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Content of this course

1. Fourier Series and Fourier Integral.

2. Partial Differential Equation and Its Solutions.

3. Complex Analysis. (The theory of functions of a complex variable)
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Complex Analysis (The theory of functions of a complex variable)

❑ Fundamentals

❑ Analytic Functions and Differentiability

❑ Integration in the Complex Plane

❑ Complex Series

❑ Residue Theory and Calculation of Real Integrals
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Integration in the Complex Plane

𝐼 = ෍

𝑘=1

𝑛

𝑓 𝜉𝑘 𝛥𝑧𝑘 𝛥𝑧𝑘 = 𝑧𝑘 − 𝑧𝑘−1

Consider following summation

𝑓 𝑧 = 𝑢 𝑥, 𝑦 + 𝑖𝑣(𝑥, 𝑦)

Consider f(z) as follows (Analytic or non analytic)

න
𝐴

𝐵 

𝑓 𝑧 𝑑𝑧 = lim
𝑛→∞

෍

𝑘=1

𝑛

𝑓(𝜉𝑘)𝛥𝑧𝑘

Integral in the complex plane is as follows:
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In a specific case where A and B coincide, and the path of integration forms 

a closed curve, the mentioned integral is called a line integral and is denoted 

by the symbol below.

5

ර 𝑓 𝑧 𝑑𝑧න
𝐴

𝐵 

𝑓 𝑧 𝑑𝑧

෍

𝑘=1

𝑛

𝑓(𝜉𝑘)𝛥𝑧𝑘 ≤ ෍

𝑘=1

𝑛

𝑓(𝜉𝑘)𝛥𝑧𝑘 = ෍

𝑘=1

𝑛

𝑓(𝜉𝑘) 𝛥𝑧𝑘

𝑖𝑓 𝑛 → ∞ න
𝐶

 

𝑓 𝑧 𝑑𝑧 ≤ න
𝐶

𝑓 𝑧 𝑑𝑧 ≤ න
𝐶

 

𝑀 𝑑𝑧 = 𝑀 න
𝐶

𝑑𝑧

න
𝐶

 

𝑓 𝑧 𝑑𝑧 ≤ 𝑀𝐿

Integration in the Complex Plane

Determining the upper limit in complex integration
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න
𝐴

𝐵

𝑓 𝑧 𝑑𝑧 = − න
𝐵

𝐴

𝑓 𝑧 𝑑𝑧

If the path of integration is fixed

න
𝐴

𝐵

𝑘𝑓 𝑧 𝑑𝑧 = 𝑘 න
𝐴

𝐵

𝑓 𝑧 𝑑𝑧

න
𝐴

𝐵

[𝑓 𝑧 ± 𝑔 𝑧 ]𝑑𝑧 = න
𝐴

𝐵

𝑓 𝑧 𝑑𝑧 ± න
𝐴

𝐵

𝑔 𝑧 𝑑𝑧

න
𝐴

𝐵

𝑓 𝑧 𝑑𝑧 = න
𝐴

𝐷

𝑓 𝑧 𝑑𝑧 + න
𝐷

𝐵

𝑓 𝑧 𝑑𝑧

Integration in the Complex Plane

If D is a point on the arc AB.
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I = ෍

𝑘=1

𝑛

[𝑢 𝜇𝑘 , 𝜂𝑘 + 𝑖𝑣 𝜇𝑘 , 𝜂𝑘 ](∆𝑥𝑘 + 𝑖∆𝑦𝑘)

= ෍

𝑘=1

𝑛

𝑢 𝜇𝑘 , 𝜂𝑘 ∆𝑥𝑘 − 𝑣 𝜇𝑘 , 𝜂𝑘 ∆𝑦𝑘 + 𝑖 ෍

𝑘=1

𝑛

𝑣 𝜇𝑘 , 𝜂𝑘 ∆𝑥𝑘 + 𝑢 𝜇𝑘 , 𝜂𝑘 ∆𝑦𝑘

න
𝐶 

𝑓 𝑧 𝑑𝑧 = න
𝐶

 

𝑢𝑑𝑥 − 𝑣𝑑𝑦 + 𝑖 න
𝐶

 

𝑣𝑑𝑥 + 𝑢𝑑𝑦

Another form of complex integral:

= න
𝐶

 

(𝑢 + 𝑖𝑣)(𝑑𝑥 + 𝑖𝑑𝑦)

𝐼 = ෍

𝑘=1

𝑛

𝑓 𝜉𝑘 𝛥𝑧𝑘 𝛥𝑧𝑘 = 𝑧𝑘 − 𝑧𝑘−1

Integration in the Complex Plane
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Example 1: If c is a circle with radius r and center Z0, and if n is an 

integer, find the value of the following integral (counterclockwise).

8

𝑧 − 𝑧0 = 𝑟𝑒𝑖𝜃 𝑑𝑧 = 𝑟𝑖𝑒𝑖𝜃𝑑𝜃

𝐼 = න
0

2𝜋 𝑟𝑖𝑒𝑖𝜃𝑑𝜃

𝑟𝑛+1𝑒𝑖(𝑛+1)𝜃

𝐼 = න
𝐶

𝑑𝑧

(𝑧 − 𝑧0)𝑛+1

= න
0

2𝜋 𝑖𝑒−𝑖𝑛𝜃𝑑𝜃

𝑟𝑛

𝐼 = න
𝐶

𝑑𝑧

(𝑧 − 𝑧0)𝑛+1
= ቊ

2𝜋𝑖 𝑛 = 0
0 𝑛 ≠ 0

Very very 

important

ቊ
2𝜋𝑖 𝑛 = 0
0 𝑛 ≠ 0

Integration in the Complex Plane
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Theorem 1 (Green's Theorem): If P(x,y), Q(x,y) are continuous on a 

simply connected region R with a piecewise smooth boundary C, and if 

the partial derivatives ∂Q/∂x​ and ∂P/∂y​ are continuous on R and C, then:

9

න
𝐶

 

𝑃𝑑𝑥 + 𝑄𝑑𝑦 = ඵ
𝑅

 

(
𝜕𝑄

𝜕𝑥
−

𝜕𝑃

𝜕𝑦
)𝑑𝑥𝑑𝑦

where the integration is over the closed path C and R is the region to the 

left of C.

CR

Integration in the Complex Plane

𝜕𝜑

𝜕𝑦
= 𝑄(𝑥, 𝑦)

𝜕𝜑

𝜕𝑥
= 𝑃(𝑥, 𝑦)

Theorem 2: In any region where the ׬𝐶

 
𝑃𝑑𝑥 + 𝑄𝑑𝑦 is path-independent, the 

partial derivatives of the function 𝜑 𝑥,𝑦 = 𝑎,𝑏׬

𝑥,𝑦
𝑃 𝑥,𝑦 𝑑𝑥 + 𝑄 𝑥,𝑦 𝑑𝑦 are:



Dr. Ali Karimpour  Sep 2024

Lecture 4_2

10

𝜕𝑄

𝜕𝑥
=

𝜕𝑃

𝜕𝑦

Then ׬ 𝑃 𝑥, 𝑦 𝑑𝑥 + 𝑄 𝑥, 𝑦 𝑑𝑦 in R is independent of the path and

 vice versa.

න
𝐶

 

𝑓 𝑧 𝑑𝑧 = 0

Integration in the Complex Plane

Theorem 4 (Cauchy's Theorem): If R is a region (either simply 

connected or multiply connected) with a piecewise smooth boundary 

C, and if f(z) is analytic and f ′(z) is continuous inside and on the 

boundary of R, then:

Theorem 3: If in all points of a simply connected region we have:
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Proof: We have
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න
𝐶

 

𝑓 𝑧 𝑑𝑧 = ඵ
𝑅

 

(−
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
)𝑑𝑥𝑑𝑦 + 𝑖 ඵ

𝑅

 

(
𝜕𝑢

𝜕𝑥
−

𝜕𝑣

𝜕𝑦
)𝑑𝑥𝑑𝑦

According to Theorem 1, we have:

න
𝐶

 

𝑓 𝑧 𝑑𝑧 = න
𝐶

 

𝑢𝑑𝑥 − 𝑣𝑑𝑦 + 𝑖 න
𝐶

 

𝑣𝑑𝑥 + 𝑢𝑑𝑦

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

Assuming continuity of f ’(z) means that the following partial 

derivatives exist:

න
𝐶

 

𝑓 𝑧 𝑑𝑧 = 0

The more general form of the theorem is known as the Cauchy-

Goursat Theorem, where the continuity of f ’(z) is not required.

Integration in the Complex Plane
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𝑥

𝑦

−1

12

Exercise 1: Evaluate the following integrals along the specified path.

C

ර 𝑐𝑜𝑠𝑧𝑑𝑧 =? ර 𝑒𝑐𝑜𝑠𝑧𝑑𝑧 =?

ර 5𝑧4 + 3𝑧2 − 7𝑧 𝑑𝑧 =?

ර
𝑠𝑖𝑛𝑧

𝑧2 + 5𝑧 + 6
𝑑𝑧 =?

ර
𝑠𝑖𝑛ℎ𝑧

𝑧2 + 5𝑧 + 6
𝑑𝑧 =?

ර
1

𝑧
𝑑𝑧 =?

ර
𝑐𝑜𝑠𝑧

𝑧(𝑧2 + 5𝑧 + 6)
𝑑𝑧 =?

Integration in the Complex Plane
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න
𝐶1

 

𝑓 𝑧 𝑑𝑧 + න
𝐶2

 

𝑓 𝑧 𝑑𝑧 = 0

න
𝐶1

 

𝑓 𝑧 𝑑𝑧 = − න
𝐶2

 

𝑓 𝑧 𝑑𝑧

Theorem 5: The line integral of an analytic function over any 
simple closed curve is equal to the line integral of the same 
function over any other simple closed curve, provided that the first 
curve can be continuously deformed into the second curve without 
passing through any point where f(z) is non-analytic.

