LINEAR CONTROL SYSTEMS

Ali Karimpour Professor Ferdowsi University of Mashhad

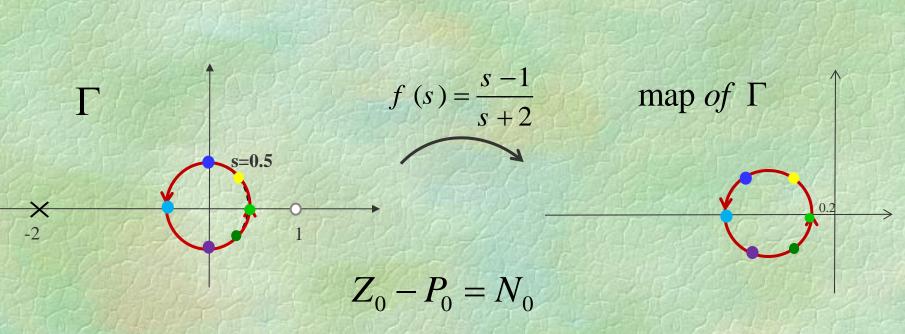
Lecture 8 - Part III

Nyquist Stability Criteria

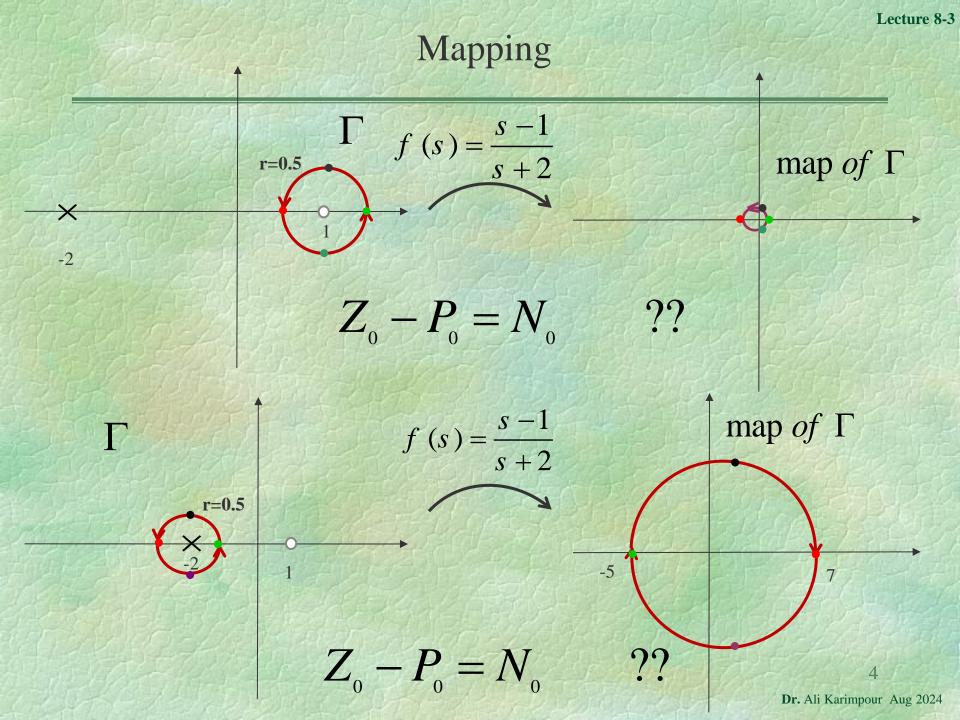
Topics to be covered include:

- Nyquist stability criteria.
- Minimum phase systems.
- Simplified Nyquist stability criterion.

