
Averaging Systems

Ali Karimpour

Professor

Ferdowsi University of Mashhad, Iran



Ali Karimpour  Aug 2024

2

Contents

Introduction to Averaging Systems

Discrete-time Averaging Systems

Continues-time Averaging Systems

Convergence Rates, Scalability and Optimization of  Averaging Systems

Time-varying Averaging Systems

• Centrality measures of each nodes

Positive Network Control Systems



Ali Karimpour  Aug 2024

3

Introduction to Averaging Systems

Consensus(Rendezvous) problem. Assume that member of a system have dynamics of type

 xv(t + 1) = xv(t) + uv(t) 

xv(t) and uv(t) are states and inputs of every vertex v ∈ V. The control goal is to make all units 

converge their state to the same point.

There are many variants of this problem, for example wireless sensor networks or social 

influence networks.

Important issues in this problem:

• Given a graph G, in which condition there is a consensus(rendezvous) solution or

• What is the velocity of convergence to the consensus(rendezvous) point?

• Given a graph G, in which condition there is a disagreement, and what happen in this 

situation?
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Introduction to Averaging Systems

Consensus(Rendezvous) problem. 
                                                         

                                                          xv(t + 1) = xv(t) + uv(t) 
Now if 

𝑢𝑣 𝑡 = σ𝑤∈𝑉 𝐾𝑣𝑤 𝑥𝑤(t)

Where X(t)=[x1
T(t)   x2

T(t) …..   xm
T(t)]T and m is number of vertices and xi(t)∈Rn.

X(t + 1) = PX(t) 
Now we have

As a simplified situation consider every vertex has one state so:

x(t + 1) = Px(t) 

Necessary condition for convergent to x*?

Now we need a convergence s.t.

Now according to graph structure there is some different situations.

1 as largest eigenvalue and   𝟏n as eigenvector (i.e. P𝟏n = 𝟏n ) and so P must be …..(why?)
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Introduction to Averaging Systems

Example 1: A graph with just one globally reachable vertex.

𝑃 =
0.1 0 0.9
0.4 0 0.6
0 0 1

lim
𝑘→∞

𝑥 𝑘 = 𝑣𝑤𝑇𝑥 0  (why?)

𝜆 = 1 𝑣 =
1
1
1

        𝑤𝑇 = 0 0 1

lim
𝑘→∞

𝑥1 𝑘 = lim
𝑘→∞

𝑥2 𝑘 = lim
𝑘→∞

𝑥3 𝑘 = 𝑥3(0)

Remark: The global reachable vertex(no. 3) has a high social influence and others nothing. 

Remark: P is reducible so the graph is not strongly connected.

Remark: The global vertex 3 is a sink. 
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Introduction to Averaging Systems

Example 2: A graph with two globally reachable vertex.

𝑃 =
0.1 0 0.9
0.4 0 0.6

0.15 0 0.85

𝜆 = 1 𝑣 =
1
1
1

        𝑤𝑇 = 0.143 0 0.857

lim
𝑘→∞

𝑥 𝑘 = 𝑣𝑤𝑇𝑥(0)       (why?)

lim
𝑘→∞

𝑥1 𝑘 = lim
𝑘→∞

𝑥2 𝑘 = lim
𝑘→∞

𝑥3 𝑘 = 0.143𝑥1 0 + 0.857𝑥3(0)

Remark: The global reachable vertices (no. 3 and no. 1) contribute in final value.

Remark: Compare social influence of vertex 1  and 3.

Remark: P is reducible so the graph is not strongly connected.

Remark: Vetices 1 and 3 are a sink.
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Introduction to Averaging Systems

Example 3: A strongly connected graph.

𝑃 =
0.1 0 0.9
1 0 0
0 0.6 0.4

𝜆 = 1 𝑣 =
1
1
1

        𝑤𝑇 = 0.295 0.264 0.441

lim
𝑘→∞

𝑥 𝑘 = 𝑣𝑤𝑇𝑥(0)         (why?)

lim
𝑘→∞

𝑥1 𝑘 = lim
𝑘→∞

𝑥2 𝑘 = lim
𝑘→∞

𝑥3 𝑘 = 0.295𝑥1 0 + 0.264𝑥2 0 + 0.441𝑥3(0)

Remark: All vertices are global reachable so they contribute in the final value.

Remark: P is irreducible so the graph is strongly connected.
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Introduction to Averaging Systems

Example 4: A weight balanced strongly connected graph.

𝑃 =
0.417 0.333 0.25
0.333 0.417 0.25
0.25 0.25 0.5

𝜆 = 1 𝑣 =
1
1
1

        𝑤𝑇 = 0.333 0.333 0.333

lim
𝑘→∞

𝑥 𝑘 = 𝑣𝑤𝑇𝑥(0)

lim
𝑘→∞

𝑥1 𝑘 = lim
𝑘→∞

𝑥2 𝑘 = lim
𝑘→∞

𝑥3 𝑘 = 0.333𝑥1 0 + 0.333𝑥2 0 + 0.333𝑥3(0)

Remark: All vertices are global reachable and weight balanced so they contribute in the final 

value with same social influence.
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Introduction to Averaging Systems

Consensus(Rendezvous) problem. 