න
𝐶

 

𝑓 𝑧 𝑑𝑧 = 0

න
𝐶1

 

𝑓 𝑧 𝑑𝑧 = න
𝐶3

 

𝑓 𝑧 𝑑𝑧

Integration in the Complex Plane
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𝑥

𝑦

−1

14

Example 2: Evaluate the following integral along the specified path.

Hint: Use Theorem 5 and Example 1 for assistance.

C

ර
1

𝑧
𝑑𝑧 =

ර
𝑐𝑜𝑠𝑧

𝑧(𝑧2 + 5𝑧 + 6)
𝑑𝑧 =?

𝐶1

= න
𝐶1

1

𝑧
𝑑𝑧

= න
𝐶1

𝑐𝑜𝑠𝑧

𝑧(𝑧2 + 5𝑧 + 6)
𝑑𝑧

= 2𝜋𝑖

=
𝜋

3
𝑖

Integration in the Complex Plane
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න
𝑧0

𝑧1

𝑓 𝑧 𝑑𝑧

Proof:

න
𝐶

 

𝑓 𝑧 𝑑𝑧 = 0

................

Integration in the Complex Plane

Theorem 6: In any simply connected region where f(z) is analytic, the 

following integral is path-independent:
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Theorem 7: If f(z) is analytic throughout a simply connected domain R, 

then
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𝐹 𝑧 = න
𝑧0

𝑧

𝑓 𝑧 𝑑𝑧

𝐹 𝑧 = න
𝑧0

𝑧

𝑓 𝑧 𝑑𝑧

𝐹 𝑧 = 𝑈 + 𝑖𝑉 = න
𝑥0,𝑦0

𝑥,𝑦

𝑢𝑑𝑥 − 𝑣𝑑𝑦 + 𝑖 න
𝑥0,𝑦0

𝑥,𝑦

𝑣𝑑𝑥 + 𝑢𝑑𝑦

Integration in the Complex Plane

Is an analytic function throughout R. Its derivative is f(z).

Proof: Since f(z) is analytic in the simply connected domain R, the 

following integral is path-independent:

Therefore, F(z) is a function of z alone. This integral can be written as 

follows:
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𝐹 𝑧 = 𝑈 + 𝑖𝑉 = න
𝑥0,𝑦0

𝑥,𝑦

𝑢𝑑𝑥 − 𝑣𝑑𝑦 + 𝑖 න
𝑥0,𝑦0

𝑥,𝑦

𝑣𝑑𝑥 + 𝑢𝑑𝑦

𝑈 = න
𝑥0,𝑦0

𝑥,𝑦

𝑢𝑑𝑥 − 𝑣𝑑𝑦 𝑉 = න
𝑥0,𝑦0

𝑥,𝑦

𝑣𝑑𝑥 + 𝑢𝑑𝑦 

According to Theorem 2 ,  since the integrals are path-independent

𝜕𝑈

𝜕𝑥
= 𝑢

𝜕𝑈

𝜕𝑦
= −𝑣

𝜕𝑉

𝜕𝑥
= 𝑣

𝜕𝑉

𝜕𝑦
= 𝑢

𝜕𝑈

𝜕𝑦
= −

𝜕𝑉

𝜕𝑥

𝜕𝑈

𝜕𝑥
=

𝜕𝑉

𝜕𝑦

𝐹′ 𝑧 =
𝜕𝑈

𝜕𝑥
+ 𝑖

𝜕𝑉

𝜕𝑥
= 𝑢 + 𝑖𝑣 = 𝑓(𝑧)

Therefore, F(z) is analytic.

Integration in the Complex Plane



Dr. Ali Karimpour  Sep 2024

Lecture 4_2

Theorem 8: If f(z) is analytic in a simply-connected domain R, then provided 

that the integration path lies entirely within R,

18

න
𝑧0

𝑧1

𝑓 𝑧 𝑑𝑧 = 𝐺 𝑧1 − 𝐺(𝑧0)

𝐹 𝑧 = න
𝑧0

𝑧

𝑓 𝑧 𝑑𝑧

𝐹′ 𝑧 − 𝐺′ 𝑧 = 𝑓 𝑧 − 𝑓 𝑧 = 0 𝐹 𝑧 = 𝐺 𝑧 + 𝑐

𝐹 𝑧 = න
𝑧0

𝑧

𝑓 𝑧 𝑑𝑧 = 𝐺 𝑧 + 𝑐 𝑧 = 𝑧0 𝑐 = −𝐺(𝑧0)

න
𝑧0

𝑧

𝑓 𝑧 𝑑𝑧 = 𝐺 𝑧 − 𝐺 𝑧0 න
𝑧0

𝑧1

𝑓 𝑧 𝑑𝑧 = 𝐺 𝑧1 − 𝐺 𝑧0

Integration in the Complex Plane

In the above relation, G(z) is an arbitrary antiderivative (primitive) of f(z).

Proof: Since f(z) is analytic in R, from Theorem 7 we have:
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Example 3: It is required to determine the following integral:
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𝐼 = න
0

1+𝜋𝑖

𝑧2 + 𝑐𝑜𝑠ℎ2𝑧 𝑑𝑧

𝐼 = (
1

3
𝑧3 +

1

2
𝑠𝑖𝑛ℎ ቚ2𝑧)

0

1+𝑖𝜋
=

1

3
(1 + 𝑖𝜋)3 +

1

2
𝑠𝑖𝑛ℎ2 1 + 𝑖𝜋 =  … .

𝑓 𝑧 = 𝑧2 + 𝑐𝑜𝑠ℎ2𝑧

𝐺 𝑧 =
1

3
𝑧3 +

1

2
𝑠𝑖𝑛ℎ2𝑧

Integration in the Complex Plane

The integrand is:

f(z) is analytic everywhere and an antiderivative (primitive) is given by

Therefore, according to Theorem 8, the value of this integral is:
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Theorem 9: If u(x,y) is a solution to Laplace's equation in a domain such as R, 

then in R, there exists an analytic function such that u is its real part. In other 

words, there exists an analytic function f(z)=u+iv such that

𝑣(𝑥, 𝑦) = න
𝑎,𝑏

𝑥,𝑦

−
𝜕𝑢

𝜕𝑦
𝑑𝑥 +

𝜕𝑢

𝜕𝑥
𝑑𝑦 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0

𝜕(
𝜕𝑢
𝜕𝑥

)

𝜕𝑥
=

𝜕(−
𝜕𝑢
𝜕𝑦

)

𝜕𝑦

𝜕𝑣

𝜕𝑦
=

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥
= −

𝜕𝑢

𝜕𝑦

Integration in the Complex Plane

and the path of integration from (a,b) to (x,y) lies entirely within R.

Proof: We have

In this case, the integral of v in the domain R is independent of the path 

between a fixed point (a,b) and a variable point (x,y) (Theorem 3). Now, 

according to Theorem 2, we have:
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One of the most important theorems in this section is:

𝑓 𝑧0 =
1

2𝜋𝑖
න

𝐶

𝑓(𝑧)

𝑧 − 𝑧0
𝑑𝑧

Proof:

Integration in the Complex Plane

Theorem 10: If C, the boundary of a simply-connected domain such 

as R, is piecewise smooth, and if f(z) is analytic inside and on the 

boundary C, and if z0 is a point inside R, then:

the integration over C is performed in the positive (counter-clockwise) direction.
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Proof:

න
𝐶

𝑓(𝑧)

𝑧 − 𝑧0
𝑑𝑧 = න

𝐶0

𝑓 𝑧0 + [𝑓 𝑧 − 𝑓 𝑧0 ]

𝑧 − 𝑧0
𝑑𝑧

= 𝑓 𝑧0 න
𝐶0

𝑑𝑧

𝑧 − 𝑧0
+ න

𝐶0

𝑓 𝑧 − 𝑓 𝑧0

𝑧 − 𝑧0
𝑑𝑧

න
𝐶

𝑓(𝑧)

𝑧 − 𝑧0
𝑑𝑧 = න

𝐶0

𝑓(𝑧)

𝑧 − 𝑧0
𝑑𝑧

න
𝐶

𝑓 𝑧 𝑑𝑧

𝑧 − 𝑧0
= 𝑓 𝑧0 2𝜋𝑖 + න

𝐶0

𝑓 𝑧 − 𝑓 𝑧0

𝑧 − 𝑧0
𝑑𝑧

Integration in the Complex Plane
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න
𝐶0

𝑓 𝑧 − 𝑓 𝑧0

𝑧 − 𝑧0
𝑑𝑧 < න

𝐶0

𝜀

𝜌
𝑑𝑧 =

𝜀

𝜌
න

𝐶0

𝑑𝑧 =
𝜀

𝜌
2𝜋𝜌 = 2𝜋𝜀

𝑓 𝑧0 =
1

2𝜋𝑖
න

𝐶 

𝑓(𝑧)

𝑧 − 𝑧0
𝑑𝑧

න
𝐶0

𝑓 𝑧 − 𝑓 𝑧0

𝑧 − 𝑧0
𝑑𝑧 ≤ න

𝐶0

𝑓 𝑧 − 𝑓 𝑧0

𝑧 − 𝑧0
𝑑𝑧

Since f(z) is analytic in R, so it is continuous.