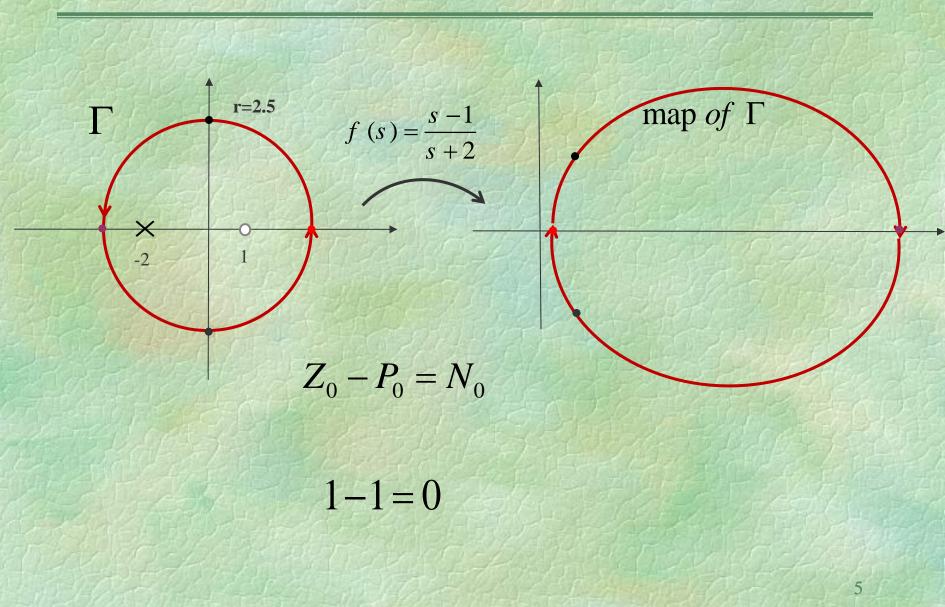
Mapping



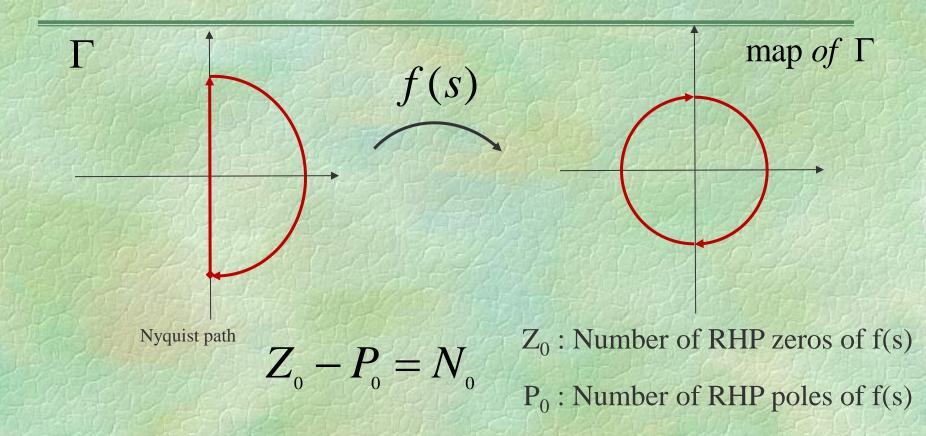
 $Z_0 = number of zeros of f(s)$ that are encircled by Γ $P_0 = number of poles of f(s)$ that are encircled by Γ $N_0 = number of encirclements of the origin made by f(s)$ 0-0=0



Mapping



Nyquist fundamental

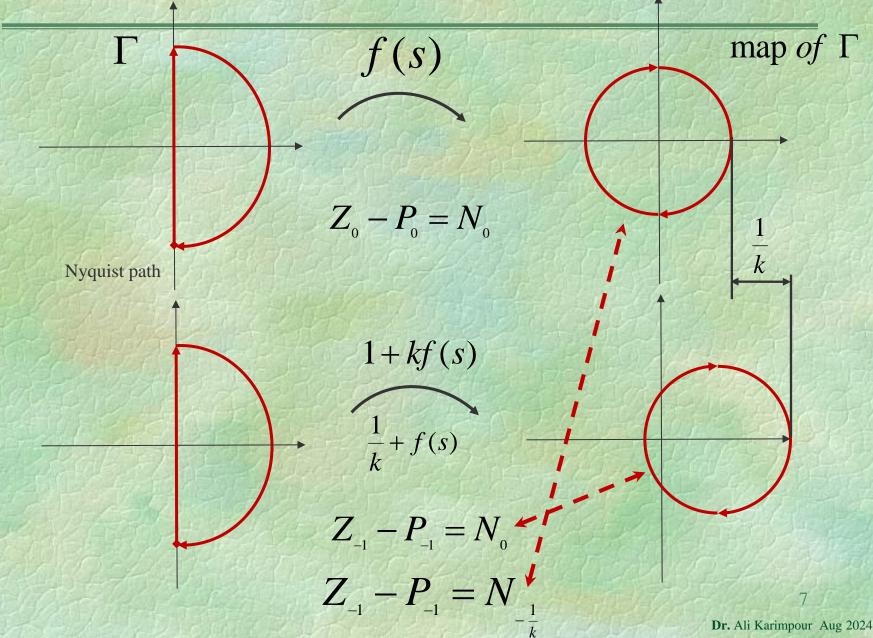


Is it our interest? ??

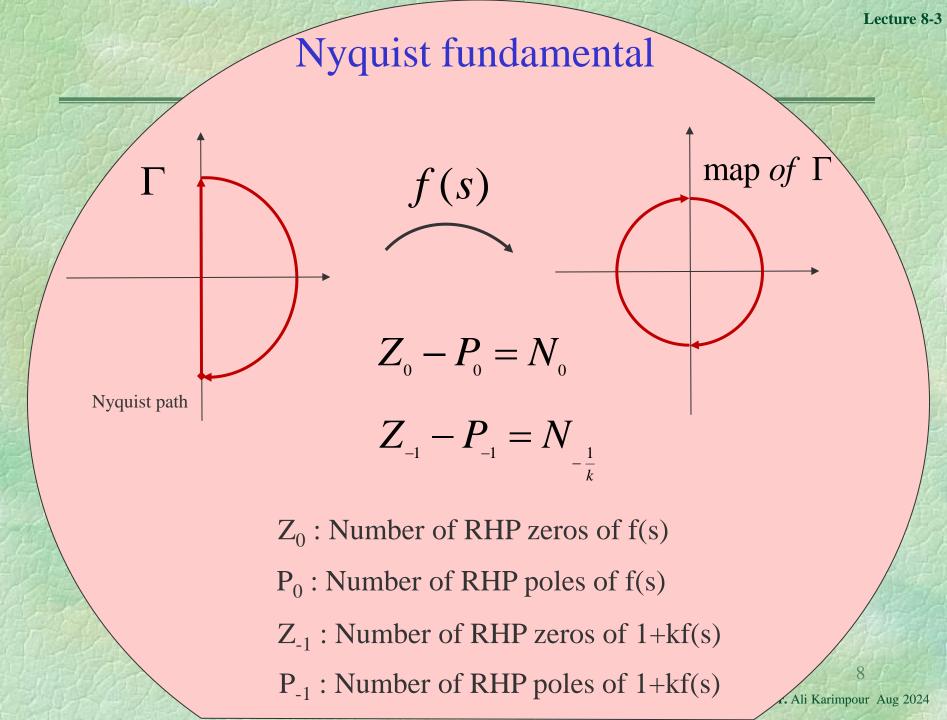
So what is our interest?