Different type of 

Averaging system

Discrete-time Averaging Systems x(t + 1) = Px(t) 

Continuous-time Averaging Systems ሶ𝑥(t) = -L x(t) 

Time-varying Averaging Systems(different row stochastic matrix 

or graph change) 𝑥 𝑡 + 1 = 𝑃 𝑡 𝑥 𝑡  or ሶ𝑥(t) = -L(t) x(t) 
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Discrete-time Averaging Systems

Consensus(Rendezvous) problem in discrete time is: x(t + 1) = Px(t) 

System

graph

Strongly

 connected

graph

Not strongly 

connected

graph

Strongly connected graph and aperiodic(Example 3 and 5)

P is row stochastic and primitive, lim
𝑘→∞

𝑥 𝑘 = 𝑤𝑇𝑥 0 𝟏𝑛 

Strongly connected graph and aperiodic and weight-balanced (Example 4 

and 6)
P is double stochastic primitive and lim

𝑘→∞
𝑥 𝑘 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑥 0 𝟏𝑛 

Strongly connected graph and periodic (Example7)

P is irreducible but not primitive and no convergence 

One aperiodic sink component(Example 1,2 and 8)

P is indecomposable and converges to consensus that does not depend

on all the nodes 

Multiple sink component(Example 9 &10)

Converges but not to consensus
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Discrete-time Averaging Systems

Example 5: Strongly connected graph and aperiodic

𝑃 =

0 0.7 0.3
0 0 0
0 0 0

0 0 0
0 0.4 0.6

0.9 0.1 0
1 0 0 
0 1 0
1 0 0

0 0 0
0 0 0
0 0 0

w=[0.2479   0.3017   0.0744   0.0669   0.1281   0.1810]T

Left eigenvalues corresponding to eigenvalue 1 is:

xi(k→∞)=0.2479x1(0)+0.3017x2(0)+0.0744x3(0)+

0.0669x4(0)+0.1281x5(0)+0.1810x6(0)              i=1, 2, …6

All states converges to:

Remark 1: Vertex 1 and 2 are more important(more social influence).

P is row stochastic and primitive, eigenvalues of P are: 

Remark 2: Final values depending on all nodes(every element of w is strictly positive).
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Discrete-time Averaging Systems

Example 6: Strongly connected graph and aperiodic and weight-balanced 

𝑃 =

0.5 0.5
0 0.5

0 0
0.5 0

0 0
0.5 0

0.5 0.5
0 0.5

P is double stochastic and primitive, eigenvalues of P are: 

w=[0.25   0.25   0.25   0.25]T

Left eigenvalues corresponding to eigenvalue 1 is:

xi(k→∞)=0.25x1(0)+0.25x2(0)+0.25x3(0)+0.25x4(0)     i=1, 2, …, 4

All states converges to:

Remark 1: All vertices have similar effect. (similar social influence).

Remark 2: Final values depending on all nodes(every element of w is strictly positive).

Remark 3: The averaging system leads to average consensus.
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Discrete-time Averaging Systems

Example 7: Strongly connected graph and periodic 

𝑃 =

0 1
0 0

0 0
1 0

0 0
1 0

0 1
0 0

There is no convergence and the final value has a periodic value 

with period of 4:

Remark 1: No  convergence.

P is double stochastic with period of 4 but not primitive, 

eigenvalues of P are: 

𝑥 𝑘 =                            
𝑥3(0)
𝑥4(0)
𝑥1(0)
𝑥2(0)

𝑥 𝑘 + 1 =                               
𝑥4(0)
𝑥1(0)
𝑥2(0)

𝑥3(0)

𝑥 𝑘 + 2 =
𝑥1(0)
𝑥2(0)
𝑥3(0)
𝑥4(0)

𝑥 𝑘 + 3 =

                            

𝑥2(0)
𝑥3(0)
𝑥4(0)
𝑥1(0)

Remark 2: Periodic response.
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Discrete-time Averaging Systems

Example 8: One aperiodic sink component

w=[0.1360  0.1936  0.2097  0  0.0989  0  0.1877  0.0210  0.1161  0.0375]T

Left eigenvalues corresponding to eigenvalue 1 is:

xi(k→∞)= 0.1244x1(0)+ 0.1673x2(0)+ 0.1333x3(0)+

0.0803x5(0)+ 0.1066x7(0)+ 0.2663x8(0)+ 0.1004x9(0)+ 0.0213x10(0)              i=1, 2, …10

All states converges to:

Remark 1: Vertex 4 and 6 (sources) has no effect on the final value.(no Social influence).

Remark 2: Final values depending on all vertices in the sink.

P is row stochastic but not primitive(1 sink 2 sources), 

eigenvalues of P are: 
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Discrete-time Averaging Systems

Example 9: Multiple sink component

Multiple sink component, 

one aperiodic sink and one periodic.

P is row stochastic and not primitive, eigenvalues of P are: 

w=[0.0441   0   0.3044   0   0   0   0.2892   0.3044   0   0.0578]T

Left eigenvalues corresponding to eigenvalue 1 is:

xi(k→∞)= 0.0441x1(0)+ 0.3044x3(0)+ 0.2892x7(0)+0.3044x8(0)+ 0.0578x10(0)        i=1, 3, 7, 8, 10

All states of aperiodic sink converges to:

x2(k)= x5(0), x5(k)= x2(0) and x2(k+1)= x2(0), x5(k+1)= x5(0) 

All states of periodic sink jump to the following parts(period is 2):

Aperiodic sink

Periodic sink

2 eigenvalues
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Discrete-time Averaging Systems

Theorem: (Consensus for row-stochastic matrices with a globally-reachable 

aperiodic strongly-connected component) Let A be a row-stochastic matrix and let G 

be its associated digraph. The following statements are equivalent: 

(A1) The eigenvalue 1 is simple and all other eigenvalues µ satisfy |µ| < 1, 

(A3) G contains a globally reachable node and the subgraph of globally reachable 

nodes is aperiodic.