𝑧 − 𝑧0 ≡ 𝜌 < 𝛿 𝑓 𝑧 − 𝑓 𝑧0 < ε

න
𝐶

𝑓 𝑧 𝑑𝑧

𝑧 − 𝑧0
= 𝑓 𝑧0 2𝜋𝑖 + න

𝐶0

𝑓 𝑧 − 𝑓 𝑧0

𝑧 − 𝑧0
𝑑𝑧

Integration in the Complex Plane
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Example 4: It is required to determine the values of

𝐼 = න
𝐶

𝑒𝑧

𝑧2 + 1
𝑑𝑧

𝐼 = න
𝐶

𝑒𝑧

𝑧 + 𝑖

𝑑𝑧

𝑧 − 𝑖

𝐼 = න
𝐶

𝑒𝑧

𝑧 + 𝑖

𝑑𝑧

𝑧 − 𝑖
= 2𝜋𝑖𝑓 𝑧0 = 2𝜋𝑖𝑓 𝑖 = 2𝜋𝑖

𝑒𝑖

2𝑖
= 𝜋 𝑐𝑜𝑠1 + 𝑖𝑠𝑖𝑛1 = 1.7 + 𝑖2.6

Integration in the Complex Plane

given that C is a circle with a unit radius centered at (a) z=i and (b) z=−i.

Solution (a): The integral is written as follows:



Dr. Ali Karimpour  Sep 2024

Lecture 4_2

25

𝐼 = න
𝐶

𝑒𝑧

𝑧 − 𝑖

𝑑𝑧

𝑧 + 𝑖

𝐼 = න
𝐶

𝑒𝑧

𝑧 − 𝑖

𝑑𝑧

𝑧 + 𝑖
= 2𝜋𝑖𝑓 𝑧0 = 2𝜋𝑖𝑓 −𝑖 = 2𝜋𝑖

𝑒−𝑖

−2𝑖
= −𝜋 𝑐𝑜𝑠1 − 𝑖𝑠𝑖𝑛1 = −1.7 + 𝑖2.6

𝐼 = න
𝐶

𝑒𝑧

𝑧2 + 1
𝑑𝑧

Integration in the Complex Plane

Solution (b): The integral is written as follows:
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Theorem 11: If f(z) is analytic throughout a closed simply-connected 

domain R, then at every interior point z0 of R derivatives of f(z) of all 
orders exist as follows and are analytic, where C is the boundary of R.

𝑓𝑛 𝑧0 =
𝑛!

2𝜋𝑖
න

𝐶

𝑓 𝑧 𝑑𝑧

(𝑧 − 𝑧0)𝑛+1

Integration in the Complex Plane

න
𝐶

 

𝑓(𝑧)𝑑𝑧 = 0

Theorem 12 (Morera's Theorem): If f(z) is continuous in a region R, 
and if for every simple closed curve that can be drawn in R, we have:

Then f(z) is analytic in R.
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Theorem 13 (Inequality Theorem): If f(z) is analytic inside and on a 
circle C with radius r and center z0, then:

|𝑓𝑛 𝑧0 | ≤
𝑛! 𝑀

𝑟𝑛

|𝑓 𝑧0 | ≤ 𝑀

Integration in the Complex Plane

where M is the maximum value of ∣f(z)∣ on C.

In the special case for n=0, we have:

Proof:

𝑓𝑛 𝑧0 =
𝑛!

2𝜋𝑖
න

𝐶

𝑓 𝑧 𝑑𝑧

(𝑧 − 𝑧0)𝑛+1 ≤
𝑛!

2𝜋
න

𝐶

𝑓 𝑧 𝑑𝑧

𝑧 − 𝑧0
𝑛+1

≤
𝑛!

2𝜋

𝑀

𝑟𝑛+1
න

𝐶

𝑑𝑧

≤
𝑛!

2𝜋

𝑀

𝑟𝑛+1
2𝜋𝑟 ≤

𝑛! 𝑀

𝑟𝑛
|𝑓𝑛 𝑧0 | ≤

𝑛! 𝑀

𝑟𝑛
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Integration in the Complex Plane

Theorem 14 (Maximum Modulus Theorem): The modulus of a non-
constant function f(z) cannot have a maximum in a region where the 
function is analytic.

The maximum modulus of a non-constant function f(z) in a region 
where the function is analytic, is located on the boundary.

The minimum modulus of a non-constant function f(z) in a region where the 
function is analytic and does not become zero, is located on the boundary.
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Example 5: Consider the function 𝑓 𝑧 = 𝑧2 + 2. The goal is to find the 
extrema of |𝑓 𝑧 | on the closed region 𝑧 ≤ 1

Let 𝑦 = 𝑠𝑖𝑛𝜃 ,  𝑥 = 𝑐𝑜𝑠𝜃

𝑓 𝑧 = 𝑧2 + 2 = 𝑥2 − 𝑦2 + 2𝑖𝑥𝑦 + 2 = (𝑥2−𝑦2 + 2)2 + (2𝑥𝑦)2

= (𝑐𝑜𝑠2𝜃 + 2)2 + 𝑠𝑖𝑛22𝜃 = 4𝑐𝑜𝑠2𝜃 + 5

𝑑 𝑓(𝑧)

𝑑𝜃
=

−8𝑠𝑖𝑛2𝜃

2 4𝑐𝑜𝑠2𝜃 + 5
= 0 𝜃 = 0, 𝜋 𝜃 =

𝜋

2
,
3𝜋

2

Theorem 15 (Liouville's Theorem): If a function f(z) is entire (analytic 
everywhere) and bounded in the complex plane, then f(z) is a constant function.

Integration in the Complex Plane

Since f(z) is analytic within the given region and does not become zero, the 
extrema will be located on the boundary.
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Exercise 2: Find the value of the integral along the given 

path:

𝐼 = න
𝐶

𝑒𝑧

𝑧2 + 1
𝑑𝑧

Exercise 3: Determine the value of the integral along the 

circle centered at the origin with radius 2, 

oriented counterclockwise. ර
𝑐𝑜𝑠𝑧

𝑧(𝑧2 + 4𝑧 + 3)
𝑑𝑧 =?

ර 𝑡𝑎𝑛𝑧𝑑𝑧 =?

Exercise 4: Determine the value of the integral along the unit circle centered 

at the origin, oriented counterclockwise.

Exercise 5: Determine the value of the integral along the three paths: red, blue, 
and green.

න
0

1+𝜋𝑖

𝑒𝑧 + 𝑠𝑖𝑛ℎ2𝑧 𝑑𝑧

Exercises
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Consider the following infinite sequence:
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𝑧1, 𝑧2, … , 𝑧𝑛, …

∀ 𝑛 > 𝑛0𝑧𝑛 − 𝑧 < 𝜀

Complex Series

The sequence converges if for every 𝜀 > 0, there exists a positive 

integer n0 such that:

If a sequence is not convergent, then it is divergent.

Exercise 6: Show that every sequence has at most one limit.

Theorem: Suppose for the sequence z1,z2,z3,…zn, …. we have:

𝑧𝑛 = 𝑥𝑛 + i𝑦𝑛

lim
𝑛→∞

𝑧𝑛 = 𝑧  lim
𝑛→∞

𝑥𝑛 = 𝑥 ,  lim
𝑛→∞

𝑦𝑛 = 𝑦 

In this case:
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Suppose the following expression is a series where the terms are 

functions of a single complex variable z:

33

𝑓1 𝑧 + 𝑓2 𝑧 + ⋯ + 𝑓𝑛 𝑧 + ⋯

𝑆1 𝑧 = 𝑓1 𝑧

𝑆2 𝑧 = 𝑓1 𝑧 + 𝑓2 𝑧

… … … … … … … … … … … …

𝑆𝑛 𝑧 = 𝑓1 𝑧 + 𝑓2 𝑧 + ⋯ + 𝑓𝑛 𝑧

Complex Series

Partial Sums of the Series is:

The series converges to S(z) if:
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Consider the following definition:

the remainder after n terms in S(z).

𝑆 𝑧 − 𝑆𝑛 𝑧 = 𝑅𝑛(𝑧)

Complex Series

Definition of Convergence: A series is called convergent if the limit

 of |Rn(z)|​ as n approaches infinity is zero.

Definition of the Region of Convergence: The set of all values of z 

for which the series is convergent is called the region of convergence

 of the series.

Definition of a Divergent Series: A series that is not convergent is 

called a divergent series.
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𝑓1 𝑧 + 𝑓2 𝑧 + ⋯ + 𝑓𝑛 𝑧 + ⋯

෍

𝑛=1

∞

𝑅𝑒 𝑓𝑛  ,  ෍

𝑛=1

∞

𝐼𝑚 𝑓𝑛

Complex Series

Theorem: A necessary and sufficient condition for the convergence of the

 series of complex terms below is that the series composed of the

 real parts and the series composed of the imaginary parts of these terms 

each converge

Moreover, if following series (real parts and the imaginary parts of 

original series):

If the real part and imaginary part of a complex series converge 

respectively to the functions Re(z) and Im(z), then the given series

 Re(z) + iIm(z) also converges.
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𝑓1 𝑧 + 𝑓2 𝑧 + ⋯ + 𝑓𝑛 𝑧 + ⋯

Suppose:
lim

𝑛→∞

𝑓𝑛+1(𝑧)

𝑓𝑛(𝑧)
= 𝑟(𝑧)

the series converges.

is the boundary of convergence, 

and the ratio test is inconclusive there.

0 ≤ 𝑟 𝑧 < 1

𝑟 𝑧 > 1

𝑟 𝑧 = 1

Complex Series

Theorem (Ratio Test): For the series

In this case, the given series:

the series diverges.
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1 +
1

22

𝑧 + 1

𝑧 − 1
+

1

32

𝑧 + 1

𝑧 − 1

2

+
1

42

𝑧 + 1

𝑧 − 1

3

+ ⋯

𝑓𝑛+1(𝑧)

𝑓𝑛(𝑧)
=

1
(𝑛 + 1)2

𝑧 + 1
𝑧 − 1

𝑛

1
𝑛2

𝑧 + 1
𝑧 − 1

𝑛−1 =
𝑛2

(𝑛 + 1)2

𝑧 + 1

𝑧 − 1
𝑧 + 1

𝑧 − 1

𝑛 → ∞

𝑧 + 1

𝑧 − 1
< 1

The region of convergence of 

the series

𝑧 + 1 < 𝑧 − 1

Complex Series

Example 6: Determine the region of convergence of the following series.

