consider 2-norm for signals.

𝐻2 𝑛𝑜𝑟𝑚:When u(t) is a series of unit impulses.

𝐻∞ 𝑛𝑜𝑟𝑚: When u(t) is a any non-zero, finite 2-norm signal.
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𝐻2 𝑛𝑜𝑟𝑚 for transfer functions(systems)

Let G(s) is a stable and strictly proper transfer matrix G(s), (D=0 in state 
space realization). 𝐻2 norm is defined by:

𝑢 → 𝐺 𝑠 → 𝑦

𝐺(𝑠) 2 =
1

2𝜋
න
−∞

∞

𝑡𝑟 𝐺 𝑗𝜔 𝐻𝐺(𝑗𝜔) 𝑑𝜔

By Parseval’s theorem, we have 

𝐺(𝑠) 2 = 𝑔(𝑡) 2 = න
0

∞

𝑡𝑟 𝑔 𝜏 𝑇𝑔(𝜏) 𝑑𝜏

෍
𝑖𝑗
𝐺𝑖𝑗 𝑗𝜔

2
= 𝐺 𝑗𝜔 𝐹

2

෍
𝑖𝑗
𝑔𝑖𝑗 𝜏

2
= 𝑔 𝜏 𝐹

2
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𝐻∞ 𝑛𝑜𝑟𝑚 for transfer functions(systems)

𝑢 → 𝐺 𝑠 → 𝑦

𝐺(𝑠) ∞ = max
𝑢(𝑡)≠0

𝑢(𝑡) 2<∞

𝑦(𝑡) 2

𝑢(𝑡) 2

It can be shown that:

Let G(s) is a stable and strictly proper transfer matrix G(s), (D=0 in state 
space realization). 𝐻∞ norm is defined by:

= max
𝑢(𝑡) 2=1

𝑦(𝑡) 2

𝐺(𝑠) ∞ = max
𝜔

𝜎(𝐺 𝑗𝜔 )

Remark: 𝐻2 𝑛𝑜𝑟𝑚 is not a matrix norm but 𝐻∞ 𝑛𝑜𝑟𝑚 is a matrix norm. 
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Exercise 2-4: Derive 𝐻2 of following systems with both formula. 

𝑔1 𝑠 =
1

𝑠 + 2
Ans: 0.5 

Norm of transfer functions(systems)

𝑔2 𝑠 =
1

𝜀𝑠 + 1
𝜀 → 0 Ans: inf 

𝑔3 𝑠 =
𝜀𝑠

𝑠2 + 𝜀𝑠 + 1
𝜀 → 0 Ans: 0 

𝐺4 𝑠 =

2

𝑠 + 10
20

𝑠 + 1

Ans:

around 20 
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Exercise 2-5: Derive 𝐻∞ of following systems. 

𝑔1 𝑠 =
2

𝑠 + 1
Ans: 2 

Norm of transfer functions(systems)

𝑔2 𝑠 =
1

𝜀𝑠 + 1
𝜀 → 0 Ans: 1 

𝑔3 𝑠 =
𝜀𝑠

𝑠2 + 𝜀𝑠 + 1
𝜀 → 0 Ans: 1 

𝐺4 𝑠 =

2

𝑠 + 10
20

𝑠 + 1

Ans:

around 14.14 
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v Vector Spaces, Norms  

v Singular Value Decomposition (SVD)

v Unitary, Primitive, Hermitian and positive(negative) definite Matrices

v Relative Gain Array (RGA) 

v Matrix Perturbation 

Linear Algebra
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Unitary and Hermitian Matrices 

A matrix nnCU  is unitary if

A matrix
nnCQ  is Hermitian if

IUU H =

QQH =

For real matrices Hermitian matrix means symmetric matrix.

Exercise 2-6: Show that for any matrix V, VHV and VVH are Hermitian matrix 

and their eigenvalues are real nonnegative.
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Primitive Matrices 

A matrix nnRA  is nonnegative if its entries are nonnegative numbers.

A matrix nnRA  is positive if all of its entries are strictly positive numbers.

