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Introduction to Averaging Systems

Consensus(Rendezvous) problem. Assume that member of a system have dynamics of type
X,(t+ 1) = x,(0) + u,(0)

X,(t) and u,(t) are states and inputs of every vertex v € V. The control goal is to make all units

converge their state to the same point.

There are many variants of this problem, for example wireless sensor networks or social
influence networks.

Important issues in this problem:

« Givena graph G, in which condition there is a consensus(rendezvous) solution or

Iim x,(t) =x", VvelV.

[——+00

« What is the velocity of convergence to the consensus(rendezvous) point?

« Given a graph G, in which condition there is a disagreement, and what happen in this

situation? i
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Introduction to Averaging Systems

Consensus(Rendezvous) problem.

X(t+ 1) = %, + U0

Now if
Uy (t) = ZWEV Kyw xw(t)
Now we have
X(t+ 1) = PX(t)
Where X(t)=[x,"(t) X,"(t) ..... X,"(®)]"and m is number of vertices and x;(t)ER".

As a simplified situation consider every vertex has one state so:
X(t+ 1) = Px(t)
Now we need a convergence s.t. Iim x,(f) =x*, VvelV.
f— 400 |

Necessary condition for convergent to X2

1 as largest eigenvalue and 1 as eigenvector (i.e. P1,=1,) and so P must be .....(why?)

4

Now according to graph structure there is some different situations. e IS



Introduction to Averaging Systems

Example 1: A graph with just one globally reachable vertex. /)
ﬂ{ f?wf
01 0 09 B
P = 04 0 06 03
T v_H 0 0 1] gol

’lirglo x(k) =vwTx(0) (why?)
Ilim x,(k) = %im x, (k) = I}im x3(k) = x5(0)

Remark: The global reachable vertex(no. 3) has a high social influence and others nothing.

Remark: P is reducible so the graph is not strongly connected. ﬁ/ F/'
Remark: The global vertex 3 is a sink. CTs
5
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Introduction to Averaging Systems

Example 2: A graph with two globally reachable vertex.

01 0 09 Oﬁl
P=(04 0 06 N
0.15 0 0.85 2@
L = [0.143 0 0.857 e
[ ] | o
[ ]
[/
lim x(k) =vwlx(0)  (why?) &

Remark: The global reachable vertices (no. 3 and no. 1) contribute in final value.
Remark: Compare social influence of vertex 1 and 3.

Remark: P is reducible so the graph is not strongly connected.

Remark: Vetices 1 and 3 are a sink. Al |



Introduction to Averaging Systems

. ‘ 7 )
Example 3: A strongly connected graph. ,;/ )
Vl 0 0.9] oN
PN v 0EsG0 a—— }F°
0.6 0.4 ’ O\\
1
=1 v_H [0.295 0.264 0.441] ’;‘ﬂ
\_/

’ll_)r{)lo x(k) =vwx(0) (why?)
Ill_{glo Xy = Ill_)rgo x5 (k) = 1\11_)1210 x3(k) = 0.295x,(0) + 0.264x,(0) + 0.441x5(0)
Remark: All vertices are global reachable so they contribute in the final value.
Remark: P is irreducible so the graph is strongly connected.

7
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Introduction to Averaging Systems

Example 4: A weight balanced strongly connected graph. O
o,

=10.333 0.417 0.25

0.417 0.333 0.25
P
0:25a7-0:257Z 5018

."1
A=1 v—[] [0.333 0.333 0.333] ©

Jim x(k) =vwTx(0)
]lim Xy = zlim x5 (k) = Ilim x3(k) = 0.333x,(0) + 0.333x,(0) + 0.333x3(0)
Remark: All vertices are global reachable and weight balanced so they contribute in the final

value with same social influence.

8
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Introduction to Averaging Systems

Consensus(Rendezvous) problem.

| Discrete-time Averaging Systems X(t + 1) = Px(t)

Different type of Continuous-time Averaging Systems x(t) = -L x(t)
Averaging system —

Time-varying Averaging Systems(different row stochastic matrix
_or graph change) x(t+1) =P@Ox(t) or x(t)=-L(t)x()

9
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Discrete-time Averaging Systems

Consensus(Rendezvous) problem in discrete time is: X(t+ 1) = Px(t)

System
graph

Not strongly
connected—
graph

— Strongly connected graph and aperiodic(Example 3 and 5)

P is row stochastic and primitive, Ilim Xl = (WTX(O))ln

Strongly
connected Strongly connected graph and aperiodic and weight-balanced (Example 4
graph and 6)

P is double stochastic primitive and I}im x(k) = average(x(O))ln

Strongly connected graph and periodic (Example7)

— P is irreducible but not primitive and no convergence

~ One aperiodic sink component(Example 1,2 and 8)

P is indecomposable and converges to consensus that does not depend
on all the nodes

Multiple sink component(Example 9 &10)

Converges but not to consensus 11
Ali Karimpour Aug 2024
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Discrete-time Averaging Systems

Example 5: Strongly connected graph and aperiodic a 09 0o o
BE et 0T e S R § e e € e @ 02 0.
098007 >0 04 06 Nt o 1

p= J O al 12 0.9 0 T A O
W S RV R o e ! 06
e R PO | S AT o
gl 1. 0 70 o Qi o .

P Is row stochastic and primitive, eigenvalues of P are: ol

Left eigenvalues corresponding to eigenvalue 1 is: ol

w=[0.2479 0.3017 0.0744 0.0669 0.1281 0.1810]" ]

All states converges to: il

X:(k=>00)=0.2479x,(0)+0.3017x,(0)+0.0744x,(0)+ e T T

0.0669x,(0)+0.1281x:(0)+0.1810x,4(0) (3152506

Remark 1: Vertex 1 and 2 are more important(more social influence).