If any, and therefore all, of the previous conditions are satisfied, then the matrix A is 

said to be indecomposable and the following properties hold: 

(i) w ≥ 0 is the left dominant eigenvector of A and wi > 0 if and only if node i is 

globally reachable; 

(A2) A is semi-convergent and lim
𝑘→∞

Ak = 1nw
T, w ≥ 0, and 𝟏𝑛

𝑇w= 1, 

(ii) the solution to the averaging model x(k + 1) = Ax(k) is lim
𝑘→∞

𝑥(𝑘) =𝑤𝑇 𝑥(0) 𝟏𝑛,

(iii) if additionally A is doubly-stochastic, then w =
1

𝑛
1n, lim

𝑘→∞
𝑥(𝑘)  =average( 𝑥(0)) 𝟏𝑛 
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Discrete-time Averaging Systems

Theorem: (Convergence for row-stochastic matrices with multiple aperiodic sinks).[1]

Let A be a row-stochastic matrix, let G be its associated digraph, and let M≥2 be the number 

of sinks in the condensation digraph C(G). If each of the M sinks, is aperiodic, then

See example 10.

(i) the semi-simple eigenvalue ρ(A)=1 has multiplicity equal M and is strictly larger than the 

magnitude of all other eigenvalues, hence A is semi-convergent.

(ii) there exist M different left eigenvectors of A(corresponding to 1 eigenvalues), denoted by 

𝜔𝑚𝜖𝑅𝑛 for 𝑚 ∈ 1, 2, . . , 𝑀 , with property that  𝜔𝑚 ≥ 0, =1 and 𝜔𝑚1n=1, 𝜔𝑖
𝑚 is positive if 

and only if node i belongs to m-th sink.

(iii) the solution to the averaging model x(k+1)=Ax(k) with initial condition x(0) satisfy

where, for each node I connected to more than one sink, the coefficents zi,m is used.
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Discrete-time Averaging Systems

Example 10: Multiple sink component

xi(k→∞)= 0.0441x1(0)+ 0.3044x3(0)+ 0.2892x7(0)+0.3044x8(0)+ 0.0578x10(0)        i=1, 3, 7, 8, 10

All states of aperiodic sink 1 converges to:

Two aperiodic sink.

P is row stochastic and not primitive, eigenvalues of P are: 

w1=[0.0441   0   0.3044   0   0   0   0.2892   0.3044   0   0.0578]T

Left eigenvalues corresponding to eigenvalue 1 are:

w2=[0   0.5556     0     0    0.4444     0    0    0    0    0]T

xi(k→∞)= 0.5556x2(0)+ 0.4444x5(0)                    i=2, 5

All states of aperiodic sink 2 converges to:

Aperiodic sink

Aperiodic sink

Remark 1: No consenses.
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Summary of the asymptotic behavior of discrete-time averaging 

systems and its relationships with properties of matrices and graphs
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Centrality measure of each node

Centraliy 

measures 

of a graph

It is of interest to determine the relative importance of a node in a network(social influence).

1- Degree centrality: Degree centrality is number of indegree of each edge or 

column sum of that edge in adjacency matrix.    cdegree= 𝐴𝑇𝕝𝑛

2- Eigenvector centrality: Eigenvector centrality is the dominant eigenvector of 

the adjacency matrix associated with the dominant eigenvalue. ρ(A)cev= 𝐴𝑇cev

3- Katz centrality: Katz centrality is the combination of degree and eigenvector 

centrality. cK=𝛼 𝐴𝑇(cK +𝕝𝑛) where 𝛼 < 1/ρ(𝐴)  

4- PageRank centrality: PageRank centrality is for row stochastic matrices and is:

cpr=𝛼 𝐴𝑇cprh +
1−𝛼

𝑛
+𝕝𝑛  0 < 𝛼 < 1  

5- Closeness centrality: Closeness centrality is for strongly connected graph and is:

cclosenee(i) = 
1

σ𝑗=1
𝑛 𝑑𝑖→𝑗

 

6- Betweenness centrality: Betweenness centrality is for strongly connected graph and is:

cbetweennee(i) = 
σ𝑗,𝑘=1

𝑛 𝑑𝑘→𝑖→𝑗

σℎ=1
𝑛 σ𝑗,𝑘=1

𝑛 𝑑𝑘→ℎ→𝑗
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Centrality measure of each node

𝐴 =

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
1 0 0
1 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
1 0 0
1 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 1 0
0 0 1
0 1 0

Degree centrality Eigenvector centrality 

𝑥 999 =

𝑥9(0)
𝑥9(0)
𝑥9(0)
𝑥9(0)
𝑥9(0)
𝑥9(0)
𝑥8(0)
𝑥9(0)
𝑥8(0)

𝑥 1000 =

𝑥8(0)
𝑥8(0)
𝑥8(0)
𝑥8(0)
𝑥8(0)
𝑥8(0)
𝑥9(0)
𝑥8(0)
𝑥9(0)
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Continuous-time Averaging Systems

This part considers a certain class of differential equations and show when consensus in steady 

state happen.

x(t + 1) = Px(t) 

x(k + 1) - x(k) = (P - In)x(k) = -Lx(k);

Now subtract x(k) from both side

where L is Laplacian and by dividing both side by τ→0+ we have

ሶ𝑥 𝑡 = −ത𝐿𝑥 𝑡

where 𝜏ത𝐿 = 𝐿

A flock of auklets exhibit

 swarm behaviour
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Continuous-time Averaging Systems

Every fish tries to fixed their position with

regards to neighbours as following manner. 

A flock of animals exhibit swarm behaviour.

ሶ𝜃𝑖 = average{𝜃j ; for all neighbors of i} −𝜃i

ሶ𝜃 = −𝐿 𝜃

Equivalently:

An RC electrical circuit.