Using the ratio test, we have:



Dr. Ali Karimpour  Sep 2024

Lecture 4_2

38

Using the test on the boundary of the imaginary axis is problematic:

1 +
1

22

𝑧 + 1

𝑧 − 1
+

1

32

𝑧 + 1

𝑧 − 1

2

+
1

42

𝑧 + 1

𝑧 − 1

3

+ ⋯

𝑧 + 1 = 𝑧 − 1

In this case, the series on the imaginary axis has an absolute value of:

1 +
1

22
+

1

32
+

1

42
+ ⋯

This series is absolutely convergent, so...

Complex Series

Example 6: Determine the region of convergence of the following series.
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∀𝑛 > 𝑁 → 𝑆 𝑧 − 𝑆𝑛(𝑧) < 𝜀 

Complex Series

Uniform Convergence Definition: A series of functions fn(z) in a 

region R, whether closed or open, converges uniformly to a function 
S(z) if for every positive integer 𝜀, there exists a corresponding integer 

N such that, independent of z, for every z in R, we have:
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𝑓𝑛 𝑧 ≤ 𝑀𝑛

𝑀1 + 𝑀2 + 𝑀3 + ⋯ + 𝑀𝑛 + ⋯

𝑓1 𝑧 + 𝑓2 𝑧 + ⋯ + 𝑓𝑛 𝑧 + ⋯

Complex Series

Theorem (M-Test or Weierstrass Test): If there exists a sequence of 

positive constants Mn such that for all positive integers n and for all 

values of z in a given region D, we have:

and if the series:

converges, then the original series

converges uniformly in D.
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Theorem (Taylor Series): If f(z) is 

analytic throughout a bounded region 

enclosed by a simple closed curve C, and

if z and a are both inside C, then:

𝑓 𝑧 = 𝑓 𝑎 + 𝑓′ 𝑎 𝑧 − 𝑎 + 𝑓′′ 𝑎
𝑧 − 𝑎 2

2!
+ ⋯ + 𝑓𝑛−1 𝑎

𝑧 − 𝑎 𝑛−1

𝑛 − 1 !
+ 𝑅𝑛

In which 𝑅𝑛 =
𝑧 − 𝑎 𝑛

2𝜋𝑖
න

𝐶

𝑓 𝑡 𝑑𝑡

𝑡 − 𝑎 𝑛(𝑡 − 𝑧)

𝑓 𝑧 =
1

2𝜋𝑖
න

𝐶

𝑓 𝑡 𝑑𝑡

𝑡 − 𝑧

Complex Series

Proof: We know that (according to Theorem 10 in the Integral Section):
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Proof: (continue)

𝑓 𝑧 =
1

2𝜋𝑖
න

𝐶

𝑓 𝑡 𝑑𝑡

𝑡 − 𝑧

1

1 − 𝑢
= 1 + 𝑢 + 𝑢2 + ⋯ +

𝑢𝑛

1 − 𝑢

𝑓 𝑧 =
1

2𝜋𝑖
න

𝐶

𝑓 𝑡

𝑡 − 𝑎
1 +

𝑧 − 𝑎

𝑡 − 𝑎
+

𝑧 − 𝑎

𝑡 − 𝑎

2

+ ⋯ +
𝑧 − 𝑎

𝑡 − 𝑎

𝑛−1

+

𝑧 − 𝑎
𝑡 − 𝑎

𝑛

1 −
𝑧 − 𝑎
𝑡 − 𝑎

𝑑𝑡

𝑓 𝑧 =
1

2𝜋𝑖
න

𝐶

𝑓 𝑡 𝑑𝑡

𝑡 − 𝑧
=

1

2𝜋𝑖
න

𝐶

𝑓 𝑡 𝑑𝑡

𝑡 − 𝑎

1

1 −
𝑧 − 𝑎
𝑡 − 𝑎

𝑑𝑡

Complex Series
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𝑓 𝑧 =
1

2𝜋𝑖
න

𝐶

𝑓 𝑡 𝑑𝑡

𝑡 − 𝑧

1

1 − 𝑢
= 1 + 𝑢 + 𝑢2 + ⋯ +

𝑢𝑛

1 − 𝑢

𝑓 𝑧 =
1

2𝜋𝑖
න

𝐶

𝑓 𝑡

𝑡 − 𝑎
1 +

𝑧 − 𝑎

𝑡 − 𝑎
+

𝑧 − 𝑎

𝑡 − 𝑎

2

+ ⋯ +
𝑧 − 𝑎

𝑡 − 𝑎

𝑛−1

+

𝑧 − 𝑎
𝑡 − 𝑎

𝑛

1 −
𝑧 − 𝑎
𝑡 − 𝑎

𝑑𝑡

𝑓 𝑧 =
1

2𝜋𝑖
න

𝐶

𝑓 𝑡 𝑑𝑡

𝑡 − 𝑧
=

1

2𝜋𝑖
න

𝐶

𝑓 𝑡 𝑑𝑡

𝑡 − 𝑎

1

1 −
𝑧 − 𝑎
𝑡 − 𝑎

𝑑𝑡

𝑓 𝑧 = 𝑓 𝑎 + 𝑓′ 𝑎 𝑧 − 𝑎 + ⋯ + 𝑓 𝑛−1 𝑎
𝑧 − 𝑎 𝑛−1

𝑛 − 1 !
+

𝑧 − 𝑎 𝑛

2𝜋𝑖
න

𝐶

𝑓 𝑡 𝑑𝑡

𝑡 − 𝑎 𝑛(𝑡 − 𝑧)

Complex Series

Proof: (continue)
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Theorem: Taylor Series

𝑓 𝑧 = 𝑓 𝑎 + 𝑓′ 𝑎 𝑧 − 𝑎 + 𝑓′′ 𝑎
𝑧 − 𝑎 2

2!
+ 𝑓′′′ 𝑎

𝑧 − 𝑎 3

3!
…

In every point inside any circle centered

at a, where f(z) is analytic within the circle,

the Taylor series converges to f(z).

𝑓 𝑧 = 𝑓 𝑎 + 𝑓′ 𝑎 𝑧 − 𝑎 + 𝑓′′ 𝑎
𝑧 − 𝑎 2

2!
+ ⋯ + 𝑓𝑛−1 𝑎

𝑧 − 𝑎 𝑛−1

𝑛 − 1 !
+ 𝑅𝑛

Proof:  In the previous theorem, we saw that:

We need to show that as n  becomes sufficiently large, the term Rn tends 

to zero. 

Complex Series
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𝑅𝑛(𝑧) =
𝑧 − 𝑎 𝑛

2𝜋𝑖
න

𝐶2

𝑓 𝑡 𝑑𝑡

𝑡 − 𝑎 𝑛(𝑡 − 𝑧)

<
𝑟1

𝑛

2𝜋
න

𝐶2

𝑀 𝑑𝑡

𝑟2
𝑛 𝑟2 − 𝑟1

𝑅𝑛 =
𝑧 − 𝑎 𝑛

2𝜋𝑖
න

𝐶

𝑓 𝑡 𝑑𝑡

𝑡 − 𝑎 𝑛(𝑡 − 𝑧)

𝑅𝑛 =
𝑧 − 𝑎 𝑛

2𝜋𝑖
න

𝐶2

𝑓 𝑡 𝑑𝑡

𝑡 − 𝑎 𝑛(𝑡 − 𝑧)

𝑡 − 𝑎 = 𝑟2 𝑧 − 𝑎 < 𝑟1𝑡 − 𝑧 > 𝑟2 − 𝑟1

≤
𝑧 − 𝑎 𝑛

2𝜋𝑖
න

𝐶2

𝑓 𝑡 𝑑𝑡

𝑡 − 𝑎 𝑛 𝑡 − 𝑧

= 𝑀
𝑟1

𝑟2

𝑛
𝑟2

𝑟2 − 𝑟1

Complex Series

Proof: (continue)
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 Definition of Radius and Circle of Convergence: The largest 

circle that can be drawn around the point z=a such that the 

Taylor series f(z) converges everywhere inside it is called the 

circle of convergence, and the radius of this circle is called the 

radius of convergence.

 If a is zero, the series is called the Maclaurin series , and the 

statements mentioned also apply to it.

 In the special case where αis the nearest singularity

such that f(z) approaches infinity as z approaches α, 

then the radius of convergence is equal to 𝛼 − 𝑎 .

 If the function is not analytic but bounded at the point α, then the 

radius of convergence may be greater than 𝛼 − 𝑎 . Refer to the 

footnotes in your reference books for more details.

Complex Series
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Theorem (Binomial Theorem): The following series converges 

under the given conditions.

(𝑠 + 𝑡)𝑛= 𝑠𝑛 + 𝑛𝑠𝑛−1𝑡 +
𝑛(𝑛 − 1)

2!
𝑠𝑛−2𝑡2 +

𝑛(𝑛 − 1)(𝑛 − 2)

3!
𝑠𝑛−3𝑡3 + ⋯

𝑠 > 𝑡  ∀ 𝑛 ∈ 𝑍

𝑠 ≤ 𝑡  ∀ 𝑛 ∈ 𝑍 𝑎𝑛𝑑 𝑛 ≥ 0

Theorem: If f(z) is represented by a series in the neighborhood 

of z=a in the following form, then this representation is 

unique.

෍

𝑛=1

∞

𝑎𝑛 (𝑧 − 𝑎)𝑛

Absolutely crucial:

Complex Series
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𝑓 𝑧 =
3

(3𝑧 − 𝑧2)

𝑓 𝑧 =
1

𝑧
+

1

3 − 𝑧
= [1 + 𝑧 − 1 ]−1+[2 − 𝑧 − 1 ]−1

[1 + 𝑧 − 1 ]−1= 1 − 𝑧 − 1 + 𝑧 − 1 2 − ⋯ + −1 𝑛 𝑧 − 1 𝑛 + ⋯

[2 − 𝑧 − 1 ]−1= 2−1 + 2−2 𝑧 − 1 + 2−3 𝑧 − 1 2 + ⋯ + 2− 𝑛+1 𝑧 − 1 𝑛 + ⋯

(𝑠 + 𝑡)𝑛= 𝑠𝑛 + 𝑛𝑠𝑛−1𝑡 +
𝑛(𝑛 − 1)

2!
𝑠𝑛−2𝑡2 +

𝑛(𝑛 − 1)(𝑛 − 2)

3!
𝑠𝑛−3𝑡3 + ⋯

Complex Series

Example 7: Find the Taylor series expansion of the following 
function around z=1.