Number of RHP zeros of 1+kf(s) : Z_{-1} Why? Number of RHP poles of 1+kf(s) : P_{-1} 6 Dr. Ali Karimpour Aug 2024

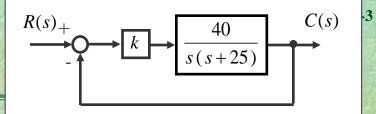
Nyquist fundamental

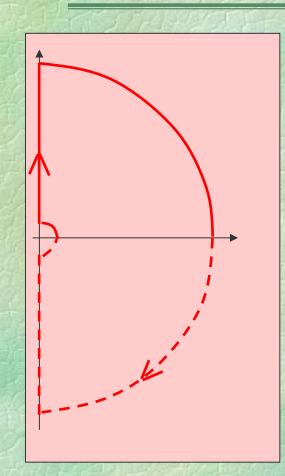


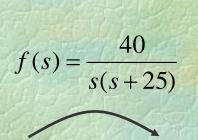
Lecture 8-3



Example 1: Check the stability of the following system by Nyquist method.





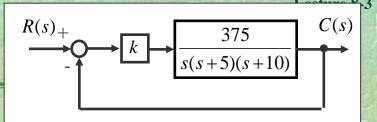


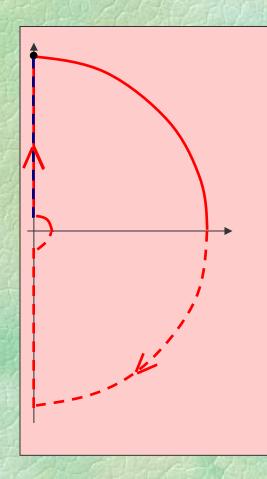
Stability condition ??

$$Z_0 - P_0 = N_0$$

Dr. Ali Karimpour Aug 2024

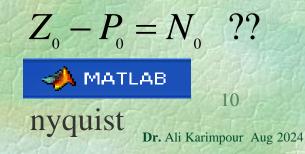
Example 2: Check the stability of following system by Nyquist method.



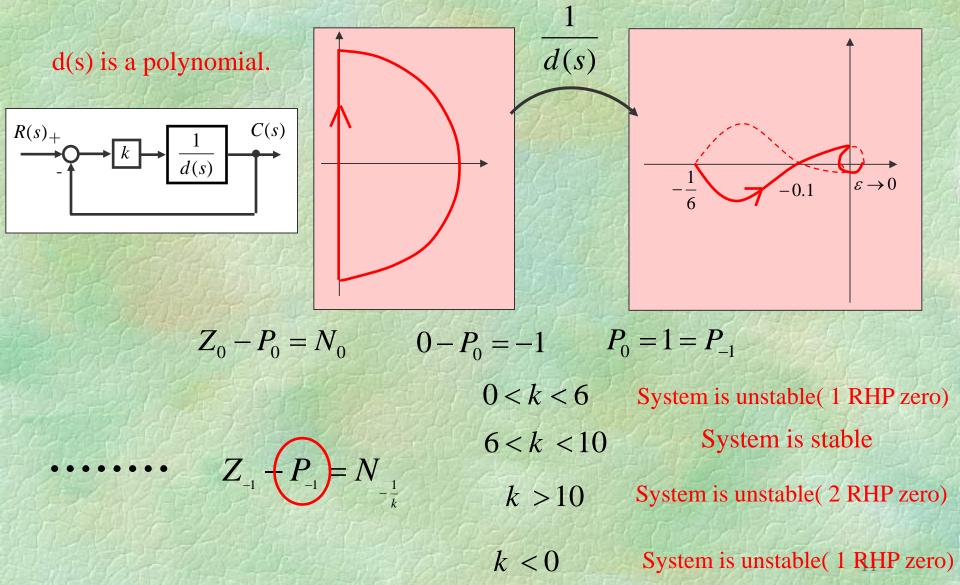


$$f(s) = \frac{375}{s(s+5)(s+10)}$$

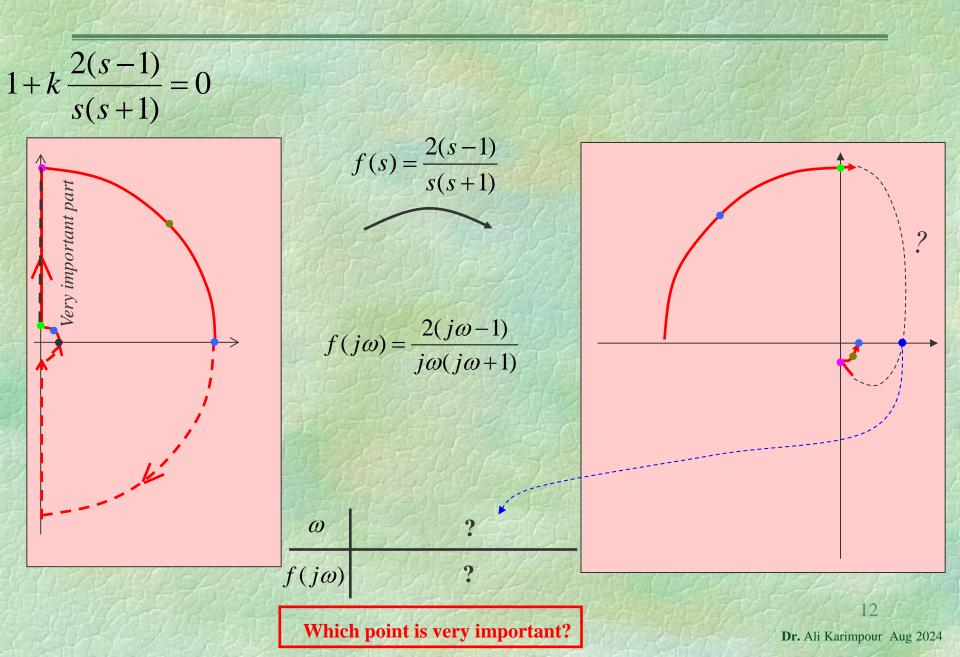
Stable for 0 < k < 2Unstable for k > 2 (2 RHP) Unstable for k < 0 (1 RHP)