A=

0 1/𝑟12

1/𝑟12 0
1/𝑟13 1/𝑟14

1/𝑟23 0
1/𝑟13 1/𝑟23

1/𝑟14 0
0 1/𝑟34

1/𝑟34 0

D=

1/𝑟12 + 1/𝑟13 + 1/𝑟14 0
0 1/𝑟12 + 1/𝑟23

 0  0
 0  0 

0 0
0 0

1/𝑟23 + 1/𝑟13 + 1/𝑟34 0
0 1/𝑟14 + 1/𝑟34

L=D-A ሶ𝑉 = −𝑐−1𝐿 𝑉
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Continuous-time Averaging Systems

Now we want to speak about the solution of following problem.

Theorem: (Consensus for Laplacian matrices with globally reachable nodes). If a Laplacian

matrix L has associated digraph G with a globally reachable node, then

ሶ𝑥 = −𝐿 𝑥

1- The eigenvalue 0 of -L is simple and all other eigenvalues of -L have negative real part,

2- The solution at steady state is:

                                                             lim
𝑡→∞

𝑥 𝑡 = 𝑤𝑇𝑥 0 𝟏𝑛

where w is the left eigenvector of L corresponding to eigenvalue 0 s.t. wT𝟏𝑛 = 1

3- wi ≥ 0 for all nodes i and wi > 0 if and only if node i is globally reachable,

4- If additionally G is weight-balanced, then G is strongly connected and

     lim
 𝑡→∞

𝑥 𝑡 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑥 0 𝟏𝑛

Remark: There is a method to derive a weight-balanced, for strongly connected graph.

Where lmax is a maximum of diagonal elements of L and w is left eigenvector of the eigenvalue 0.



Ali Karimpour  Aug 2024

27

DC MICROGRID MODEL [3]

Continuous-time Averaging Systems
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Continuous-time Averaging Systems

First, we augment system with additional state variables (distributed integrators) θi , 

for each nodes as:

DC MICROGRID CONSENSUS CONTROL [4]
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Comparing Discrete-time and Continuous-time Averaging Systems

Consensus(Rendezvous) problem in discrete time and continuous time is: 
𝑥 𝑘 + 1 = 𝑃𝑥(𝑘)

C
o
n
se

n
su

s

Discrete

time

Continuous

time

Strongly connected graph and aperiodic(Example 3 and 5)

P is row stochastic and primitive, lim
𝑘→∞

𝑥 𝑘 = 𝑤𝑇𝑥 0 𝟏𝑛 

Strongly connected graph and aperiodic and weight-balanced (Example4 

and 6)

P is double stochastic primitive and lim
𝑘→∞

𝑥 𝑘 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑥 0 𝟏𝑛 

If a Laplacian matrix L has associated digraph G with a globally 

reachable node lim
𝑡→∞

𝑥 𝑡 = 𝑤𝑇𝑥 0 𝟏𝑛

If a Laplacian matrix L has associated digraph G with a globally 

reachable node and additionally G is weight-balanced(so it is 

strongly connected) then  
lim
𝑡→∞

𝑥 𝑡 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑥 0 𝟏𝑛

ሶ𝑥 𝑡 = −ത𝐿𝑥 𝑡
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Continuous-time Averaging Systems

A=

0 𝑎
0 0

0 0
𝑏 𝑐

0 0
0 𝑑

0 0
0 0

            D=

𝑎 0
0 𝑏 + 𝑐

0 0
0 0

0 0
0 0

0 0
0 𝑑

L=D-A

Let:   a=2, b=3, c=2.5, d=5

𝜆1 = 0, 𝜆2 =-0.3661     𝜆3 = −0.8147, 𝜆4 = −27.1196

𝜔1
𝑇 = [0 0 1 0]

lim
𝑡→∞

𝑥 𝑡 = 𝑤𝑇𝑥 0 𝟏𝑛 =

𝑥3(0)
𝑥3(0)
𝑥3(0)
𝑥3(0)

Example 11: (Exercise 7-4 part i and ii)
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Continuous-time Averaging Systems

A=

0 𝑎
0 0

0 0
𝑏 𝑐

𝑒 0
0 𝑑

0 0
0 0

            D=

𝑎 0
0 𝑏 + 𝑐

0 0
0 0

0 0
0 0

𝑒 0
0 𝑑

L=D-A

Let:   a=2, b=3, c=2.5, d=5,   e=12

𝜆1 = 0, 𝜆2 =-3.4282    𝜆3 = 𝜆4 = −10.5359 ± 1.6602𝑗

𝜔1
𝑇 = [0.4615 0.3077 0.0769 0.1538]

lim
𝑡→∞

𝑥 𝑡 = 𝑤𝑇𝑥 0 𝟏𝑛 =

0.4615𝑥1 0 +  0.3077𝑥2 0 + 0.0769𝑥3(0) + 0.1538𝑥4(0)

0.4615𝑥1 0 +  0.3077𝑥2 0 + 0.0769𝑥3(0) + 0.1538𝑥4(0)

0.4615𝑥1 0 +  0.3077𝑥2 0 + 0.0769𝑥3(0) + 0.1538𝑥4(0)

0.4615𝑥1 0 +  0.3077𝑥2 0 + 0.0769𝑥3(0) + 0.1538𝑥4(0)

Example 11: (Exercise 7-4 part iii change the graph)
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Continuous-time Averaging Systems

𝜆1 = 0, 𝜆2 =-0.0653    𝜆3 = 𝜆4 = −0.1468 ± 0.0408𝑗

𝜔1
𝑇 = [0.25 0.25 0.25 0.25]

lim
𝑡→∞

𝑥 𝑡 = 𝑤𝑇𝑥 0 𝟏𝑛 =

0.25𝑥1 0 +  0.25𝑥2 0 + 0.25𝑥3(0) + 0.25𝑥4(0)