Using the binomial theorem:
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𝑓 𝑧 =
3

(3𝑧 − 𝑧2)

[1 + 𝑧 − 1 ]−1= 1 − 𝑧 − 1 + 𝑧 − 1 2 − ⋯ + −1 𝑛 𝑧 − 1 𝑛 + ⋯

[2 − 𝑧 − 1 ]−1= 2−1 + 2−2 𝑧 − 1 + 2−3 𝑧 − 1 2 + ⋯ + 2− 𝑛+1 𝑧 − 1 𝑛 + ⋯

𝑧 − 1 < 1

𝑧 − 1 < 2
?? 𝑧 − 1 < 1

Complex Series

Example 7: Find the Taylor series expansion of the following 
function around z=1.

× ×

𝑓(𝑧) =
3

2
−

3

4
𝑧 − 1 +

9

8
𝑧 − 1 2 − ⋯ +

1

2𝑛+1
+ −1 𝑛 𝑧 − 1 𝑛 + ⋯

The radius of convergence is given by:

𝑧 − 1 < 1
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Theorem (Liouville's Theorem): If f(z) is bounded and 

analytic for all values of z, then f(z) is constant.

Since f(z) is analytic everywhere, the series below converges 

at all points in the complex plane:

𝑓 𝑧 = 𝑓 0 + 𝑓′ 0 𝑧 + ⋯ +
𝑓𝑛 0

𝑛!
𝑧𝑛 + ⋯

Now, if C is an arbitrary circle centered at the origin with an 

infinite radius, from Cauchy's inequality we have:

𝑓(𝑛)(0) ≤
𝑛! 𝑀𝑐

𝑟𝑛

𝑓 𝑧 = 𝑓(0)

→  𝑓 𝑛 0 = 0

Complex Series
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Laurent Series Expansion: In many applications, it is necessary 

to expand a function around points where the function is not 

analytic at those points or in their neighborhood. Clearly, in such 

cases, the Taylor series method cannot be used, and a new type of 

series, known as the Laurent series, is required.

Theorem: If f(z) is analytic and bounded within a closed region R 
between two concentric circles, then f(z) can be represented by a 
series in every point of the annular region bounded by the two 
concentric circles.

𝑓 𝑧 = ෍

𝑛=−∞

∞

𝑎𝑛(𝑧 − 𝑎)𝑛

𝑎𝑛 =
1

2𝜋𝑖
න

𝐶

𝑓 𝑡 𝑑𝑡

(𝑡 − 𝑎)𝑛+1

Complex Series
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𝑓 𝑧 =
1

2𝜋𝑖
න

𝐶2

𝑓 𝑡 𝑑𝑡

𝑡 − 𝑧
+

1

2𝜋𝑖
න

𝐶1

𝑓 𝑡 𝑑𝑡

𝑡 − 𝑧

𝑓 𝑧 =
1

2𝜋𝑖
න

𝐶2

𝑓 𝑡 𝑑𝑡

𝑡 − 𝑧
+

1

2𝜋𝑖
න

𝐶1

𝑓 𝑡 𝑑𝑡

𝑧 − 𝑡

𝑓(𝑧) =
1

2𝜋𝑖
න

𝐶2

𝑓 𝑡 𝑑𝑡

𝑡 − 𝑎

1

1 −
𝑧 − 𝑎
𝑡 − 𝑎

𝑑𝑡 +
1

2𝜋𝑖
න

𝐶1

𝑓 𝑡 𝑑𝑡

𝑧 − 𝑎

1

1 −
𝑡 − 𝑎
𝑧 − 𝑎

𝑑𝑡

𝑓 𝑧 =
1

2𝜋𝑖
න

𝐶

𝑓 𝑡 𝑑𝑡

𝑡 − 𝑧

z

Proof: According to Cauchy's integral formula, for

any z  belonging to the annulus, given that f(z) is 

analytic, we have:

z

Complex Series
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1

1 − 𝑢
= 1 + 𝑢 + 𝑢2 + ⋯ +

𝑢𝑛

1 − 𝑢

𝑓 𝑧 =
1

2𝜋𝑖
න

𝐶2

𝑓 𝑡

𝑡 − 𝑎
1 +

𝑧 − 𝑎

𝑡 − 𝑎
+ ⋯ +

𝑧 − 𝑎

𝑡 − 𝑎

𝑛−1

+

𝑧 − 𝑎
𝑡 − 𝑎

𝑛

1 −
𝑧 − 𝑎
𝑡 − 𝑎

𝑑𝑡

 +
1

2𝜋𝑖
න

𝐶1

𝑓 𝑡

𝑧 − 𝑎
1 +

𝑡 − 𝑎

𝑧 − 𝑎
+ ⋯ +

𝑡 − 𝑎

𝑧 − 𝑎

𝑛−1

+

𝑡 − 𝑎
𝑧 − 𝑎

𝑛

1 −
𝑡 − 𝑎
𝑧 − 𝑎

𝑑𝑡

𝑓(𝑧) =
1

2𝜋𝑖
න

𝐶2

𝑓 𝑡 𝑑𝑡

𝑡 − 𝑎

1

1 −
𝑧 − 𝑎
𝑡 − 𝑎

𝑑𝑡 +
1

2𝜋𝑖
න

𝐶1

𝑓 𝑡 𝑑𝑡

𝑧 − 𝑎

1

1 −
𝑡 − 𝑎
𝑧 − 𝑎

𝑑𝑡

Complex Series
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𝑓 𝑧 =
1

2𝜋𝑖
න

𝐶2

𝑓 𝑡

𝑡 − 𝑎
1 +

𝑧 − 𝑎

𝑡 − 𝑎
+ ⋯ +

𝑧 − 𝑎

𝑡 − 𝑎

𝑛−1

+

𝑧 − 𝑎
𝑡 − 𝑎

𝑛

1 −
𝑧 − 𝑎
𝑡 − 𝑎

𝑑𝑡

 +
1

2𝜋𝑖
න

𝐶1

𝑓 𝑡

𝑧 − 𝑎
1 +

𝑡 − 𝑎

𝑧 − 𝑎
+ ⋯ +

𝑡 − 𝑎

𝑧 − 𝑎

𝑛−1

+

𝑡 − 𝑎
𝑧 − 𝑎

𝑛

1 −
𝑡 − 𝑎
𝑧 − 𝑎

𝑑𝑡

𝑎0 𝑎1
𝑎𝑛−1

𝑎−1

𝑓 𝑧 =
1

2𝜋𝑖
න

𝐶2

𝑓 𝑡 𝑑𝑡

𝑡 − 𝑎
+

(𝑧 − 𝑎)

2𝜋𝑖
න

𝐶2

𝑓 𝑡 𝑑𝑡

(𝑡 − 𝑎)2
+ ⋯ +

(𝑧 − 𝑎)𝑛−1

2𝜋𝑖
න

𝐶2

𝑓 𝑡 𝑑𝑡

(𝑡 − 𝑎)𝑛
+ 𝑅𝑛2

+
1

 (𝑧 − 𝑎)2𝜋𝑖
න

𝐶1

 

𝑓 𝑡 𝑑𝑡 + ⋯ +
1

𝑧 − 𝑎 𝑛2𝜋𝑖
න

𝐶1

𝑡 − 𝑎 𝑛−1𝑓 𝑡 𝑑𝑡 + 𝑅𝑛1

𝑎−𝑛

𝑎𝑛 =
1

2𝜋𝑖
න

𝐶

𝑓 𝑡 𝑑𝑡

(𝑡 − 𝑎)𝑛+1

Complex Series

Proof: (continue)
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lim
𝑛→∞

𝑅𝑛1 = 0 ,  lim
𝑛→∞

𝑅𝑛2 = 0

𝑓 𝑧 = 𝑅𝑛1 +
𝑎−𝑛

𝑧 − 𝑎 𝑛
+ ⋯ +

𝑎−1

𝑧 − 𝑎
+ 𝑎0 + 𝑎1 𝑧 − 𝑎 + ⋯ + 𝑎𝑛−1(𝑧 − 𝑎)𝑛−1+𝑅𝑛2

𝑅𝑛2 =
𝑧 − 𝑎 𝑛

2𝜋𝑖
න

𝐶2

𝑓 𝑡 𝑑𝑡

𝑡 − 𝑎 𝑛(𝑡 − 𝑧)
𝑅𝑛1 =

1

2𝜋𝑖 𝑧 − 𝑎 𝑛
න

𝐶1

𝑡 − 𝑎 𝑛𝑓 𝑡 𝑑𝑡

 𝑧 − 𝑡

𝑎𝑛 =
1

2𝜋𝑖
න

𝐶

𝑓 𝑡 𝑑𝑡

(𝑡 − 𝑎)𝑛+1

𝑓 𝑧 = ⋯ +
𝑎−𝑛

𝑧 − 𝑎 𝑛
+ ⋯ +

𝑎−1

𝑧 − 𝑎
+ 𝑎0 + 𝑎1 𝑧 − 𝑎 + ⋯ + 𝑎𝑛−1 𝑧 − 𝑎 𝑛−1 + ⋯

Complex Series

Proof: (continue)
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𝑅𝑛1 =
1

2𝜋𝑖 𝑧 − 𝑎 𝑛
න

𝐶1

𝑡 − 𝑎 𝑛𝑓 𝑡 𝑑𝑡

𝑧 − 𝑡

= 𝑀
𝑟1

𝜌

𝑛
𝑟1

𝜌 − 𝑟1
lim

𝑛→∞
𝑅𝑛1 = 0

𝑅𝑛1 =
1

2𝜋𝑖 𝑧 − 𝑎 𝑛
න

𝐶1

𝑡 − 𝑎 𝑛𝑓 𝑡 𝑑𝑡

 𝑧 − 𝑡

≤
1

2𝜋𝑖 𝑧 − 𝑎 𝑛
න

𝐶1

𝑡 − 𝑎 𝑛 𝑓 𝑡 𝑑𝑡

𝑧 − 𝑡

𝑡 − 𝑎 = 𝑟1

𝑅𝑛1 ≤
1

2𝜋𝜌𝑛
න

𝐶1

𝑟1
𝑛𝑀 𝑑𝑡

𝜌 − 𝑟1

𝑧 − 𝑎 = 𝜌 𝜌 > 𝑟1 𝑧 − 𝑡 ≥ 𝜌 − 𝑟1

Complex Series

Proof: (continue)
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𝑅𝑛2 =?