Remark 2: Final values depending on all nodes(every element of w is strictly positive).

12
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Discrete-time Averaging Systems

-
Example 6: Strongly connected graph and aperiodic and weight-balanced 2 S O-'»==QC i

0.5 05/ - 0..0] 1

o 05 05 0

Bl 0 - 07 bs e ? =05
005 e=a 0 L7 G5 F
P is double stochastic and primitive, eigenvalues of P are:
Left eigenvalues corresponding to eigenvalue 1 is: oo|
w=[0.25 0.25 0.25 0.25]
All states converges to:

X (K-> 90)=0.25%,(0)+0.25%,(0)+0.25X,(0)+0.25%,(0)  i=1,2,...,4 "~

Remark 1: All vertices have similar effect. (similar social influence).
Remark 2: Final values depending on all nodes(every element of w is strictly positive).

Remark 3: The averaging system leads to average consensus. 13
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Discrete-time Averaging Systems

Example 7: Strongly connected graph and periodic

P=

eigenvalues of P are:

There is no convergence and the final value has a periodic value

with period of 4.

—

x(k) =

x4(0)
x,(0)

25(0)]

|1 %6,(0) ]

—

x(k+1) =

%4(0)]
x1(0)
x,(0)

| x3(0) ]

1 0 O

0720

0074

0 0 O
0

—
x(k+2) = x(k+3) =
%1(0)] %,(0)]
x,(0) x3(0)
x3(0) x4(0)
| x,(0) ] x4 (0)]

<

Remark 1: No convergence.

Remark 2: Periodic response.

O—1—+Q
O<«¢—1—0

14
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Discrete-time Averaging Systems

0 0.7 0.3 |o| o
o o 0 0 .4

1] 1) 0 0 1

Q.50 o 0 0 0

o 1.0 0 0 0

B= 0 0 0 |o]z1.0
0 0 o.8 0 o

0.05 0 o ol o
1.00 0 o ol o

| 0.50 0 0.5 |ol| o

oo o

(=T =R = R = = I = i = |

(=]
=]

(=1 = I = R = = Y = = R = Y = ]

(= = I = R I = o I = Y ]
[== I = R = R S O o T o e R s B s I
L

P is row stochastic but not primitive(1 sink 2 sources),

eigenvalues of P are:

Left eigenvalues corresponding to eigenvalue 1 is:

w=[0.1360 0.1936 0.2097

0

All states converges to:

0.0989

0]0.1877 0.0210 0.1161 0.0375]" o

x(K=>o0)= 0.1244x,(0)+ 0.1673%,(0)+ 0.1333x,(0)+
0.0803%(0)+ 0.1066x,(0)+ 0.2663%,(0)+ 0.1004x,(0)+ 0.0213x,,(0)

L " 1
0.5 ] 0.5 1

i=1,2,...10

Remark 1: Vertex 4 and 6 (sources) has no effect on the final value.(no Social influence).

Remark 2: Final values depending on all vertices in the sink.

15
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Discrete-time Averaging Systems

Example 9: Multiple sink component 7 -7, osl s
Multiple sink component, w| W\
one aperiodic sink and one periodic.
0 01,0 0 0 0o o o0 0 0] @— "'1;.
0 o o 0 1.0 o o o o o 4 1’
0 0 0 0 o o 01.00 0 O |
0.50 0 o o 0 0 0.25 0.25 0O O 9
o1 o 0 o0 0 o o 0 0
= 0 0 o.8 o0 0.4 g o o 0 0
0 0 op.8 Q 0 u] a 4] 0 0.2
0.05 0 o] 0 0 o0 0.85 o o 0
1.00 o 0 o] 0 0 o] o o 0
| .50 o 0.5 a 0 0 0 o o 0

P is row stochastic and not primitive, eigenvalues of P are:
Left eigenvalues corresponding to eigenvalue 1 is:

w=[0.0441 0 0.3044 0 O O 0.2892 0.3044 0 0.0578]"

All states of aperiodic sink converges to:
Xi(k=>00)= 0.0441x,(0)+ 0.3044x,(0)+ 0.2892x-(0)+0.3044x4(0)+ 0.0578x,,(0) i=1,3,7,8,10

All states of peripdic sink jump to thg following parts(period is 2):
Xo(K)= %5(0), X5(K)= %,(0) and x,(k+1)= %,(0), xs(k+1)= x5(0) ot
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Discrete-time Averaging Systems

Theorem: (Consensus for row-stochastic matrices with a globally-reachable
aperiodic strongly-connected component) Let A be a row-stochastic matrix and let G
be its associated digraph. The following statements are equivalent:

(A1) The eigenvalue 1 is simple and all other eigenvalues p satisfy |u| <1,

(A2) A is semi-convergentand lim A*=1 w', w> 0, and 17w=1,

k— oo
(A3) G contains a globally reachable node and the subgraph of globally reachable
nodes is aperiodic.

If any, and therefore all, of the previous conditions are satisfied, then the matrix A is
said to be indecomposable and the following properties hold:

(1) w > 0 is the left dominant eigenvector of A and w; > 0 if and only if node i Is
globally reachable;

(i) the solution to the averaging model x(k + 1) = Ax(K) is zlim x(k) =wT” x(0) 1,,,

(i) 1f additionally A is doubly-stochastic, then w :%ln, Ilim x(k) =average(x(0)) 1,
Ali Karimpour Aug 2024



Discrete-time Averaging Systems

Theorem: (Convergence for row-stochastic matrices with multiple aperiodic sinks).[1]
Let A be a row-stochastic matrix, let G be its associated digraph, and let M>2 be the number
of sinks in the condensation digraph C(G). If each of the M sinks, is aperiodic, then

(i) the semi-simple eigenvalue p(A)=1 has multiplicity equal M and is strictly larger than the
magnitude of all other eigenvalues, hence A is semi-convergent.