0.25𝑥1 0 +  0.25𝑥2 0 + 0.25𝑥3(0) + 0.25𝑥4(0)

0.25𝑥1 0 +  0.25𝑥2 0 + 0.25𝑥3(0) + 0.25𝑥4(0)

0.25𝑥1 0 +  0.25𝑥2 0 + 0.25𝑥3(0) + 0.25𝑥4(0)

Example 11: (Exercise 7-4 part iii change the graph averaging)

𝐿 =

2 −2
0 5.5

0 0
−3 −2.5

−12 0
0 −5

12 0
0 5

ത𝐿 =

0.0769 −0.0769
0 0.1410

0 0
−0.0769 −0.0641

−0.0769 0
0 −0.0641

0.0769 0
0 0.0641
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Time-varying Averaging Systems

In time-varying systems the averaging row-stochastic matrix is not constant over the time, but 

instead changes values and, possibly, switches among a finite number of values.

For example in round-robin scheduling, where the n agents are numbered and, for each i, agent 

i talks(change its value) only at times i, n+i, 2n+i, …, kn+i

x(n + 1) = AnAn-1 A1x(1):

As an another example in asynchronous execution, each time(not in synchrony) an agent wakes 

up, the available information from its neighbours varies. At an iteration instant for agent i, 

assuming agent i has new messages/information from agents i1, …, im, agent i will implement:

𝑥𝑖
+ =

1

𝑚+1
𝑥𝑖+

1

𝑚+1
(𝑥𝑖1+ 𝑥𝑖2+…+ 𝑥𝑖𝑚)
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Time-varying Averaging Systems
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• The graph is 

     connected 

    at all times.

Now we want to speak about the convergence of the following system in different time-

varying situation                                x(k + 1) = A(k)x(k)                  

• The graph is  

     not connected 

     at all times.

• Different primitive row-stochastic adjacency matrix.

𝑥(𝑡) can converges to (𝑤𝑇𝑥(0))𝕝n.

• Different symmetric and doubly-stochastic adjacency matrix.

𝑥(𝑡) can converges exponentially fast to average(x(0))𝕝n.

• The union digraph contains a globally reachable node 

     (row-stochastic adjacency matrix).

𝑥(𝑡) can converges exponentially fast to (𝑤𝑇𝑥(0))𝕝n.

• The corresponding graphs to be connected over time. 

     (symmetric row-stochastic adjacency matrix).

𝑥(𝑡) can converges exponentially fast to average(x(0))𝕝n.
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Time-varying Averaging Systems

The graph is connected at all times, but different doubly-stochastic adjacency matrix.

Theorem: (Convergence over digraphs strongly-connected at all times). Let the set of {A(k)} be a 

sequence of symmetric and doubly-stochastic matrices with associated digraphs {G(k)} so that:

(AC1) each non-zero edge weight aij(k), including the self-loops weights aii(k), is larger than a 

constant ε > 0 (at all time), and

(AC2) each digraph G(k) is strongly connected and aperiodic.

Then the solution to x(k + 1) = A(k)x(k) converges exponentially fast to average(x(0))𝕝n.

Proof: Define disagreement vector δ(k)=x(k)- average(x(0))𝕝n now one must show that 

disagreement vector converges to zero. (Remark: δ(k)∈ 𝕝𝑛
⊥ )

Since δ(k+1)=Aδ(k)

δ(k+1) 2= A(k)δ(k) 2 ≤ 𝜌𝑒𝑠𝑠(𝐴 𝑘 ) δ(k) 2

The first inequality follows from the property of 𝕝𝑛
⊥ and symmetric property of A(k)(Double-

stochastic). Now let c=max{𝜌𝑒𝑠𝑠(𝐴 𝑘 )} which is less than 1:

δ(k) 2≤𝑐𝑘 δ(0) 2
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Time-varying Averaging Systems

Example 12(Importance of assumption AC1): Following example violate assumption (AC1).

For any ∝≥ 1 and any k we know that 𝜌𝑒𝑠𝑠 𝐴 𝑘 < 1. But lim
𝑘→∞

𝜌𝑒𝑠𝑠 𝐴 𝑘  =1

Remark: For ∝= 1, A(k) converges to A∞ very slowly so x(k) converges to average(x(0))𝕝n , 

but for ∝> 1 A(k) converges to A∞ very fact so x(k) oscillates indefinitely.
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Time-varying Averaging Systems

The graph is connected at all times, but different row-stochastic adjacency matrix(Ex 12.6).

Theorem: (Convergence over digraphs strongly-connected at all times). Consider a sequence 

of row-stochastic matrices {A(k)} with associated digraphs {G(k)} so that 

(AC1) Each non-zero edge weight aij(k), including the self-loops weights aii(k), is larger than 

a constant ε > 0 (at all time), and

 

(AC2) Each digraph G(k) is strongly connected and aperiodic.

(AC3) There is a positive vector w ∈ Rn satisfying 𝕝𝑛
𝑇𝑤 = 1 and 𝑤𝑇𝐴 𝑘 = 𝑤𝑇 for all k.

Then the solution to x(k + 1) = A(k)x(k) converges to lim
𝑘→∞

𝑥 𝑘 = (𝑤𝑇𝑥(0))𝕝n.
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Time-varying Averaging Systems

The graph is not connected at all times, but the union digraph contains a globally reachable node 

and at any time we have row-stochastic adjacency matrix.      