Complex Series

Proof: (continue)
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Example 8:  Find all acceptable Laurent series expansions for the following 

function around z=−1 and determine the radius of convergence for each.

𝑓 𝑧 =
7𝑧 − 2

𝑧 + 1 𝑧(𝑧 − 2)

𝑓 𝑧 =
−3

𝑧 + 1
+

1

𝑧
+

2

𝑧 − 2

𝑓 𝑧 =
−3

𝑧 + 1
+ 𝑧 + 1 − 1 −1 + 2[ 𝑧 + 1 − 3]−1

Solution:

𝑧 + 1 − 1 −1 =

(𝑠 + 𝑡)𝑛= 𝑠𝑛 + 𝑛𝑠𝑛−1𝑡 +
𝑛(𝑛 − 1)

2!
𝑠𝑛−2𝑡2 +

𝑛(𝑛 − 1)(𝑛 − 2)

3!
𝑠𝑛−3𝑡3 + ⋯

𝑧 + 1 −1 + 𝑧 + 1 −2 + 𝑧 + 1 −3 + ⋯

𝑧 + 1 − 3 −1 = 𝑧 + 1 −1 + 3 𝑧 + 1 −2 + 9 𝑧 + 1 −3 + ⋯

𝑓 𝑧 =
7

𝑧 + 1 2
+

19

𝑧 + 1 3
+ ⋯ 𝑧 + 1 > 3

× ××
3

Complex Series
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𝑓 𝑧 =
−3

𝑧 + 1
+ 𝑧 + 1 − 1 −1 + 2[ 𝑧 + 1 − 3]−1

0 < 𝑧 + 1 < 1 0 < 𝑧 + 1 < 3

−1 + 𝑧 + 1 −1 =

(𝑠 + 𝑡)𝑛= 𝑠𝑛 + 𝑛𝑠𝑛−1𝑡 +
𝑛(𝑛 − 1)

2!
𝑠𝑛−2𝑡2 +

𝑛(𝑛 − 1)(𝑛 − 2)

3!
𝑠𝑛−3𝑡3 + ⋯

−1 −1 − 𝑧 + 1 − 𝑧 + 1 2 − ⋯

−3 + 𝑧 + 1 −1 = −3 −1 −
1

9
𝑧 + 1 −

1

27
𝑧 + 1 2 + ⋯

𝑓 𝑧 =
−3

𝑧 + 1
−

5

3
−

11

9
𝑧 + 1 −

29

27
𝑧 + 1 2 …  0 < 𝑧 + 1 < 1

𝑓 𝑧 =
−3

𝑧 + 1
+ −1 + 𝑧 + 1 −1 + 2[−3 + 𝑧 + 1 ]−1

In this case, the use of the binomial series expansion is valid for the 

convergence radius 0< ∣z+1∣<1.

Complex Series
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𝑓 𝑧 =
−3

𝑧 + 1
+ 𝑧 + 1 − 1 −1 + 2[ 𝑧 + 1 − 3]−1

𝑧 + 1 > 1 0 < 𝑧 + 1 < 3

𝑧 + 1 − 1 −1 =

(𝑠 + 𝑡)𝑛= 𝑠𝑛 + 𝑛𝑠𝑛−1𝑡 +
𝑛(𝑛 − 1)

2!
𝑠𝑛−2𝑡2 +

𝑛(𝑛 − 1)(𝑛 − 2)

3!
𝑠𝑛−3𝑡3 + ⋯

−3 + 𝑧 + 1 −1 = −3 −1 −
1

9
𝑧 + 1 −

1

27
𝑧 + 1 2 + ⋯

𝑓 𝑧 =
−3

𝑧 + 1
+ 𝑧 + 1 − 1 −1 + 2[−3 + 𝑧 + 1 ]−1

𝑧 + 1 −1 + 𝑧 + 1 −2 + 𝑧 + 1 −3 + ⋯

𝑓 𝑧 = ⋯ +
1

𝑧 + 1 2
−

2

𝑧 + 1
−

2

3
−

2

9
𝑧 + 1 − ⋯  1 < 𝑧 + 1 < 3

× ×× × ××

Complex Series

In this case, the use of the binomial series expansion is valid for the 

convergence radius 1< ∣z+1∣<3.
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𝑓 𝑧 =
−3

𝑧 + 1
+ −1 + 𝑧 + 1 −1 + 2[ 𝑧 + 1 − 3]−1

Unacceptable

1 > 𝑧 + 1 𝑧 + 1 > 3

Complex Series
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𝑓 𝑧 =
−3

𝑧 + 1
−

5

3
−

11

9
𝑧 + 1 −

29

27
𝑧 + 1 2 …  0 < 𝑧 + 1 < 1

𝑓 𝑧 = ⋯ +
1

𝑧 + 1 2
−

2

𝑧 + 1
−

2

3
−

2

9
𝑧 + 1 − ⋯  1 < 𝑧 + 1 < 3

𝑓 𝑧 =
7𝑧 − 2

𝑧 + 1 𝑧(𝑧 − 2)

𝑓 𝑧 =
7

𝑧 + 1 2
+

19

𝑧 + 1 3
+ ⋯ 𝑧 + 1 > 3

Complex Series
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𝑓 𝑧 =
−3

𝑧 + 1
−

5

3
−

11

9
𝑧 + 1 −

29

27
𝑧 + 1 2

𝑓 𝑧 = ⋯ +
1

𝑧 + 1 2
+

−2

𝑧 + 1
−

2

3
−

2

9
𝑧 + 1 − ⋯ 

𝑓
𝑧

=
7

𝑧
−

2

𝑧
+

1
𝑧(

𝑧
−

2
)

𝑓 𝑧 =
7

𝑧 + 1 2
+

19

𝑧 + 1 3
+ ⋯ 

න
𝐶1

 

𝑓 𝑧 𝑑𝑧 =?  

principal part f(z)

න
𝐶1

 

𝑓 𝑧 𝑑𝑧 = 2𝜋𝑖(−2) 

residue f(z)

Integration by Complex Series
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𝑓 𝑧 =
−3

𝑧 + 1
−

5

3
−

11

9
𝑧 + 1 −

29

27
𝑧 + 1 2

𝑓 𝑧 = ⋯ +
1

𝑧 + 1 2
−

2

𝑧 + 1
−

2

3
−

2

9
𝑧 + 1 − ⋯ 

𝑓
𝑧

=
7

𝑧
−

2

𝑧
+

1
𝑧(

𝑧
−

2
)

𝑓 𝑧 =
7

𝑧 + 1 2
+

19

𝑧 + 1 3
+ ⋯ 

න
𝐶1

 

𝑓 𝑧 𝑑𝑧 =?  

principal part f(z)

න
𝐶1

 

𝑓 𝑧 𝑑𝑧 = 2𝜋𝑖(−3) 

residue f(z)

Integration by Complex Series
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𝑓 𝑧 =
−3

𝑧 + 1
−

5

3
−

11

9
𝑧 + 1 −

29

27
𝑧 + 1 2

𝑓 𝑧 = ⋯ +
1

𝑧 + 1 2
−

2

𝑧 + 1
−

2

3
−

2

9
𝑧 + 1 − ⋯ 

𝑓
𝑧

=
7

𝑧
−

2

𝑧
+

1
𝑧(

𝑧
−

2
)

𝑓 𝑧 =
7

𝑧 + 1 2
+

19

𝑧 + 1 3
+ ⋯ 

න
𝐶1

 

𝑓 𝑧 𝑑𝑧 =?  න
𝐶1

 

𝑓 𝑧 𝑑𝑧 = 0 

Integration by Complex Series
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𝑓 𝑧 =  … +
𝑎−𝑚

𝑧 − 𝑧1
𝑚

+ ⋯ +
𝑎−1

𝑧 − 𝑧1
+ 𝑎0 + 𝑎1 𝑧 − 𝑧1 + ⋯ + 𝑎𝑚 𝑧 − 𝑧1

𝑚 + ⋯

principal part f(z)

The point z1 is a pole of the function f(z)

a−1 is the residue of f(z) around the point z1 .

න
𝐶1

 

𝑓 𝑧 𝑑𝑧 = 2𝜋𝑖(𝑎−1) 

Integration by Complex Series
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Exercises

Exercise 7: Show that every sequence has at most one limit.