(i) there exist M different left eigenvectors of A(corresponding to 1 eigenvalues), denoted by
w™eR™ form € {1, 2,.., M}, with property that ™ = 0,=1and w™1 =1, w!* is positive if
and only if node i belongs to m-th sink.

(ii1) the solution to the averaging model x(k+1)=Ax(k) with initial condition x(0) satisfy

f

(w™)T2(0). if node @ belongs to the m-th sink,
(w™)Tz(0). if node i is connected with the m-th sink and no other
]lmi z:(k) = ¢ " sink,
Z %m((w™)"z(0)), if nodei is connected to more than one sink,
[ m=1

where, for each node I connected to more than one sink, the coefficents z; .. is used.

18
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Discrete-time Averaging Systems

Example 10: Multiple sink componen 02 7@
7 75s U S
g . 3 @ | 08 3\ 0.6
Two aperiodic sink. P . -0
© 0 1.0 0 0 0 © 0 0 O 114/ 0.05\_ |
0 0.2 9 008 o0 @ 0 0 O :
© 0 o 0o o0 0o 0100 0 of (J @
0.50 0 © 0 0 0 0.250.25 0 0 a £
0 1 o 0 0 0 0 0 0 0
P = 0 0 0.6 0 0.4 g 0 o 0 0 @9
© 0 0.8 0 0 0 0 0 0 0.2
0.G65 0 0 0 #] 0 0.95 0 o 0
1.00 1] 1] 1] #] 0 0 0 ] 0
[ 0.50 0 0.5 0 0 o a0 o0 0 0

P is row stochastic and not primitive, eigenvalues of P are:

Left eigenvalues corresponding to eigenvalue 1 are:
w,=[0.0441 0 0.3044 0 0 O 0.2892 0.3044 0 0.0578]"

w,=[0 05556 0 0 04444 0 0 0 O 07
All states of aperiodic sink 1 converges to: s o o5

x,(k=>0)= 0.0441x,(0)+ 0.3044x,(0)+ 0.2892x,(0)+0.3044x,(0)+ 0.0578x,,(0)  i=1, 3,7, 8, 10

All states of aperiodic sink 2 converges to: i
Xi(K=2>0)= 0.5556x%,(0)+ 0.4444x.(0) i=2,5 Remark 1: No consenses.Ali Karimpour Aug 2024



Summary of the asymptotic behavior of discrete-time averaging
systems and its relationships with properties of matrices and graphs

o
>~

Strongly connected,
aperiodic and
weight-balanced

Strongly connected
and periodic

N

A

Strongly connected
and aperiodic

N

Ome aperiodic
sink component

Multiple aperiodic
sink components

Properties of digraph G

Doubly stochastic
and primitive

Irreducible
but not primitive

- "y
. B
Primitive
\ Y,
s 5
Indecomposable
- v
s 9
\. /

e

on the average

-

Converges to consensus

o
b

.
b

<
<
Converges to consensus
depending on all nodes

<
<
Converges to consensus

that does not depend
on all the nodes

-
1>

J

Properties of row-stochastic matrix A

AN

Converges
not to consensus

2z

Does not converge

~

Properties of x(k + 1) = Az (k)

20
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Centrality measure of each node

It is of interest to determine the relative importance of a node in a network(social influence).

Centraliy
measures
of a graph

—

1- Degree centrality: Degree centrality is number of indegree of each edge or
column sum of that edge in adjacency matriX. Cyegree= A’ I,

2- Eigenvector centrality: Eigenvector centrality is the dominant eigenvector of
the adjacency matrix associated with the dominant eigenvalue. p(A)c,,=A'c,,

3- Katz centrality: Katz centrality is the combination of degree and eigenvector
centrality. c=a AT(c, +1,) where a < 1/p(4)

4- PageRank centrality: PageRank centrality is for row stochastic matrices and is:

L T 1-a
Cpr—aA Cprh-l-T-H]n a1
5- Closeness centrality: Closeness centrality is for strongly connected graph and is:
. 1
Cclosenee(l) = nooq. .
]:1 =]

6- Betweenness centrality: Betweenness centrality is for strongly connected graph and is:

Z}%k:l dk—)i—>j 21

—

C () =
n n
BehAcsiee h=1 Zj,k=1 dk—>h—>j Ali Karimpour Aug 2024



cCoococoococo oo

Centrality measure of each node

QOO O OO CalEND

OO O O Lo NN EO

OO OO O OO OO o

I QURIEECH O O OO

O OUMENaINOD O O \.O

OO OR R RE | R

Degree centrality

| SR | et O o I e S

SR OO OO0 O O

38 9
Eigenvector centrality
[%9(0) x5 (0)]
X9(0) xg(0)
x9(0) xg(0)
X9(0) xg(0)
x(999) = |%9(0)|  x(1000) = |x5(0)
x9(0) xg(0)
xg(0) x9(0)
X9 (0) xg(0)
| xg(0) | X9(0).

22
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Continuous-time Averaging Systems

This part considers a certain class of differential equations and show when consensus in steady
state happen.

X(t + 1) = Px(t)

Now subtract x(k) from both side
X(k + 1) - x(k) = (P - 1)x(k) = -Lx(k);

where L is Laplacian and by dividing both side by t>0" we have

x(t) = —Lx(t)

where 7L = L

A flock of auklets exhibit
swarm behaviour

24
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Continuous-time Averaging Systems

A flock of animals exhibit swarm behaviour. P

Every fish tries to fixed their position with
regards to neighbours as following manner.
éi = average{0, ; for all neighbors of i} —6,

Equivalently:

g =i=ld
An RC electrical circuit.