Theorem: (Consensus for time-varying algorithms) Let the set of {A(k)} be a sequence of 

row-stochastic matrices with associated digraphs {G(k)} so that:

(A1) each digraph G(k) has a self-loop at each node;

(A2) Each non-zero edge weight aij(k), including the self-loops weights aii(k), is larger than a 

constant ε > 0 (at all time), and

(A3) There exists a duration  𝛿 ∈ 𝑁 such that, for all times k, the union digraph

 𝐺 𝑘 ∪ 𝐺 𝐾 + 1 … ∪ 𝐺(𝑘 + 𝛿 − 1) contains a globally reachable node. Then

(i) There exists a non-negative vector w ∈Rn normalized to w1+···+wn =1 such that 

limk→∞A(k)·A(k− 1)· ··· ·A(0) = 𝕝𝑛wT; 

(ii) The solution to x(k + 1) = A(k)x(k) converges exponentially fast to 𝑤𝑇𝑥 0 𝕝𝑛

(iii) If additionally each matrix in the sequence is double-stochastic, then the solution to 

                              x(k + 1) = A(k)x(k) converges to average 𝑥 0 𝕝𝑛

Note: In a sequence with property (A2), edges can appear and disappear, but the weight of 

each edge (that appears an infinite number of times) does not go to zero as k→∞
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Time-varying Averaging Systems

Proof of theorem by max-min function (After introducing max-min). 
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Time-varying Averaging Systems

Example 13: (Consensus for time-varying algorithms) Let the set of {A(k)} be a sequence of 

row-stochastic matrices with associated digraphs {G(k)} as follows.

Initial value is:

                    𝑥(0) =

1
2
3
4
5

𝑤 =

0
0
0
0
1

Left eigenvector corresponding to largest 

eigenvalue of 

A=A5A4A3A2A1 

is:

Consensus happens and converge to 

𝑤𝑇𝑥(0) 𝕝5

Remark: Vertex 5 is a sink so all converges to vertex 5
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Time-varying Averaging Systems

Example 14: (Consensus for time-varying algorithms) Let the set of {A(k)} be a sequence of 

row-stochastic matrices with associated digraphs {G(k)} as follows.(V5 is not sink)

𝑤 =

0.1106
0.1843
0.0415
0.3318
0.3318

Left eigenvector corresponding to largest 

eigenvalue of 

A=A5A4A3A2A1 

is:

Initial value is:

             𝑥(0) =

1
2
3
4
5

Consensus happens and converge to 

𝑤𝑇𝑥(0) 𝕝5
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Time-varying Averaging Systems

Example 15: (Consensus for time-varying algorithms) Let the set of {A(k)} be a sequence of 

double-stochastic matrices with associated digraphs {G(k)} as follows.

𝑤 =

0.2
0.2
0.2
0.2
0.2

Left eigenvector corresponding to largest 

eigenvalue of 

A=A5A4A3A2A1 

is:

Initial value is:     𝑥(0) =

1
2
3
4
5

Consensus happens and converge to 

𝑤𝑇𝑥(0) . 𝕝5 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑥 0 ). 𝕝5
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Time-varying Averaging Systems

The graph is not connected at all times, but the adjacency matrix to be symmetric row stochastic  

and the corresponding graphs to be connected over time.

Theorem: (Consensus for symmetric time-varying algorithms) Let the set of {A(k)} be a 

sequence of symmetric row-stochastic matrices with associated digraphs {G(k)} so that:

(A1) each digraph G(k) has a self-loop at each node;

(A2) Each non-zero edge weight aij(k), including the self-loops weights aii(k), is larger than a 

constant ε > 0 (at all time), and

(A4) For all k ∈ 𝑍≥0 , the graph ∪𝜏>𝑘 𝐺(𝜏) is connected. Then

(i) lim
k→∞

A k A k − 1 … A 0 =
1

n
𝕝n𝕝n

T

(ii) Then the solution to x(k + 1) = A(k)x(k) converges exponentially fast to average x 0 𝕝n

Note: In this theorem assumption A4 is weaker than assumption A3. A3 requires the existence 

of a finite time-interval of duration 𝛿 ∈ 𝑁 so that the union graph 𝐺 𝑘 ∪ 𝐺 𝐾 + 1 … ∪ 𝐺(𝑘
+ 𝛿 − 1) contains a globally reachable node for all times k≥0.
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Time-varying Averaging Systems

Following example shows the important of assumption A3 in the case of row-stochastic 

adjacency matrices.

Example 16: (Uniform connectivity is required for non-symmetric matrices) Consider 

following event driven system. Starting point is:      𝑥1 < −1,  𝑥2 < −1,  𝑥3 > +1.

Valid till x1 go 

to side of x3

Valid till x3 go 

to side of x2

Valid till x2 go 

to side of x1

As it is shown there is no consensus(lack of uniform connectivity).
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The max-min function and row-stochastic matrices

Define max-min function Vmax-min : Rn → R+ by

Vmax-min(x) = max(x1, x2, ... , xn) - min(x1, x2, ... , xn) 

Remark: For and row-stochastic matrix we have:                     Vmax-min(Ax) ≤ Vmax-min(x) 

  

So,                                 Vmax-min(x(k+1)) ≤ Vmax-min(x(k)) ≤…. ≤ Vmax−min(x(0))

 

and clearly

min x(0) ≤ min x(k) ≤ min x(k + 1) ≤ max x(k + 1) ≤ max x(k) ≤ max x(0)

Column-maximum row-minimum entry is defined as:

𝛾 𝐴 = max
𝑗∈{1,…,𝑛}

min
𝑖∈{1,…𝑛}

𝑎𝑖𝑗 ∈ [0,1]

Example 17: 