Definition 2.1

A primitive matrix is a square nonnegative matrix where some power

(positive integer) of it is positive.
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Primitive Matrices 

primitive. is  1- and 2 seigenvalue     with 
11

20
1 








=A

primitive.not  is  2 and 2- seigenvalue     with 
01

40
2 








=A

primitive.not  is  1 and 1 seigenvalue     with 
11

01
3 








=A

primitive.not  is  0 and 4 seigenvalue     with 
40

00
4 








=A
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Positive (Negative) Definite Matrices 

A matrix
nnCQ  is positive definite if for any 0,  xCx n

QxxH
is real and positive

A matrix
nnCQ  is negative definite if for any 0,  xCx n

QxxH
is real and negative

A matrix
nnCQ  is positive semi definite if for any 0,  xCx n

QxxH
is real and nonnegative

Negative semi definite is defined similarly
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v Vector Spaces, Norms  

v Singular Value Decomposition (SVD) 

v Unitary, Primitive, Hermitian and positive(negative) definite Matrices

v Relative Gain Array (RGA) 

v Matrix Perturbation 

Linear Algebra



Dr. Ali Karimpour  Feb 2022

Lecture 2

28

Relative Gain Array (RGA)

The relative gain array (RGA), was introduced by Bristol (1966).

For a square matrix A

TAAAARGA )()()( 1−==

For a non square matrix A

T)A    ()()( == AAARGA
† 
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v Vector Spaces, Norms  

v Unitary, Primitive, Hermitian and positive(negative) definite Matrices

v Inner Product

v Singular Value Decomposition (SVD) 

v Relative Gain Array (RGA) 

v Matrix Perturbation 

Linear Algebra
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Matrix Perturbation

1- Additive Perturbation

2- Multiplicative Perturbation

3- Element by Element Perturbation
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Additive Perturbation

nmCA  has full column rank (n). Then Suppose

Theorem 2-2

  )()()(|min
2

AAnArank n
C nm −

==+





−

)(A
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Additive Perturbation









=

1002.100

100100
A 









−

−
=−

501.5

55
1A










−

−
=

04995.005.0

05.004995.0
A

Example 2-2

)(1.0)( AA ==
−











=+

1001.100

100100
AA










−

−
=+ −

1001.10

1010
)( 1AA









−
=

01.0

00
A










−

−
= −

55

55
)( 1A
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Multiplicative Perturbation

nnCA  . Then Suppose

Theorem 2-3

 
)(

1
)(|min

2 A
nAIrank

nnC 
=−



)(A
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Element by element Perturbation

)
1

1(
ij

ijijp aa


−=

nnCA 
ij: Suppose is non-singular and suppose 

is the ijth element of the RGA of A. 

The matrix A will be singular if ijth element of A perturbed by

Theorem 2-4
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Element by element Perturbation

Example 2-3









=

1002.100

100100
A 









−

−
=

500501

501500
)(A

11a 002.1)
1

1(
11

=−


Now according to mentioned theorem if multiplied by 

then the perturbed A is singular or 









=








=

1002.100

1002.100

1002.100

100002.1*100
PA
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2-1 till 2-6 Mentioned in the lecture.

Exercises

i

2-7 The spectral radius of a matrix is: i
i

A  max)( =

where     is the eigenvalue of A.  Show that the spectral radius is not 

a norm.

2-8 Suppose A is Hermitian. Find the exact relation between the 

eigenvalues and singular values of A. Does this hold if A is not 

Hermitian?

.

2-9 Verify that if Q is Hermitian then its eigenvalues are real. 

2-10 Show that Frobnius norm can be derived by )( AAtr H

2-11 Show that if rank(A)=1, then, 
2

AA
F

=
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Exercises
.

2-12 Suppose

a) Find SVD of A and then by use of SVD:

b) Find the null space of A.

c) Find the range space of A.

75.2
2

=x
2

Axd) If                  what is the maximum and minimum of

2-13 Find a non primitive matrix such that its spectral radius is a simple 

root of the characteristic polynomial and its spectral radius is strictly 

greater than the modulus of any other eigenvalues.
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Exercises
.

.



















=

423

101

642

321

A

















0.6015-0.07730.7951

0.7088 0.51070.4866

0.36850.8562-0.3620

2-14 Consider following matrix.(Final)

One of the SVD matrices of A is:

a) Derive induced norm of A (p=2).

b) Derive least gain of A and corresponding input and output direction.

c) Derive nullity and rank of A.

d) Derive unreachable output direction.

e) Suppose rank of A+B is 2. Derive minimum of ||B||2.

2-15 Show that any induced norm is a matrix norm(just PhD students).
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