𝑓 𝑧 =
7𝑧 − 2

𝑧 + 1 𝑧(𝑧 − 2)

𝑎) 𝑓 𝑧 = 𝑐𝑜𝑠𝑧 𝑧0 = 0

𝑏) 𝑓 𝑧 = 𝑠𝑖𝑛ℎ𝑧 𝑧0 = 𝜋 𝑐) 𝑓 𝑧 = 𝑒𝑧 𝑧0 = 0

𝑎) 𝑓 𝑧 = 𝑡𝑎𝑛𝑧 𝑧0 = 0 𝑏) 𝑓 𝑧 = 𝑡𝑎𝑛𝑧 𝑧0 = 𝜋

𝑐) 𝑓 𝑧 = 𝑒
1
𝑧  𝑧0 = 0 𝑑) 𝑓 𝑧 =

1 − 𝑒𝑧

𝑧
 𝑧0 = 0

Exercise 8: Find all acceptable Laurent and Taylor series expansions 

for the given function around the point −2 and determine the radius of 

convergence for each.

Exercise 9:  Find the Taylor series expansions of the following functions 

around the given point and determine the radius of convergence for each.

Exercise 10:  Find the Laurent series expansions of the following functions 

around the given point and determine the radius of convergence for each.
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❑ Analytic Functions and Differentiability

❑ Integration in the Complex Plane
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❑ Residue Theory and Calculation of Real Integrals
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Example 9: If C is a circle with radius r centered at z0 and n is an 

integer, find the value of the following integral (counterclockwise):

69

𝐼 = න
𝐶

𝑑𝑧

(𝑧 − 𝑧0)𝑛+1

𝐼 = න
𝐶

𝑑𝑧

(𝑧 − 𝑧0)𝑛+1
= ቊ

2𝜋𝑖 𝑛 = 0
0 𝑛 ≠ 0

Very very 

important

Residue Theory and Calculation of Real Integrals
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Case (a):  The function f(z) is analytic inside and on the closed contour C.

න
𝐶

 

𝑓 𝑧 𝑑𝑧 = 0
According to Cauchy-Goursat Theorem

Residue Theory and Calculation of Real Integrals

න
𝐶

 

𝑓 𝑧 𝑑𝑧 =?The goal of this section is to:

Case (b):  The function f(z) is analytic at all points inside and on the 

closed contour C  except at a finite number of points.
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න
𝐶

 

𝑓 𝑧 𝑑𝑧 = න
𝐶1

 

𝑓 𝑧 𝑑𝑧 + න
𝐶2

 

𝑓 𝑧 𝑑𝑧 + න
𝐶3

 

𝑓 𝑧 𝑑𝑧  

Residue Theory and Calculation of Real Integrals

න
𝐶

 

𝑓 𝑧 𝑑𝑧 =?The goal of this section is to:

Case (b):  The function f(z) is analytic at all points inside and on the 

closed contour C  except at a finite number of points.
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න
𝐶

 

𝑓 𝑧 𝑑𝑧 = න
𝐶1

 

𝑓 𝑧 𝑑𝑧 + න
𝐶2

 

𝑓 𝑧 𝑑𝑧 + න
𝐶3

 

𝑓 𝑧 𝑑𝑧  

න
𝐶1

 

𝑓 𝑧 𝑑𝑧 =?

Residue Theory and Calculation of Real Integrals

න
𝐶

 

𝑓 𝑧 𝑑𝑧 =?The goal of this section is to:

Case (b):  The function f(z) is analytic at all points inside and on the 

closed contour C  except at a finite number of points.
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න
𝐶

 

𝑓 𝑧 𝑑𝑧 =?

න
𝐶1

 

𝑓 𝑧 𝑑𝑧 =?

𝑓 𝑧 =  … +
𝑎−𝑚

𝑧 − 𝑧1
𝑚

+ ⋯ +
𝑎−1

𝑧 − 𝑧1
+ 𝑎0 + 𝑎1 𝑧 − 𝑧1 + ⋯ + 𝑎𝑚 𝑧 − 𝑧1

𝑚 + ⋯

න
𝐶1

 

𝑓 𝑧 𝑑𝑧 = 2𝜋𝑖(𝑎−1) 

residues

Residue Theory and Calculation of Real Integrals

The goal of this section is to:

Case (b):  The function f(z) is analytic at all points inside and on the 

closed contour C  except at a finite number of points.



Dr. Ali Karimpour  Sep 2024

Lecture 4_2

74

න
𝐶1

 

𝑓 𝑧 𝑑𝑧 =?

𝑓 𝑧 =  … +
𝑎−𝑚

𝑧 − 𝑧1
𝑚

+ ⋯ +
𝑎−1

𝑧 − 𝑧1
+ 𝑎0 + 𝑎1 𝑧 − 𝑧1 + ⋯ + 𝑎𝑚 𝑧 − 𝑧1

𝑚 + ⋯

න
𝐶1

 

𝑓 𝑧 𝑑𝑧 = 2𝜋𝑖(𝑎−1) residues

Principal Part of f(z)

Essential SingularityPole or Singularity of Order m

Residue of f(z) around the point z1

Region of Validity of the Series

Residue Theory and Calculation of Real Integrals
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𝑓 𝑧 =
1

𝑧(𝑧 − 1)2

𝑓 𝑧 =
1

𝑧(𝑧 − 1)2
=

1

𝑧 − 1 2
𝑧−1 =

1

𝑧 − 1 2
(1 + 𝑧 − 1)−1

𝑓(𝑧) =
1

𝑧 − 1 2
(1)−1+ −1 1 −2 𝑧 − 1 1 +

(−1)(−2)

2!
(1)−3(𝑧 − 1)2+ ⋯

𝑓 𝑧 =
1

𝑧 − 1 2
+

−1

𝑧 − 1
+ 1 − 𝑧 − 1 + ⋯ 𝑧 − 1 < 1

Residue Theory and Calculation of Real Integrals

Example 10: Determine the type of the pole of the following 

function at z=1 and find the residue.

Solution:  First, obtain the Laurent series expansion of f(z) 

around z=1.
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Example 11: Determine the type of the pole of the following 

function at z=0 and find the residue.

Solution:  First, obtain the Laurent series expansion of f(z) 

around z=0.

𝑓 𝑧 = 𝑒
1
𝑧

𝑒𝑧 = 1 + 𝑧 +
𝑧2

2!
+

𝑧3

3!
+ ⋯

𝑒
1
𝑧 = 1 +

1

𝑧
+

1

2! 𝑧2
+

1

3! 𝑧3
+ ⋯

Residue Theory and Calculation of Real Integrals
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Example 12: Determine the poles of the following function, 

find their types, and compute the residues.

Solution:  It is clear that the function should be examined at z= 0

𝑓 𝑧 =
1 − 𝑒𝑧

𝑧

𝑓(𝑧) =
1

𝑧
1 − 1 + 𝑧 +

𝑧2

2!
+

𝑧3

3!
+ ⋯

𝑓 𝑧 = −1 −
𝑧

2! 
−

𝑧2

3! 
− ⋯

Residue Theory and Calculation of Real Integrals
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න
𝐶

 

𝑓 𝑧 𝑑𝑧 = 2𝜋𝑖 𝑟1 + 𝑟2 + ⋯ 𝑟𝑛

Theorem:  If C  is a closed contour and f(z) is analytic inside and on 

C  except at a finite number of points z 1,z2,… inside C ,  then

r1 ,r2 ,… are the residues of the function f( z)at the singular points 
z1,z2,…….

න
𝐶

 

𝑓 𝑧 𝑑𝑧 = න
𝐶1

 

𝑓 𝑧 𝑑𝑧 + න
𝐶2

 

𝑓 𝑧 𝑑𝑧 + ⋯ න
𝐶𝑛

 

𝑓 𝑧 𝑑𝑧  

Proof:

න
𝐶

 

𝑓 𝑧 𝑑𝑧 = 2𝜋𝑖𝑟1 + 2𝜋𝑖𝑟2 + ⋯ + 2𝜋𝑖𝑟𝑛

Residue Theory and Calculation of Real Integrals
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Example 13: Compute the following integral around a circle of 

radius 1.5 centered at the origin, in the counterclockwise direction:

Solution:  The given function is analytic on the contour C except at 
z=0 and z=1 Thus:

න
𝐶

−3𝑧 + 4

𝑧(𝑧 − 1)(𝑧 − 2)
𝑑𝑧

න
𝐶

 

𝑓 𝑧 𝑑𝑧 = 2𝜋𝑖 𝑟1 + 𝑟2

න
𝐶

 

𝑓 𝑧 𝑑𝑧 = 2𝜋𝑖 2 − 1 = 2𝜋𝑖

−3𝑧 + 4

𝑧(𝑧 − 1)(𝑧 − 2)
=

2

𝑧
+

−1

𝑧 − 1
+

−1

𝑧 − 2

Residue Theory and Calculation of Real Integrals



Dr. Ali Karimpour  Sep 2024

Lecture 4_2

80

𝑓 𝑧 =
𝑎−1

𝑧 − 𝑧1
+ 𝑎0 + 𝑎1 𝑧 − 𝑧1 + ⋯ + 𝑎𝑚 𝑧 − 𝑧1

𝑚 + ⋯

Method for Computing the Remainder(𝒂−𝟏):

1- We have pole of order 1

𝑓 𝑧 =
𝑎−2

𝑧 − 𝑧1
2

+
𝑎−1

𝑧 − 𝑧1
+ 𝑎0 + 𝑎1 𝑧 − 𝑧1 + ⋯ + 𝑎𝑚 𝑧 − 𝑧1

𝑚 + ⋯

𝑎−1 = lim
𝑧→𝑧1

𝑧 − 𝑧1 𝑓(𝑧)

𝑎−1 = lim
𝑧→𝑧1

𝑑

𝑑𝑧
𝑧 − 𝑧1

2𝑓(𝑧)

Residue Theory and Calculation of Real Integrals

2- We have pole of order 2
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𝑓 𝑧 =
𝑎−𝑚

𝑧 − 𝑧1
𝑚

+ ⋯ +
𝑎−1

𝑧 − 𝑧1
+ 𝑎0 + 𝑎1 𝑧 − 𝑧1 + ⋯ + 𝑎𝑚 𝑧 − 𝑧1

𝑚 + ⋯

𝑎−1 =
1

𝑚 − 1 !
lim

𝑧→𝑧1

𝑑

𝑑𝑧𝑚−1
𝑧 − 𝑧1

𝑚𝑓(𝑧)