𝐴 =
0.4 0.6
1 0

,  𝛾 𝐴 = 0.4        𝐴 =
0.5 0.5
0.2 0.8

,  𝛾 𝐴 = 0.5 A=1, 𝛾 𝐴 = 1   

Remark: 𝛾 𝐴 > 0 if and only if A has positive column.  
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The max-min function and row-stochastic matrices

Theorem: (Alternative convergence analysis for discrete-time averaging)

(i) For all x∈Rn, the max-min function satisfies      𝑉𝑚𝑎𝑥−𝑚𝑖𝑛(𝐴𝑥) ≤ (1 − 𝛾(𝐴))𝑉𝑚𝑎𝑥−𝑚𝑖𝑛(𝑥)

The following properties of A are equivalent

Given an n-dimensional row-stochastic matrix A with associated digraph G, the following 

statements hold:

a) G contains a globally reachable node and the subgraph of globally reachable node is aperiodic. 

b) There exist a positive integer number h such that Ah has a positive column, and

c) A is semi-convergent to a rank-one matrix.

Remark: If A satisfies any(and therefore all) of the above property then Vmax-min(x(k)) 

converges exponentially fast to zero such that

          

                      𝑉𝑚𝑎𝑥−𝑚𝑖𝑛(𝑥 𝑘 ) ≤ (1 − 𝛾(𝐴ℎ))[
𝑘

ℎ
]
 𝑉𝑚𝑎𝑥−𝑚𝑖𝑛(𝑥 0 )
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Time-varying algorithms in continuous-time

In continuous system we have:

ሶ𝑥(𝑡) = −𝐿𝑥(𝑡)

Theorem (Consensus for time-varying algorithms in continuous time). Let A(t) be a

time-varying adjacency matrix with associated time-varying digraph G(t). Assume

(A1) Each non-zero edge weight aij(t) is larger than a constant ε > 0,

(A2) There exists a duration T > 0 such that, for all t ∈ 𝑅≥0, the digraph associated to the 

adjacency matrix

න
𝑡

𝑡+𝑇

𝐿 𝜏 𝑑𝜏

Contains a globally reachable node.

Then

a) There exist a non-negative 𝑤 ∈ 𝑅𝑛 where 𝑤 𝑠𝑢𝑚 = 1 s.t the solution to ሶ𝑥 𝑡 = −𝐿 𝑡 𝑥(𝑡)

converges exponentially fast to 𝑤𝑇𝑥 0 𝕝𝑛

b)  If additionally, 𝕝𝑛
𝑇𝐿 𝑡 = 0𝑛

𝑇  for almost all times t, the solution to ሶ𝑥 𝑡 = −𝐿 𝑡 𝑥(𝑡)

converges to 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑥 0 𝕝𝑛
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Positive network control systems 

Positive and compartmental systems, that are, dynamical systems with state variables and output 

variables that are non-negative for all times given a positive initial state.

Examples of 

positive/compartmental 

systems

• Transportation network systems.

• Epidemic propagation models.

• Biological networks.

• Water reservoirs.

• Factory storeroom.

• Extinction  behaviour.
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Positive network control systems 

A linear system described by:

ሶ𝑥 = 𝐴𝑥 + 𝑏𝑢              or            𝑥 𝑘 + 1 = 𝐴𝑥 𝑘 + 𝑏𝑢 𝑘
                             𝑦 = 𝑐𝑥                                       𝑦 𝑘 = 𝑐𝑥(𝑘)

is said to be a positive linear system iff for any nonnegative initial state vector and positive 

input, the output and the state trajectory are nonnegative.

ሶ𝑥 = 𝐴𝑥 + 𝑏𝑢
   𝑦 = 𝑐𝑥                        

Theorem: Consider following continuous linear system and suppose u is non-negative.

The mentioned system is positive continuous linear system iff A is Metzler and all elements of 

b and c are non-negative.

A matrix is Metzler if all non-diagonal elements are non-negative.

𝑥 𝑘 + 1 = 𝐴𝑥 𝑘 + 𝑏𝑢(𝑘)
𝑦 𝑘 = 𝑐𝑥(𝑘)

Theorem: Consider following discrete linear system and suppose u is non-negative.

The mentioned system is positive continuous linear system iff all elements of A,  b and c are 

non-negative.

Proof: Clear.
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Positive network control systems 

Property of Metzler matrix A. 

1) There exist a real eigenvalue λu where λu ≥ 𝑅𝑒𝑎𝑙(λi) for i=1, 2, … n.

2) There exist a nonnegative left and right eigenvector corresponding to λu.

If Metzler matrix A is irreducible(its induced graph is strongly connected) then. 

1) There exist a real eigenvalue λu where λu> 𝑅𝑒𝑎𝑙(λi) for i=1, 2, … n.

2) There exist a positive left and right eigenvector corresponding to λu.

Example 15: A reducible Metzler matrix.

𝐴 =
1 1
0 −2

        

Example 16: An irreducible Metzler 

matrix.

𝐴 =
1 1
3 −2

        

λ𝑢 = λ1 = 1,  𝑣1 =
1
0

,  λ2 = −2

λ𝑢 = λ1 = 1.7913, 𝑣1 =
0.7842
0.6205

, λ2 = −2.7913
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Positive network control systems 

Theorem: (Properties of Hurwitz Metzler matrices). Consider following system where u is a 

constant value. If matrix A is Metzler, the following statements are equivalent:

1) A is Hurwitz,

ሶ𝑥 = 𝐴𝑥 + 𝑏𝑢

2) A is invertible and –A-1≥ 0, and

3) for all b ≥ 0n, there exists a unique x* ≥ 0n solving Ax* + b = 0n.

Moreover, if A is Metzler, Hurwitz and irreducible, then -A-1 > 0.