0 1/my 1/m3z 1/ry4]
A= 1/r1 0 1/723 0

1/r3 1/1ry3 0 1/734
11/114 0 1/7r34 0

'1/7‘12+1/7‘13+1/T‘14 0
D= 0 1/r, + 1/155
0 0 1/T23+1/T‘13+1/T34 0
0 0 0 1/1r94 + 1 /13,4,
L=D-A V==LV &

Ali Karimpour Aug 2024



Continuous-time Averaging Systems

Now we want to speak about the solution of following problem.

x=—Lx

Theorem: (Consensus for Laplacian matrices with globally reachable nodes). If a Laplacian
matrix L has associated digraph G with a globally reachable node, then

1- The eigenvalue 0 of -L is simple and all other eigenvalues of -L have negative real part,
2- The solution at steady state is:

lim x(¢t) = (w'x(0))1,
t—oo
where w is the left eigenvector of L corresponding to eigenvalue 0 s.t. w'l, = 1

3- w; > 0 for all nodes 1 and w; > 0 if and only if node i is globally reachable,

4- If additionally G i1s weight-balanced, then G is strongly connected and

lim x(t) = average(x(O))ln

t—oo

Remark: There is a method to derive a weight-balanced, for strongly connected graph.
— 1
L =

diag(w)L, A= I, — L.

. is a maximum of diagonal elements of L and w is left eigenvector of the eigenvaftie 0.
Ali Karimpour Aug 2024
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Continuous-time Averaging Systems

DC MICROGRID MODEL [3]

DGU 1
LA
o MN—>
—| Buck 7 | | Us
._
Lijlti = —Ryilyi Vi + u;
CiiVi=1ti — ILi — E lij

27
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Continuous-time Averaging Systems

DC MICROGRID CONSENSUS CONTROL [4]

for each nodes as:

—

\—

O}

Communication

[OR

________

Secondary consensus layer \

1
1 @_ ”
ty

-,

kg
E—"T

1
\___ Y,
i
_\ T l
AV, RL filter | [, 1\ | line j
+ 6 1 DGU j
v Local controll . J_ |
a ocal contraller {G G“T GIDF;,; |
|
|
Primary control layer _) Buck i DGU i |
|

JjeN?

Primary loop i |

First, we augment system with additional state variables (distributed integrators) 6,

— E vij(wilti — w;jlyi)

28
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Comparing Discrete-time and Continuous-time Averaging Systems

Consensus(Rendezvous) problem in discrete time and continuous time is:

Consensus

m—

Discrete
time

Continuous
time

=

—

—

o

—

x(k +1) = Px(k)
x(t) = —Lx(t)

Strongly connected graph and aperiodic(Example 3 and 5)

P is row stochastic and primitive, Ilim x(k) = (WTX(O))ln

Strongly connected graph and aperiodic and weight-balanced (Example4
and 6)
P is double stochastic primitive and I}im x(k) = average(x(O))ln

If a Laplacian matrix L has associated digraph G with a globally
reachable node L]im x(t) = (wTx(0))1,

If a Laplacian matrix L has associated digraph G with a globally
reachable node and additionally G is weight-balanced(so it is
strongly connected) then lim x(t) = average (x (0))21n

t—o0 eyl
Ali Karimpour Aug 2024



Continuous-time Averaging Systems

Example 11: (Exercise 7-4 part 1 and i) C d a

0 a 0 0 B e @ ©- o
SR B :

02 dj a0 P02 00 2 0 @

L=D-A

Let: a=2, b=3, c=2.5, d=5

wl'=[0 0 1 0]

x3(0)]
lim x(t) = (w'x(0))1, = i?’ Eg%
t—oo 3
1x3(0) .

Ali Karimpour Aug 2024



Continuous-time Averaging Systems

Example 11: (Exercise 7-4 part iii change the graph) @ C d @ a @
R Sl @ 1o L T O B
_lo 0 b c _lo b+c 0 0 e
A= B y
e 0 0 O 0 O e 0 h /x
iD= g AP0 F=0-20 0 d. P

L=D-A

ety a=2, D=3, c=2.5, d=b.48=172

w! =[0.4615 03077 0.0769 0.1538]

0.4615x,(0) + 0.3077x,(0) + 0.0769x,;(0) + 0.1538x,(0)]
0.4615x,(0) + 0.3077x,(0) + 0.0769x,(0) + 0.1538x,(0)
0.4615x,(0) + 0.3077x,(0) + 0.0769x,(0) + 0.1538x,(0)
0.4615x,(0) + 0.3077x,(0) + 0.0769x,(0) + 0.1538x3(0)

Ali Karimpour Aug 2024
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Continuous-time Averaging Systems

Example 11: (Exercise 7-4 part iiii change the graph averaging) _ _ |
| _ ® O O
D, IR 513 ) S/
L ey i O R SN |
e N A e 5 Gy 0B Vv
| O _5 0 5 ] ®____,__.-'
[ 0.0769 —0.0769 0 Qi -=21
s 0 0.1410 —0.0769 —0.0641
—0.0769 0 0.0769 0
0 —0.0641 0 0.0641 |

wf =[0.25 025 025 0.25]

0.25x,(0) + 0.25x,(0) + 0.25x4(0) + 0.25x4(0)]
0.25x,(0) + 0.25x,(0) + 0.25x,(0) + 0.25x,(0)
0.25x,(0) + 0.25x,(0) + 0.25x,(0) + 0.25x,(0)
0.25x,(0) + 0.25x,(0) + 0.25x,(0) + 0.25x,(0)] 32
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Time-varying Averaging Systems

In time-varying systems the averaging row-stochastic matrix is not constant over the time, but
instead changes values and, possibly, switches among a finite number of values.