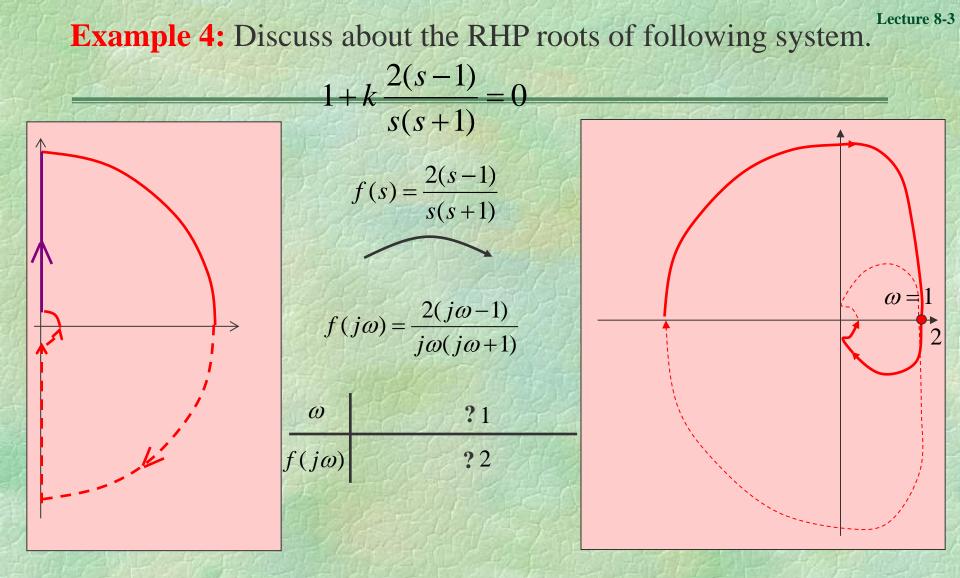


Example 3: Check the stability of following system from the given Lecture 8-3 Nyquist plot.



Example 4: Discuss about the RHP roots of following system.



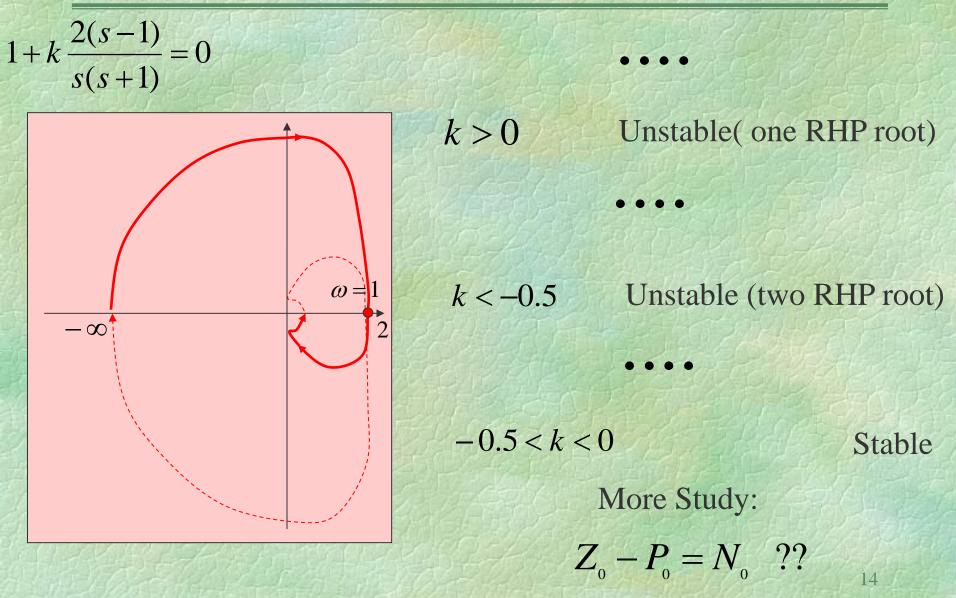


 $\angle f(j\omega) = \angle num - \angle den = 180 - \tan^{-1}\omega - (90 + \tan^{-1}\omega) = 90 - 2 \cdot \tan^{-1}\omega$

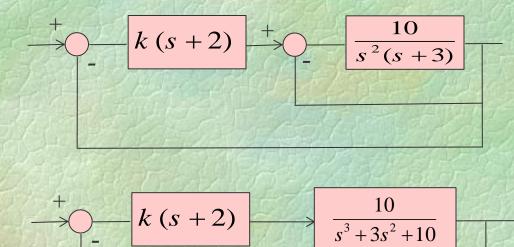
 $\angle f(j\omega) = 0 \rightarrow \omega = 1$ Or equivalently let Im(f) = 0

$$f'(j1) = \frac{2(1j-1)}{j(j+1)} = 2 \swarrow 0^{\circ}$$

Example 4: Discuss about the RHP roots of following system.



Example 5: Discuss about the stability of the following system for different values of



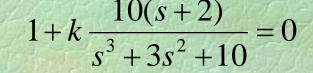
$$1 + k \frac{10(s+2)}{s^3 + 3s^2 + 10} = 0$$