Residue Theory and Calculation of Real Integrals

Method for Computing the Remainder(𝒂−𝟏):

2- We have pole of order m



Dr. Ali Karimpour  Sep 2024

Lecture 4_2

82

𝑓 𝑧 =
1 + 𝑧

1 − 𝑐𝑜𝑠𝑧

𝑧𝑓 𝑧 =
𝑧(1 + 𝑧)

1 − 𝑐𝑜𝑠𝑧
=

𝑧(1 + 𝑧)

1 − (1 −
𝑧2

2
+

𝑧4

24
− ⋯ )

=
𝑧(1 + 𝑧)

𝑧2

2
−

𝑧4

24
+ ⋯

=
𝑧 + 1

𝑧
2

−
𝑧3

24
+ ⋯

Not acceptable

𝑎−1 = lim
𝑧→𝑧1

𝑧 − 𝑧1 𝑓(𝑧)

𝑎−1 = lim
𝑧→0

𝑧𝑓(𝑧)

Residue Theory and Calculation of Real Integrals

Example 14:  Determine the residue of the following function at the origin 
(z=0):

Solution:  First, assume that z=0 is a simple pole (pole of order 1).
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z𝑓(𝑧) =
𝑧 + 1

𝑧
2

−
𝑧3

24
+ ⋯

𝑧2𝑓(𝑧) =
𝑧 + 1

1
2

−
𝑧2

24
+ ⋯

𝑎−1 = lim
𝑧→0

𝑑

𝑑𝑧
𝑧 − 0 2𝑓(𝑧)

𝑎−1 = lim
𝑧→0

𝑑

𝑑𝑧
𝑧2𝑓(𝑧) = 2

Residue Theory and Calculation of Real Integrals

Now, assume that z=0 is a pole of order 2.



Dr. Ali Karimpour  Sep 2024

Lecture 4_2

84

Suppose f(z) is given as the quotient of two analytic functions:

𝑓(𝑧) =
𝑝(𝑧)

𝑞(𝑧)

𝑎−1 =
𝑝 (𝑧1)

𝑞′(𝑧1)

𝑎−1 =
2𝑝′(𝑧1)

𝑞′′(𝑧1)
−

2𝑝 𝑧1 𝑞′′′(𝑧1)

3(𝑞′′(𝑧1))2

Residue Theory and Calculation of Real Integrals

Method for Computing the Remainder(𝑎−1):

1- We have pole of order 1

2- We have pole of order 2
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Example 15:  Determine the residue of the following function at the origin 
(z=0):

Solution:  First, assume that z=0 is a simple pole (pole of order 1).

𝑓 𝑧 =
1 + 𝑧

1 − 𝑐𝑜𝑠𝑧

Not acceptable𝑎−1 =
𝑝 (𝑧1)

𝑞′(𝑧1)
=

1 + 0

𝑠𝑖𝑛0

Now, assume that z=0 is a pole of order 2.

𝑎−1 =
2𝑝′(𝑧1)

𝑞′′(𝑧1)
−

2𝑝 𝑧1 𝑞′′′(𝑧1)

3(𝑞′′(𝑧1))2

=
2

𝑐𝑜𝑠0
−

2 1 + 0 𝑠𝑖𝑛0

3(𝑐𝑜𝑠0)2
= 2

Residue Theory and Calculation of Real Integrals
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න
−∞

∞ 

𝑓 𝑥 𝑑𝑥 =?The goal of this section is to:

න
𝐶

 

𝑓 𝑧 𝑑𝑧 = න
−∞

∞ 

𝑓 𝑥 𝑑𝑥 + න
𝐶1

𝑓 𝑧 𝑑𝑧

Suppose f(x)  has no poles

on the x-axis.
.

= 2𝜋𝑖( )The residues of  f(z) in 
the upper half -plane

If the denominator of f(z) has a degree that is greater than the numerator 
by at least two, then:

න
−∞

∞ 

𝑓 𝑥 𝑑𝑥 = 2𝜋𝑖( )The residues of  f(z) in 
the upper half -plane

Residue Theory and Calculation of Real Integrals
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𝐼 = න
0

∞ 2𝑥2 − 1

𝑥4 + 5𝑥2 + 4
𝑑𝑥 =?

Example 16: Compute the following integral:

= 𝜋𝑖( )The residues of  f(z) in 
the upper half -plane

𝐼 = 0.5 න
−∞

∞ 2𝑥2 − 1

𝑥4 + 5𝑥2 + 4
𝑑𝑥

The function has poles at i  and 2i  in the upper half-plane. Therefore:

𝐼 = න
0

∞ 2𝑥2 − 1

𝑥4 + 5𝑥2 + 4
𝑑𝑥 = 𝜋𝑖 0.5𝑖 − 0.75𝑖 =

𝜋

4

Residue Theory and Calculation of Real Integrals
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න
−∞

∞ 𝑝(𝑥)

𝑞(𝑥)
𝑐𝑜𝑠𝑥𝑑𝑥 =?

න
𝐶

𝑝(𝑧)

𝑞(𝑧)
𝑒𝑖𝑧𝑑𝑧 = න

−∞

∞ 𝑝(𝑥)

𝑞(𝑥)
𝑒𝑖𝑥𝑑𝑥 + න

𝐶1

𝑝(𝑧)

𝑞(𝑧)
𝑒𝑖𝑧𝑑𝑧 = 2𝜋𝑖( )

The res idues  o f  
𝑝 ( 𝑧 )

𝑞 ( 𝑧 )
𝑒 𝑖𝑧  

in  the  upper  ha l f -p lane

If q(x) has two more roots than p(x), then:

න
−∞

∞ 𝑝(𝑥)

𝑞(𝑥)
𝑒𝑖𝑥𝑑𝑥 = 2𝜋𝑖( )

න
−∞

∞ 𝑝(𝑥)

𝑞(𝑥)
𝑠𝑖𝑛𝑥𝑑𝑥 =?

The res idues  o f  
𝑝 ( 𝑧 )

𝑞 ( 𝑧 )
𝑒 𝑖𝑧  

in  the  upper  ha l f -p lane

Residue Theory and Calculation of Real Integrals

The goal of this section is to:

Suppose q(x)  has no poles 

on the x-axis.
.
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න
−∞

∞ 𝑝(𝑥)

𝑞(𝑥)
𝑒𝑖𝑥𝑑𝑥 = 2𝜋𝑖( )

The res idues  o f  
𝑝 ( 𝑧 )

𝑞 ( 𝑧 )
𝑒 𝑖𝑧  

in  the  upper  ha l f -p lane

න
−∞

∞ 𝑝(𝑥)

𝑞(𝑥)
𝑐𝑜𝑠𝑥𝑑𝑥 = 𝑅𝑒{2𝜋𝑖( )}

The res idues  o f  
𝑝 ( 𝑧 )

𝑞 ( 𝑧 )
𝑒 𝑖𝑧  

in  the  upper  ha l f -p lane

න
−∞

∞ 𝑝(𝑥)

𝑞(𝑥)
𝑠𝑖𝑛𝑥𝑑𝑥 = 𝐼𝑚{2𝜋𝑖( )}

The res idues  o f  
𝑝 ( 𝑧 )

𝑞 ( 𝑧 )
𝑒 𝑖𝑧  

in  the  upper  ha l f -p lane

Residue Theory and Calculation of Real Integrals

න
−∞

∞ 𝑝(𝑥)

𝑞(𝑥)
𝑐𝑜𝑠𝑥𝑑𝑥 =? න

−∞

∞ 𝑝(𝑥)

𝑞(𝑥)
𝑠𝑖𝑛𝑥𝑑𝑥 =?

The goal of this section is to:

Suppose q(x) has no poles on the x-axis.

.

If q(x) has two more roots than p(x), then:
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න
−∞

∞ 1

1 + 𝑥2
𝑐𝑜𝑠𝑚𝑥𝑑𝑥

Example 17: Find the value of:

න
−∞

∞ 1

1 + 𝑥2
𝑐𝑜𝑠𝑚𝑥𝑑𝑥 = 𝑅𝑒{2𝜋𝑖( )}

The residues of 
1

1+𝑥2 𝑐𝑜𝑠𝑚𝑥  in the 

upper half-plane

= 𝜋𝑒−𝑚

= ⋯

Residue Theory and Calculation of Real Integrals

Since q(x) has no roots on the real axis and has two more roots than p(x), 
then:
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න
0

2𝜋 

𝑅 𝑠𝑖𝑛𝜃, 𝑐𝑜𝑠𝜃 𝑑𝜃 =?

Suppose R  does not have any poles in the interval of integration.

𝑧 = 𝑒𝑖𝜃

Consider the following variable substitution:

𝑐𝑜𝑠𝜃 =
𝑧 + ҧ𝑧

2

Then we have:

𝑠𝑖𝑛𝜃 =
𝑧 − ҧ𝑧

2𝑖
Finally

න
0

2𝜋 

𝑅 𝑠𝑖𝑛𝜃, 𝑐𝑜𝑠𝜃 𝑑𝜃 = න
𝐶

𝑅
𝑧 − ҧ𝑧

2𝑖
,
𝑧 + ҧ𝑧

2

𝑑𝑧

𝑖𝑧

where C  is the unit circle.

Residue Theory and Calculation of Real Integrals

The goal of this section is to:
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Exercise 11: Compute the following:

න
0

2𝜋 𝑐𝑜𝑠2𝜃𝑑𝜃

1 − 2𝑎𝑐𝑜𝑠𝜃 +𝑎2
 − 1 < 𝑎 < 1

Exercises

න
0

2𝜋 𝑑𝜃

1 + 𝑎𝑠𝑖𝑛𝜃
 − 1 < 𝑎 < 1

Exercise 12:  Compute the following:
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