For example in round-robin scheduling, where the n agents are numbered and, for each i, agent
| talks(change its value) only at times I, n+i, 2n+i, ..., kn+i

® @ ®@ O @ -0 @+—0
@ -0 ® O @ O @ @

time=1,5.9,... time = 2.6, 10, ... time=23.7,11.... time=4.8,12,...

X(n+1)=AA.1 AX@1):

As an another example in asynchronous execution, each time(not in synchrony) an agent wakes
up, the available information from its neighbours varies. At an iteration instant for agent i,

assuming agent i has new messages/information from agents i, ..., i.,, agent i will implement:
il " ) s (i L( = LV dC s Gl T )

Ali Karimpour Aug 2024



Time-varying Averaging Systems

Now we want to speak about the convergence of the following system in different time-

varying situation

m—

Types of
time-varying systems

« Thegraphis

« Thegraphis

connected
at all times.

not connected
at all times. ™

I
[ ]

X(k + 1) = A(k)x(k)
Different symmetric and doubly-stochastic adjacency matrix.

x(t) can converges exponentially fast to average(x(0))L...

Different primitive row-stochastic adjacency matrix.

x(t) can converges to (wTx(0))L. .

The union digraph contains a globally reachable node
(row-stochastic adjacency matrix).

x(t) can converges exponentially fast to (w? x(0))L. .

The corresponding graphs to be connected over time.
(symmetric row-stochastic adjacency matrix).

x(t) can converges exponentially fast to average¢x(0))1...

Ali Karimpour Aug 2024



Time-varying Averaging Systems

The graph is connected at all times, but different doubly-stochastic adjacency matrix.

Theorem: (Convergence over digraphs strongly-connected at all times). Let the set of {A(k)} be a
sequence of symmetric and doubly-stochastic matrices with associated digraphs {G(k)} so that:

(AC1) each non-zero edge weight a;(k), including the self-loops weights a;(k), is larger than a
constant € > 0 (at all time), and
(AC2) each digraph G(k) is strongly connected and aperiodic.

Then the solution to x(k + 1) = A(k)x(k) converges exponentially fast to average(x(0))L..

Proof: Define disagreement vector §(k)=x(k)- average(x(0))1, now one must show that
disagreement vector converges to zero. (Remark: §(k)€ I3} )

Since §(k+1)=Ad(k)

I8(k+D)]l2= [[AK)ISK) 2 < pess(ARDINISK I
The first inequality follows from the property of I;: and symmetric property of A(k)(Double-
stochastic). Now let c=max{p.ss(A(k))} which is less than 1:

18K [12=c*118(0) I, .
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Time-varying Averaging Systems

Example 12(Importance of assumption AC1): Following example violate assumption (AC1).

I —exp(—=1/(k+1)*) exp(—1/(k+1)*)
A(IIL) — . k € ZE(J and a > 1.
exp(—1/(k+1)*) 1—exp(—1/(k+1)%)

For any o< 1 and any k we know that p.ss(A(k)) < 1. But lim Pess(A(k)) =1

=1 a=1.4
3 . . . . 3 . . .
257 1 25¢1
2 2

0 10 20 30 40 50 0 10 20 30 40 50
Time (k) Time (k)

Remark: For oc= 1, A(k) converges to A, very slowly so x(k) converges to average(x(0))I, ,
but for oc> 1 A(K) converges to A_, very fact so x(k) oscillates indefinitely. A



Time-varying Averaging Systems

The graph is connected at all times, but different row-stochastic adjacency matrix(Ex 12.6).

Theorem: (Convergence over digraphs strongly-connected at all times). Consider a sequence
of row-stochastic matrices {A(k)} with associated digraphs {G(k)} so that

(AC1) Each non-zero edge weight a;(k), including the self-loops weights a;;(k), is larger than
a constant € > 0 (at all time), and

(AC2) Each digraph G(k) is strongly connected and aperiodic.

(AC3) There is a positive vector w € R" satisfying 1Zw = 1 and w' A(k) = wT for all k.

Then the solution to x(k + 1) = A(k)x(k) converges to I}im x(k) = (wlx(0))I..
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Time-varying Averaging Systems

The graph is not connected at all times, but the union digraph contains a globally reachable node
and at any time we have row-stochastic adjacency matrix.

Theorem: (Consensus for time-varying algorithms) Let the set of {A(k)} be a sequence of
row-stochastic matrices with associated digraphs {G(k)} so that:

(Al) each digraph G(k) has a self-loop at each node;

(A2) Each non-zero edge weight a;(k), including the self-loops weights a;(k), is larger than a
constant € > 0 (at all time), and

(A3) There exists a duration 6 € N such that, for all times k, the union digraph
G(k)UG(K +1)..UG(k + 6 — 1) contains a globally reachable node. Then

(i) There exists a non-negative vector w €R" normalized to w,+---+w, =1 such that
limk—oA(K)-A(k— 1) --- -A(0) = 1,,wT;
(i) The solution to x(k + 1) = A(k)x(k) converges exponentially fast to (wTx(0))L,,
(i11) If additionally each matrix in the sequence is double-stochastic, then the solution to
x(k + 1) = A(K)x(k) converges to average(x(0) )L,
Note: In a sequence with property (A2), edges can appear and disappear, but the weight of

each edge (that appears an infinite number of times) does not go to zero as k> 39
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Time-varying Averaging Systems

Proof of theorem by max-min function (After introducing max-min).

40
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Time-varying Averaging Systems

Example 13: (Consensus for time-varying algorithms) Let the set of {A(k)} be a sequence of
row-stochastic matrices with associated digraphs {G(k)} as follows.