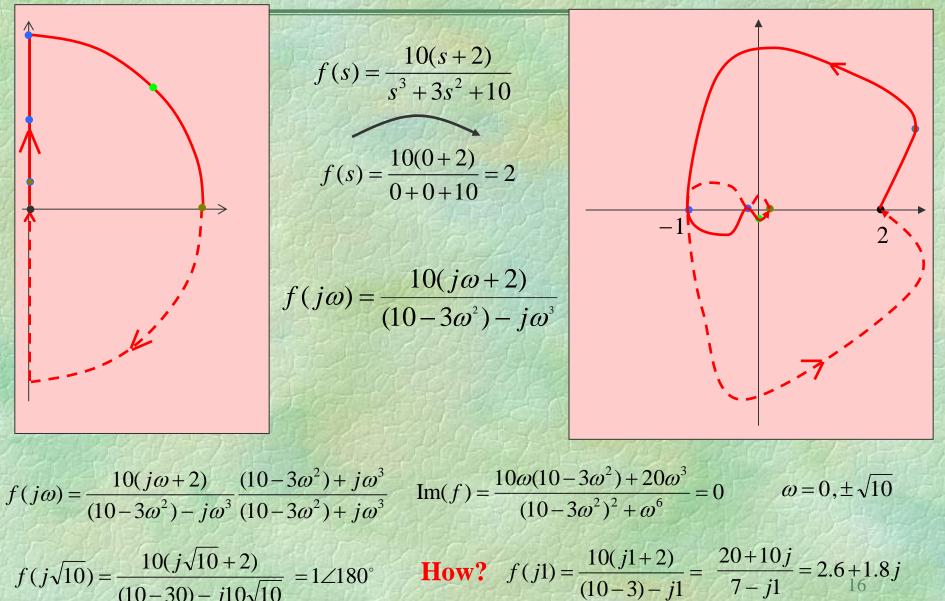
15

k.

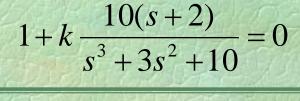
Discuss about the RHP roots of:

Lecture 8-3

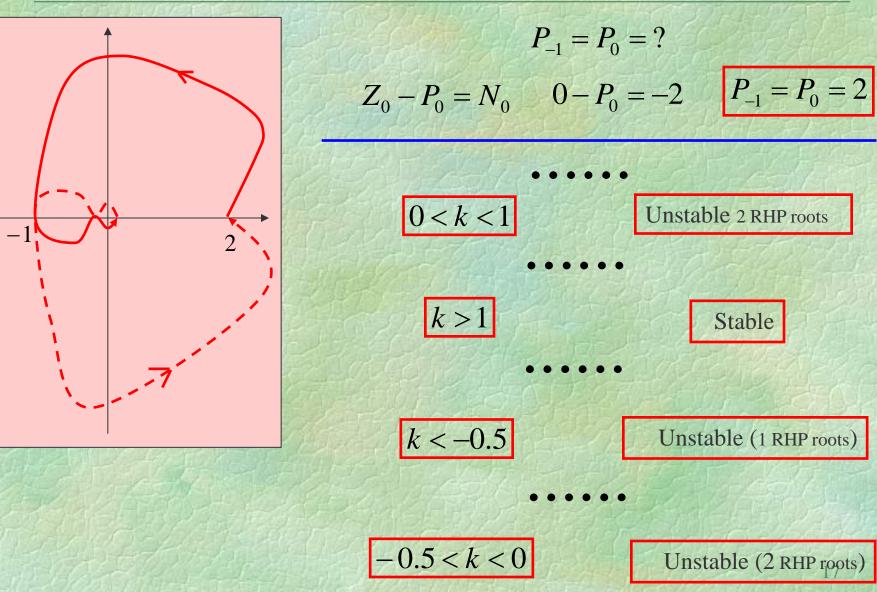




Discuss about the RHP roots of:



Lecture 8-3



Nyquist Stability Criteria

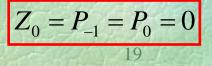
- Topics to be covered include:
- Nyquist stability criteria.
- Minimum phase systems.
- Simplified Nyquist stability criterion.

Minimum Phase systems

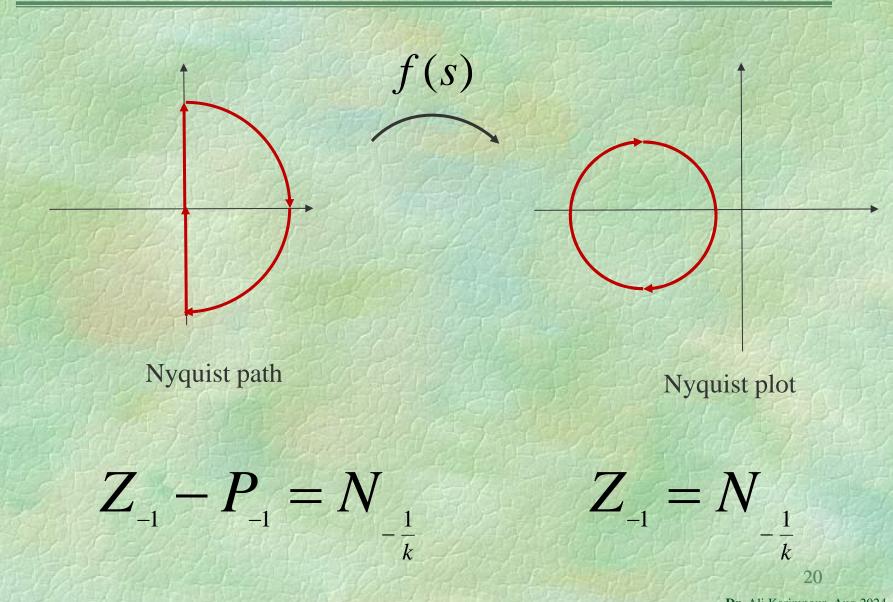
f(s) is said to be minimum phase if it has no poles and zeros (origin is an exception) and on the RHP and on the j ω axis there is no delay.