Remark: If u be bounded then there is a bounded x. 
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Positive network control systems 

Example 17: A positive system 
ሶ𝑥 =

−2 1
3 −4

𝑥 +
10
0

𝑢

Trajectories of system for 18 different initial condition and u=1 and u=2+sin(t) are shown in 

the figure.

Final point

Final 

circle
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Compartment systems 

In compartmental systems, materials are stored at individual locations and is transferred along 

each other in special directions. Each compartment contains a time-varying quantity qi(t). 

ሶ𝑞𝑖 𝑡 = ෍

𝑗=1,𝑗≠𝑖

𝑛

𝐹𝑗→𝑖 − 𝐹𝑖→𝑗 −  𝐹𝑖→0 + 𝑢𝑖

If one consider M(q) =q1+q2+…+qn as the total mass in the system, then

This equality implies that the total mass is constant in systems without inflows and outflows. 

ሶ𝑀 𝑞 𝑡 = − ෍

𝑖=1

𝑛

𝐹𝑖→0 (𝑞 𝑡 ) + ෍

𝑖=1

𝑛

𝑢𝑖

A compartmental system is linear if all flows depend linearly upon the mass in the originating 

compartment, and the inflow from the environment is constant and non-negative. So:

𝐹𝑖→𝑗(𝑞) = 𝑓𝑖𝑗𝑞𝑖 ,  𝐹𝑖→0(𝑞) = 𝑓𝑖0𝑞𝑖 ,  𝑎𝑛𝑑 𝑢𝑖 𝑞 = 𝑢𝑖
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Compartment systems 

Consider following compartmental systems:
ሶ𝑞𝑖 𝑡 = ෍

𝑗=1,𝑗≠𝑖

𝑛

𝐹𝑗→𝑖 − 𝐹𝑖→𝑗 −  𝐹𝑖→0 + 𝑢𝑖

Its vector form is: ሶ𝑞 𝑡 = 𝐶𝑞 𝑡 + 𝑢

where C is called the compartmental matrix and is defined by

𝑐𝑖𝑗 =

𝑓𝑗𝑖  𝑖𝑓 𝑖 ≠ 𝑗

−𝑓𝑖0 − ෍

ℎ=1,ℎ≠𝑖

𝑛

𝑓𝑖ℎ  𝑖𝑓 𝑖 = 𝑗

Definition (Compartmental matrices). A matrix C is compartmental if

(i) the off-diagonal entries are nonnegative, and

(ii) the column sums are nonpositive(weakly column diagonally dominant).

Remark: A compartmental matrix is Metzler and weakly column diagonally dominant.
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Compartment systems 

Lemma: (Spectral properties of compartmental matrices). For a compartmental system with 

compartmental matrix C,

(i) Real part of eigenvalues of C is not positive.

(ii) C is invertible if and only if C is Hurwitz (i.e., Real part of eigenvalues of C is negative)

Proof: (i) is clear by Gershgorin circle.
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Compartment systems 
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Compartment systems 

A compartment system is outflow-connected if there exists a directed path from any compartment 

in S to the environment.

A compartment system is inflow-connected if there exists a directed path from the environment to 

any compartment in S.

A compartment system contains a trap if there is no directed path from any of the compartments 

in S to the environment or to any compartment outside S.

A a simple trap is a trap that has no traps inside it.

Remark: The system is outflow connected (i.e., all compartments are outflow-connected) if and 

only if the system contains no trap.

trap
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Compartment systems 

Theorem (Algebraic graph theory of compartmental systems). Consider the linear 

compartmental system with dynamics

and with compartmental matrix C and compartmental digraph GF .

The following statements are equivalent:

(i) the system is outflow-connected,

(ii) each sink of the condensation of GF is outflow-connected, and

(iii) the compartmental matrix C is Hurwitz.

ሶ𝑞 𝑡 = 𝐶𝑞 𝑡 + 𝑢

Moreover, the sinks of the condensation of GF that are not outflow-connected are precisely the 

simple traps of the system and their number equals the multiplicity of 0 as a semi simple 

eigenvalue of C.
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Compartment systems 

Reduced compartmental system is derived when one remove all simple traps(if exist) from GF 

and regard the edges into the removed compartments as outflow edges into the environment.

→ 
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Compartment systems 

ሶ𝑞 𝑡 = 𝐶𝑞 𝑡 + 𝑢

Theorem (Asymptotic behavior of compartmental systems). The linear compartmental system

with compartmental matrix C and compartmental digraph GF has the following possible  

asymptotic behaviors:

(i) if the system is outflow-connected, then the compartmental matrix C is invertible, every 

solution tends exponentially to the unique equilibrium q* =-𝐶−1𝑢 ≥ 0𝑛, and in the ith 

compartment qi*> 0 if and only if the ith compartment is inflow-connected to a positive inflow;

(ii) if the system contains one or more simple traps, then:

(a) the reduced compartmental system is outflow-connected and all its solutions converge

exponentially fast to the unique non-negative equilibrium 𝐶𝑟𝑑
−1𝑢𝑟𝑑 , for 𝐶𝑟𝑑 = 𝐹𝑟𝑑

𝑇 − 𝑑𝑖𝑎𝑔(𝐹𝑟𝑑𝕝𝑛 +
𝑓𝑟𝑑,0);

(b) any simple trap H contains non-decreasing mass along time. If H is inflow-connected to a 

positive inflow, then the mass inside H grows linearly with time. Otherwise, the mass inside H 

converges to a scalar multiple of the right eigenvector corresponding to the eigenvalue 0 of the 

compartmental submatrix for H.
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Compartment systems 

Tables of asymptotic behaviours for averaging and positive discrete-time systems
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Compartment systems 

Tables of asymptotic behaviours for averaging and positive continuous-time systems
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