1 1 / o 1 -
A % a\Pav ~N o ANO ASEAY A ATAY KA A
L_Jghb @J:} @5'}1_‘ Hh@' @ Gﬁdl_-: -ﬁ@ Tﬂ_-‘ ﬁl_j l{?@ l@d_- éq_i-‘ l—-b@ ah_:&.is ‘-@5&1}
1 o /N\02 ;/\I r\t 1 2 " e 1 0.1 i . AN 1 N
{“@""—.@j“’"} step1 "0 d‘} step 2 '{“@ @4:} step 3 {:“ @< stepa '{“@ @ steps
~ ~  ~_ Initial value is: X, (b), x,(r), X, (K), x,(c), and x (m)
O @@ Felif 5
y 2 4.5
-’y @< UNION x(0) =13
4 4
|5 = 35
Left eigenvector corresponding to largest § af
eigenvalue of ZI
A=AAAAA, 0
= 2
is: WS -
¢ ke
0 1.5
1. 1t
Consensus happens and converge to 0.5
T 0 T a0 0 a0 o0 1o o 1o
(W x(O))HS 20 40 60 80 100 120 140 160 180 200

Time(k)
Remark: Vertex 5 is a sink so all converges to vertex 5 P U2



Time-varying Averaging Systems

Example 14: (Consensus for time-varying algorithms) Let the set of {A(k)} be a sequence of

row-stochastic matrices with associated digraphs {G(k)} as follows.(V: is not sink)

1
VA ? aNras ~N ™~ O
“o 8 & Cods & “o
(aéi)‘_é - ::f: step 1 L{“(I?-J d"‘) step 2 {‘I@
~ o~ Initial value is:
~® @@ e
/" ] ™ 2
L = o —  UMNION

@0 x(0) =13
4
5

Left eigenvector corresponding to largest
eigenvalue of
A=AAAAA
IS:

0.11067
0.1843
0.0415
0.3318

10.3318.
Consensus happens and converge to

(wTx(0))ls

/'\\ 0.5

D.EIT
"'\\
¥ "I( N

@

-
[y]

X, and X

™ 2.5

X, Xy X
M3

=
)]

F i 1/. \

/088

Cad
[

Time (k)

..r"\ 1{/\ N a2 .
@ “0® @ @< o @+ ~+0
0.9 )
G;/l/,f ~.I : f\j iif.x g ._._.f*\.:
step 3 - @< stepa “@ @< steps
x,(b), x,(r), x,(k), x,(c), and x (m)
—
20 40 60 80 100 120 140 160 180 200



Time-varying Averaging Systems

Example 15: (Consensus for time-varying algorithms) Let the set of {A(k)} be a sequence of
double-stochastic matrices with associated digraphs {G(k)} as follows.

LA ™\ \ f\gd ~ Kn\ /NS ;"\3 ol fﬁ\f f\\ 1 \ f\Fﬁ
o @ ti) C g o T @ “o @ @<« 0 - \J
A AN /1, | ~I 2 " N 01 | {,r\\s 2 Ias
@@ stepr1 @ dk\ step 2 ':'/“@ @ step3 i‘i @< stepa {“@ @ steps
17 x,(b), x,(r), x,(K), x,(c), and x,(m)
2 s T T T T [ T T 1
Ao ¢ |
Initial value is:  x(0) = |3 a5 L5
4 n
Al
|5 . L
: : x” 35
I__eft eigenvector corresponding to largest z 1
eigenvalue of 0.2 <
) ™ 2.5 [
is: by <2
S w =10.2 F
()‘2 1.5
0.2 T
0.5
Consensus happens and converge to

20 40 60 80 100 120 140 160 180 200

(WTx(O)). I = average(x(0)).ls Time (k)



Time-varying Averaging Systems

The graph is not connected at all times, but the adjacency matrix to be symmetric row stochastic
and the corresponding graphs to be connected over time.

Theorem: (Consensus for symmetric time-varying algorithms) Let the set of {A(k)} be a
sequence of symmetric row-stochastic matrices with associated digraphs {G(k)} so that:

(Al) each digraph G(k) has a self-loop at each node;

(A2) Each non-zero edge weight a;(k), including the self-loops weights a;(k), is larger than a
constant € > 0 (at all time), and

(A4) For allk € Z. , the graph U~ G(t) is connected. Then

@ Jim AGOA(k ~ 1) ... A(0) = %Hn]l}{
(ii) Then the solution to x(k + 1) = A(k)x(k) converges exponentially fast to average(x(O))]ln

Note: In this theorem assumption A4 is weaker than assumption A3. A3 requires the existence
of a finite time-interval of duration § € N so that the union graph G(k) U G(K + 1) ...U G(k
+ § — 1) contains a globally reachable node for all times k=0.
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Time-varying Averaging Systems

Following example shows the important of assumption A3 in the case of row-stochastic
adjacency matrices.

Example 16: (Uniform connectivity is required for non-symmetric matrices) Consider

following event driven system. Starting pointis: x; < —1, Xoi=4, x3 > +1.
0> Valid till X, go
to side of X, 2

x1{bj, xz{rj, and xsik)

| “o

0.5
Valid till x, go z; o C{‘b 1y
to side of x, ¢ _
Valid till X390 = o
to side of x,

AN |
0.5 /
D i i i i i i
0.5 1 0 50 100 150 200 250 300 350
j ) Time (k)
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As it is shown there is no consensus(lack of uniform connectivity).