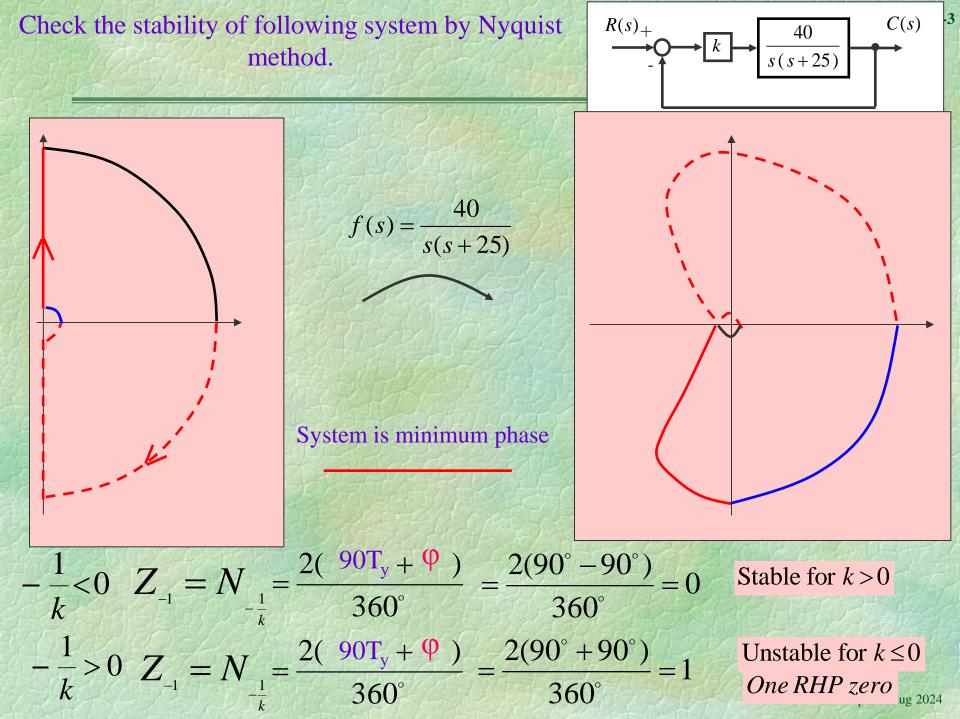
$$f(s) = \frac{\prod_{i=1}^{n_z} (s+z_i)}{s^{T_y} \prod_{j=1}^{n_p} (s+p_j)}$$
 If it was minimum phase
$$Z_i, p_j > 0$$
$$T_y \text{ is type of system}$$

Important note: If f(s) is minimum phase then



Nyquist fundamental for minimum phase systems

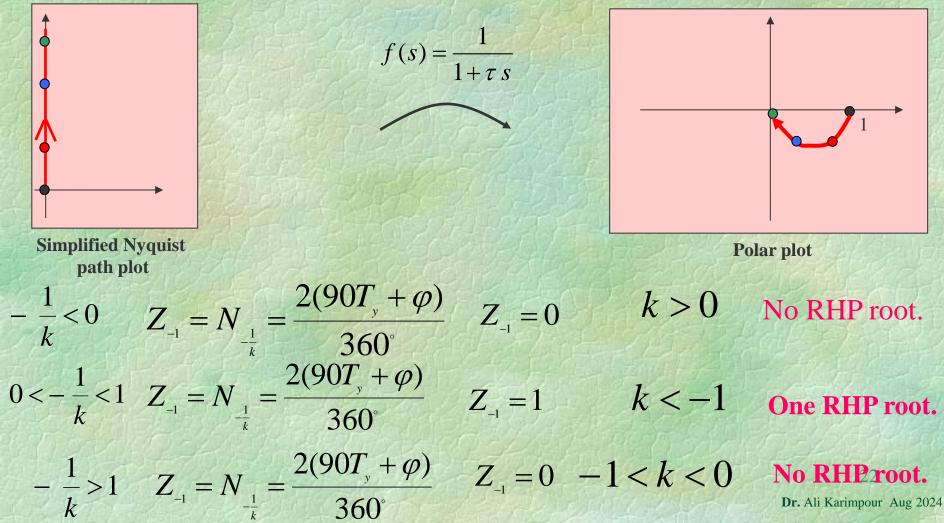




Example 6: Discuss about the RHP roots of the following system for different values of k.

$$1+k\frac{1}{1+\tau s} = 0 \quad \tau > 0$$

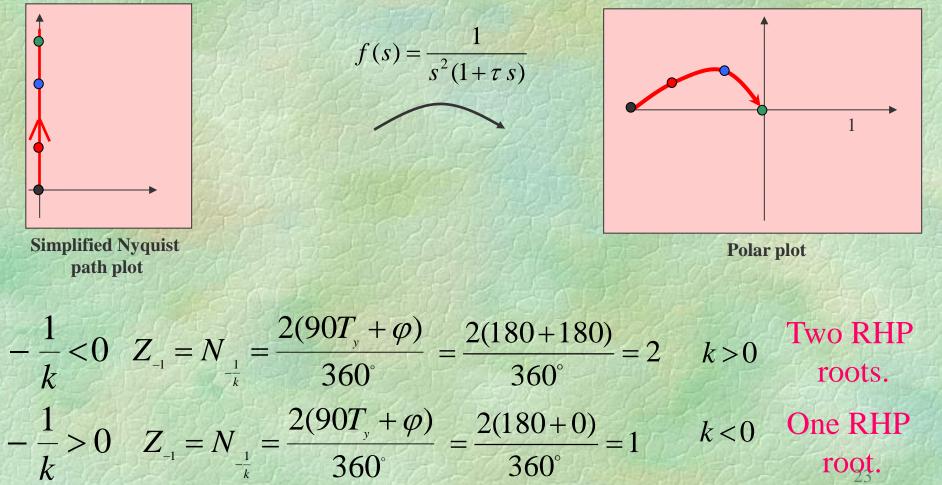
Clearly System is minimum phase so we use simplified Nyquist method



Example 7: Discuss about the RHP roots of the following system for different values of k.

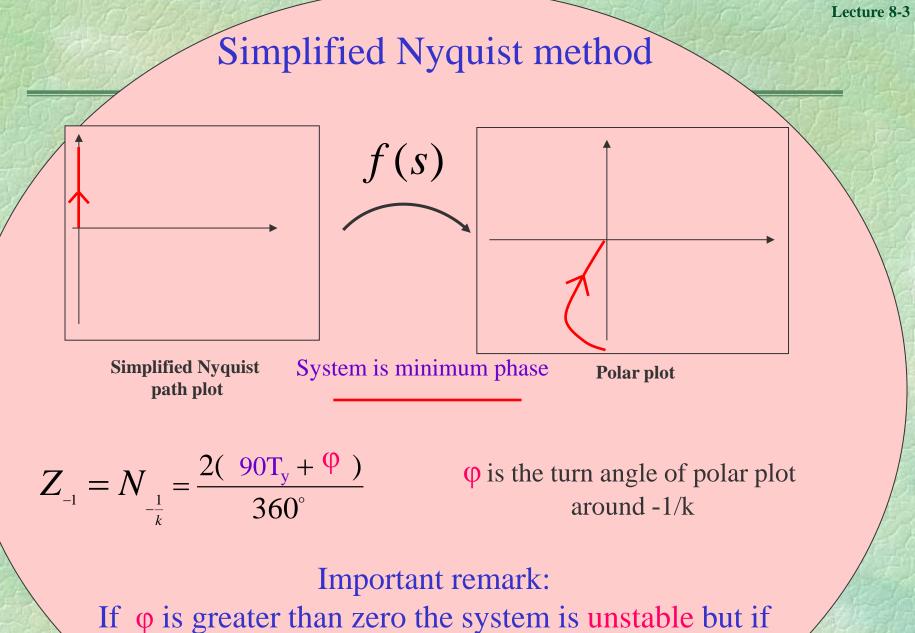
$$1 + k \frac{1}{s^2(1 + \tau s)} = 0 \quad \tau > 0$$

Clearly System is minimum phase so we use simplified Nyquist method



Dr. Ali Karimpour Aug 2024

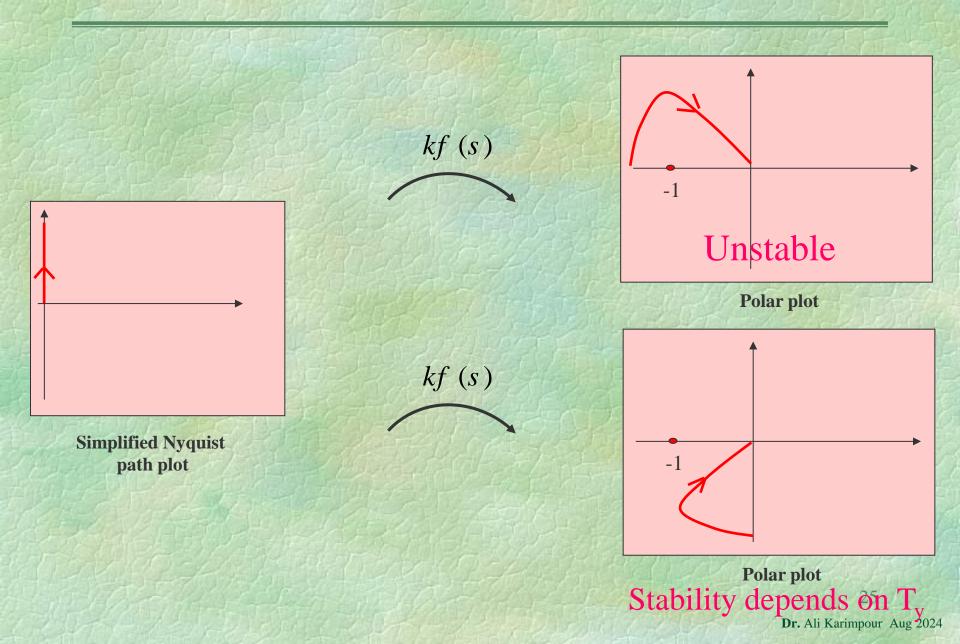
Lecture 8-3



they were less than zero one must check it!

r. Ali Karimpour Aug 2024

Simplified Nyquist method

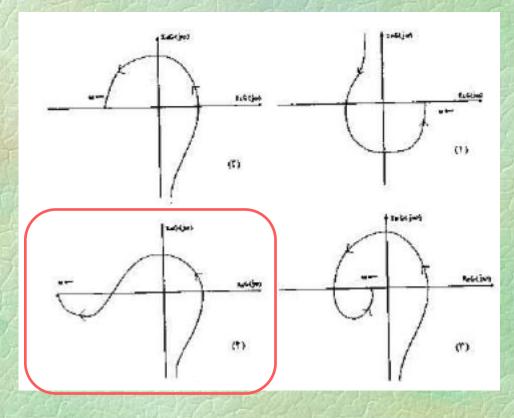


Lecture 8-3

Simplified Nyquist method University entrance exam 1393

Example 8: What is the Nyquist plot of following transfer function?

 $G(s) = \frac{-(s+1)(s+2)(s+3)(s+4)}{s^3(s+100)}$



26 Dr. Ali Karimpour Aug 2024

Lecture 8-3

1- The open loop transfer function of a unity-feedback (negative sign) is:

$$G_p(s) = \frac{k}{\left(s+5\right)^n}$$

Apply the Nyquist criterion to determine the range of k for stability. Let n=1, 2 and 3

2- The characteristic equation of a linear control system is:

 $s^3 + 2s^2 + 20s + 10k = 0$

Apply the Nyquist criterion to determine the range of k for stability.