The max-min function and row-stochastic matrices

Define max-min function Vmax-min : R" > R* by

Vimamin) = MAX(X, Xy iy Xp) = MIN(y, X, e Xp)

Remark: For and row-stochastic matrix we have: V maxmin(AX) <V naemin(X)
SO’ Vmax-min(x(k+1)) = Vmax-min(x(k)) =L S Vmax—min(x(o))
and clearly

min x(0) < min x(k) < min x(k + 1) < max x(k + 1) < max x(k) < max x(0)
Column-maximum row-minimum entry is defined as:

E e N G

Remark: y(4) > 0 if and only if A has positive column.

Example 17:

_ 0.5 0.5

(04 06 i
A_ll 0]’ pAis= 0 L A=l el

y(4A) = 0.5 A=l, y(4) =1
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The max-min function and row-stochastic matrices

Theorem: (Alternative convergence analysis for discrete-time averaging)

Given an n-dimensional row-stochastic matrix A with associated digraph G, the following
statements hold:

(1) For all xeR", the max-min function satisfies Vo, gx—min(A%) < (1 — Y(A))WVmax—min (X)
The following properties of A are equivalent

a) G contains a globally reachable node and the subgraph of globally reachable node is aperiodic.

b) There exist a positive integer number h such that A" has a positive column, and

c) A is semi-convergent to a rank-one matrix.

Remark: If A satisfies any(and therefore all) of the above property then Vmax-min(x(k))
converges exponentially fast to zero such that

Vit s i CieY) = (1 V(Ah))[%] Voo r i A X0 47
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Time-varying algorithms in continuous-time

In continuous system we have:
X(t) = —Lx(t)

Theorem (Consensus for time-varying algorithms in continuous time). Let A(t) be a
time-varying adjacency matrix with associated time-varying digraph G(t). Assume

(Al) Each non-zero edge weight a;(t) is larger than a constant € > 0,

(A2) There exists a duration T > 0 such that, for all t € R, the digraph associated to the

adjacency matrix
t+T
j L(t)dt
t

Contains a globally reachable node.

Then

a) There exist a non-negative w € R™ where |[|w||s,m = 1 S.t the solution to x(t) = —L(t)x(t)
converges exponentially fast to (w”x(0))L,

b) If additionally, 1, L(t) = 0T for almost all times t, the solution to x(¢t) = —L(t)x(t)

converges to average(x(0))lL, e
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Positive network control systems

Positive and compartmental systems, that are, dynamical systems with state variables and output
variables that are non-negative for all times given a positive initial state.

— « Transportation network systems.
» Epidemic propagation models.

» Biological networks.

Examples of
positive/compartmental __  \Water reservoirs.
systems

» Factory storeroom.

o Extinction behaviour.

50
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Positive network control systems

A linear system described by:
X =Ax + bu or

x(k +1) = Ax(k) + bu(k)
y=cx y(k) = cx(k)
IS said to be a positive linear system iff for any nonnegative initial state vector and positive

Input, the output and the state trajectory are nonnegative.

A matrix is Metzler if all non-diagonal elements are non-negative.
Theorem: Consider following continuous linear system and suppose u is non-negative.

X =Ax + bu
Yy =cXx
The mentioned system is positive continuous linear system iff A is Metzler and all elements of

b and ¢ are non-negative.
Theorem: Consider following discrete linear system and suppose u is non-negative.

x(k +1) = Ax(k) + bu(k)

y(k) = cx(k)
The mentioned system is positive continuous linear system iff all elements of A, b and c are
non-negative. £
Ali Karimpour Aug 2024

Proof: Clear.



Positive network control systems

Property of Metzler matrix A.

1) There exist a real eigenvalue A, where A, = Real()\;) for i=1, 2, ... n.

2) There exist a nonnegative left and right eigenvector corresponding to A,

If Metzler matrix A is irreducible(its induced graph is strongly connected) then.
1) There exist a real eigenvalue A, where A > Real(}\;) for i=1, 2, ... n.

2) There exist a positive left and right eigenvector corresponding to 2.

Example 15: A reducible Metzler matrix.
. _
< Jo——=

1

1 1
GG I ey s

Example 16: An irreducible Metzler 1 2

1
matrix. Cﬁ@%}
1

1 0.7842
A= [ ] A, = A, = 1.7913, v = ], Ayi=—2:4913 52
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Positive network control systems

Theorem: (Properties of Hurwitz Metzler matrices). Consider following system where u is a
constant value. If matrix A is Metzler, the following statements are equivalent:

x = Ax + bu

1) A'is Hurwitz,

2) Ais invertible and ~A1> 0, and

3) for all b > 0,,, there exists a unique x*> 0, solving Ax* + b =0,

Moreover, if A is Metzler, Hurwitz and irreducible, then -A1 > 0.

Remark: If u be bounded then there is a bounded x.
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Positive network control systems

Example 17: A positive system e L 10
¥ [ 3 —4]’“’[0]”

Trajectories of system for 18 different initial condition and u=1 and u=2+sin(t) are shown in
the figure.

u=1 —oal

ZD T T T T T T T 2D T T u 2+5In(t] T

*
18 1 18

*

16 r
1l Final

", ¥ ~

* S
21 Final point /f’”f
KN 10 b -
B

20

o4
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Compartment systems

In compartmental systems, materials are stored at individual locations and is transferred along
each other in special directions. Each compartment contains a time-varying quantity g;(t).

U; Fio

- — =

n
q;(t) = z (Fini—Fisj) = Fibg + u;
Jj=1,j#i F@'%j Fj—}é.

If one consider M(q) =q,+q,*...+q, as the total mass in the system, then
n n
M(@®) = =) Fio@®) + )
i=1 i=1
This equality implies that the total mass is constant in systems without inflows and outflows.

A compartmental system is linear if all flows depend linearly upon the mass in the originating
compartment, and the inflow from the environment is constant and non-negative. So:

Fi.;(q) = fijq: Fio(@) = fioqi and  u;(q) =y

95
Ali Karimpour Aug 2024



Compartment systems

Consider following compartmental systems: 4
q;(t) = z (Fisi—Finj) — Fioo+u
j=1,j+i

Its vector form is: q(t) = Cq(t) +u

where C is called the compartmental matrix and is defined by

GENfom Y fa ifi=)

Definition (Compartmental matrices). A matrix C is compartmental if
(i) the off-diagonal entries are nonnegative, and
(i) the column sums are nonpositive(weakly column diagonally dominant).

Remark: A compartmental matrix is Metzler and weakly column diagonally dominant.
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Compartment systems

Lemma: (Spectral properties of compartmental matrices). For a compartmental system with

compartmental matrix C,
(1) Real part of eigenvalues of C is not positive.
(i1) C is invertible if and only if C is Hurwitz (i.e., Real part of eigenvalues of C is negative)

Proof: (i) is clear by Gershgorin circle.

o/
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Compartment systems

A compartment system is outflow-connected if there exists a directed path from any compartment
in S to the environment.

A compartment system is inflow-connected if there exists a directed path from the environment to
any compartment in S.

A compartment system contains a trap if there is no directed path from any of the compartments
In S to the environment or to any compartment outside S.

A a simple trap is a trap that has no traps inside it.
Remark: The system is outflow connected (i.e., all compartments are outflow-connected)if and
only if the system contains no trap. Al impcHTe P02



Compartment systems

Theorem (Algebraic graph theory of compartmental systems). Consider the linear
compartmental system with dynamics

q(t) = Cq(t) +u
and with compartmental matrix C and compartmental digraph G .
The following statements are equivalent:
(1) the system is outflow-connected,
(i) each sink of the condensation of GF is outflow-connected, and
(i11) the compartmental matrix C is Hurwitz.

Moreover, the sinks of the condensation of GF that are not outflow-connected are precisely the
simple traps of the system and their number equals the multiplicity of 0 as a semi simple
eigenvalue of C.
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Compartment systems

Reduced compartmental system is derived when one remove all simple traps(if exist) from G
and regard the edges into the removed compartments as outflow edges into the environment.

A -
4 /f;.%‘ ?
4
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Compartment systems

Theorem (Asymptotic behavior of compartmental systems). The linear compartmental system

q(t) = Cq(t) +u
with compartmental matrix C and compartmental digraph G¢ has the following possible
asymptotic behaviors:

(i) if the system is outflow-connected, then the compartmental matrix C is invertible, every
solution tends exponentially to the unique equilibrium g* =-C~'u > 0,,, and in the it"
compartment g.*> 0 if and only if the i'" compartment is inflow-connected to a positive inflow;

(ii) if the system contains one or more simple traps, then:

(a) the reduced compartmental system is outflow-connected and all its solutions converge
exponentially fast to the unique non-negative equilibrium C-tlu,4 , for C.q = Fl; — diag(F,4l,, +
frd,O);

(b) any simple trap H contains non-decreasing mass along time. If H is inflow-connected to a
positive inflow, then the mass inside H grows linearly with time. Otherwise, the mass inside H
converges to a scalar multiple of the right eigenvector corresponding to the eigenvalue 0 of the
compartmental submatrix for H.
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Compartment systems

Tables of asymptotic behaviours for averaging and positive discrete-time systems

Dynamics Assumptions & Asymptotic Behavior References
averaging system the associated digraph has a globally reachable node Convergence properties: Theo-
x(k+1) = Az(k) — rem 5.1.
A row-stochastic limg . z(k) = (w'z(0))1, where w > 0 is the left eigenvector Examples: opinion dynamics & av-
of A with eigenvalue 1 satisfying 17w =1 eraging in Chapter 1
affine system A convergent (that is, its spectral radius is less than 1) Convergence properties: Exer-
rk+1)=Az(k)+b = limg,z(k)=T,—A) cise E2.10.

Examples: Friedkin-Johnsen sys-
tem in Exercise E5.8

positive affine system r(0) > 0, = =z(k) = 0, forall k, and Positivity  properties: Exer-
r(k+1)=Az(k)+b cise E10.9
A>=0,b>0, A convergent (that is, |A| < 1 for all A € spec(A)) Examples:  Leslie population
—  limpex(k) = (I — A)7h > 0, model in Exercise E4.14
63
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Compartment systems

Tables of asymptotic behaviours for averaging and positive continuous-time systems

Dynamics Assumptions & Asymptotic Behavior References
averaging system the associated digraph has a globally reachable node Convergence properties: Theo-
i(t) = —Lx(t) — rem 7.4.
L Laplacian matrix lim; . z(t) = (wTz(0))1, where w > 0 is the left eigenvector of Examples: Flocking system in Sec-
L with eigenvalue 0 satisfying 17w = tion 7
affine system A Hurwitz (that is, its spectral abscissa is negative) Convergence properties: Exer-
2(t) = Ax(t) + b —  limy, z(t) =—A""D cise E7.2
positive affine system r(0) > 0, = =z(t) = 0, for all t, and Positivity  properties: Theo-
(t) = Ax(t) + b rem 10.3 and Corollary 10.6.
A Metzler, b > 0, A Hurwitz (that is, R(A) < 0 for all A € spec(A)) Example: compartmental systems
— limy.2(t)=—-A1 >0, in Section 10.
compartmental system  ¢(0) > 0, = q(t) = 0, for all £, and Algebraic graph theory: Theo-
§(t) = Cq(t) + u rem 10.12
C' compartmental, v = 0,, system is outflow-connected Asymptotic behavior: Theo-
— lim,._g(t)=—-Clu>0, rem 10.13
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