3- The open loop transfer function of a unity-feedback (negative sign) with PD controller is: $G_p(s) = \frac{10(K_p + K_d s)}{s^2}$

Select the value of K_p so that the parabolic error constant be 100. Find the equivalent open-loop transfer function $G_{eq}(s)$ for stability analysis with K_d as a gain factor. Sketch the Nyquist plot and check the stability for different values of K_d . Dr. Ali Karimpour Aug 2024

4- The polar plot of an open loop transfer function of a minimum phase system is:

3

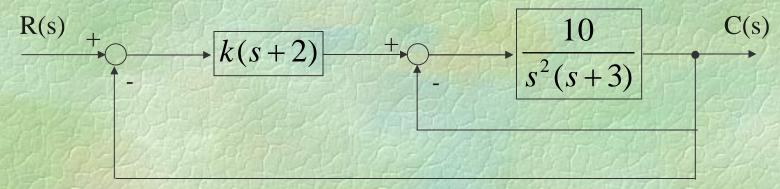
Determine the steady state error of the system to a unit step. $e_{ss} = \frac{1}{4}$ 5- The open loop transfer function of a unity-feedback (negative sign) is: $G(s) = \frac{ke^{-Ts}}{s+1}$ (k > 1)

Derive an expression that make the system stable.

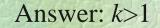
$$[T\sqrt{k^2-1} + \tan^{-1}\sqrt{k^2-1}] < \Pi$$

Dr. Ali Karimpour Aug 2024

6- Assume the following control system



Find the value of k which make the system stable.

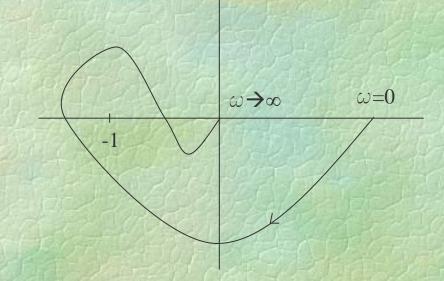


7- Consider the following control system

$$G(s) = \frac{s+3}{s(s-1)}$$

Find the value of k which make the system stable.

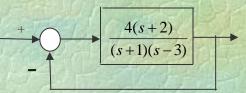
8- Polar plot of an open loop transfer function with two RHP poles is shown in the following:



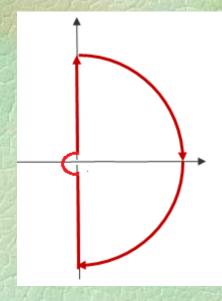
Discuss about the stability of system.

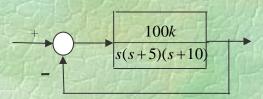
Answer: It is unstable and it has 4 unstable poles.

9- Discuss the stability of following system by Nyquist criteria.



10- Discuss the stability of following system by Nyquist criteria by use of following Nyquist path (Final 1391).

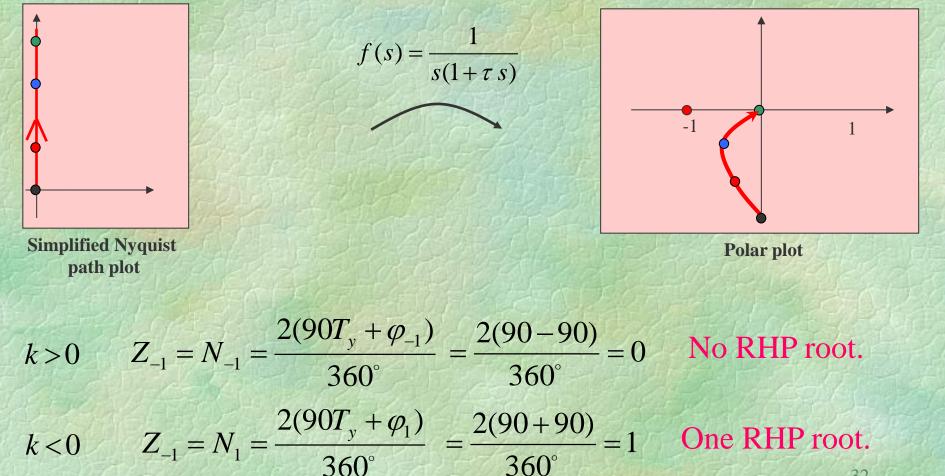




Example 9: Discuss about the RHP roots of the following system for different values of k.

$$1+k\frac{1}{s(1+\tau s)} = 0 \qquad \tau > 0$$

Clearly System is minimum phase so we use simplified Nyquist method



Dr. Ali Karimpour Aug 2024

32

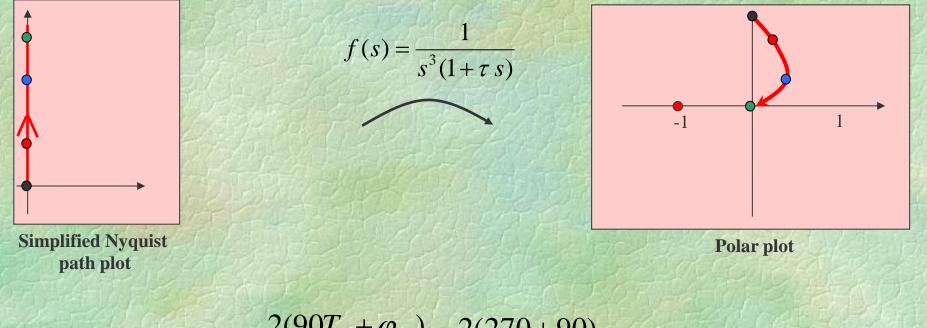
Lecture 8-3

Lecture 8-3

Example 10: Discuss about the RHP roots of following system for different value of k.

$$1 + k \frac{1}{s^3(1 + \tau s)} = 0 \qquad \tau > 0$$

Clearly System is minimum phase so we use simplified Nyquist method



$$k > 0 \qquad Z_{-1} = N_{-1} = \frac{2(90T_y + \varphi_{-1})}{360^{\circ}} = \frac{2(270 + 90)}{360^{\circ}} = 2 \text{ Two RHP roots.}$$

$$k < 0 \qquad Z_{-1} = N_1 = \frac{2(90T_y + \varphi_1)}{360^{\circ}} = \frac{2(270 - 90)}{360^{\circ}} = 1 \text{ One RHP root.}$$