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Lecture 4

Poles and Zeros in Multivariable Systems

Topics to be covered include:

Multivariable Poles and Zeros and System Type

Direction of Poles and Zeros

Smith-McMillan Form

Matrix Fraction Description (MFD) and Smith-McMillan Form

Transmission Zero Assignment
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Lecture 4

Different system representation

X = AX + BU Y (s) =G(s)U (s)

y=Cx+Du Transfer matrix

State space model

CP(s) QGs)[é(s) ][O P(S)_{P@) Q(S)}
—R(s) W(s)]|-U(s)| [-Y(s). | =R(s) W(s)

Rosenbrock’s system matrix

Multivariable Poles and zeros? 3
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Lecture 4

Multivariable Poles (Through State Space Description )

X = AX+ Bu
State space model
y =Cx+ Du
Definition 4-1: The poles P; of a system with state-space description
(A, B, C and D)are eigenvalues 4 (A),i=1, 2, ..., n of the matrix A.

The pole polynomial or characteristic polynomial is defined as

#(s) =|sl — A

Thus the system'’s poles are the roots of the characteristic polynomial

¢(s)=|sl —A =0
Note that if A does not correspond to a minimal realization then the

poles by this definition will include the poles (eigenvalues)
corresponding to uncontrollable and/or unobservable states. "
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Lecture 4

Multivariable Poles (Through Rosenbrock’s System Matrix)

Rosenbrock’s system matrix P(s) —

- P(s)
—R(s)\ W(s)

Q(s)

Thus the system’s poles are the roots of the following polynomial

X = AXx+ Bu
y =Cx+ Du

#(s)=[sl —A =0

So they are compatible.

#(s) =|P(s)| =0

P(s) =

st = A B

Wiie. D

é(s) =|P(s)|=|sl - Al =0

S
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Lecture 4

Multivariable Poles (Through Transfer Function Description )

Transfer matrix Y(s)=G(s)U(s)
Theorem 4-1: Finding pole polynomials through transfer function

The pole polynomial ¢(s) corresponding to a minimal realization of

a system with transfer function G(s) Is the least common denominator
of all non-identically-zero minors of all orders of G(s).

A minor of a matrix is the determinant of the square matrix obtained by

deleting certain rows and/or columns of the matrix. (note that the
numerator and the denominator of each element must be prime ).

corresponding to a minimal realization of a system??
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Lecture 4

Multivariable Poles (Through Transfer Function Description )

Example 4-1

1 (s—=1)(s+2) 0 (s—1)°

) S D6+ 26-D| - (+1)6+2) (-DE+1  (-1(s+1)

The non-identically-zero minors of order 1 are
1 s—1 et
S+1 (s+1)(s+2) s—15+2 s+2

The non-identically-zero minor of order 2 are
2 1 —(s-1)
(s+D(s+2) (s+D(5+2) (s+1)(s+2)?

By considering all minors we find their least common denominator

o(s) = (s+1)(s+2)°(s - ,
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Lecture 4

Multivariable Poles

X = AX + Bu
y =Cx+ Du

3_

0 1 2 0 1 0 0 O
C: D:

1 1100 0 0O

1

Exercise 4-1: Consider the state space realization

(28 0.4 0 0 |
04 -22 O 0
-08 -16 -30 O
| /6 -08 0 10

(@ e SN D e (o
oSO P P DN

a- Find the poles of the system directly through state space form.

b- Find the transfer function of system (note that the numerator and the denominator
of each element must be prime ).

c- Find the poles of the system through its transfer function.

d- Compare poles from part “a” and “c”’ and explain the results.
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Lecture 4

Multivariable Zeros

Importance of multivariable zeros

« Dynamic response.

Stability of inverse system.

Blocking the inputs.

Not affected by feedback.

Closed loop poles are on the open loop zeros at high gain.

Stability analysis by inverse Nyquist
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Lecture 4

Multivariable Zeros

Different definition of multivariable zeros

» Element zeros.
» Decoupling zeros (input and output).
 Transmission zeros or blocking zeros.

e System zeros.

* |nvariant zeros.

10
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Lecture 4

Multivariable Zeros

Element zeros
They are not very important in MIMO design.

Decoupling zeros (input and output)

They are clearly subset of poles (which are the roots of [sI-A|=0).

Transmission zeros or blocking zeros

They are the zeros that block the output in special condition (Initial values and direction).

System zeros
{System zeros} = {Transmission zeros} + {i.d. zeros} + {0.d. zeros} - {i.0.d. zeros}

Invariant zeros

Invariant zeros=System zeros (In the case of square plant)
11
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Lecture 4

Multivariable Zeros (Through State Space Description )

i Laplace transform 0 |—-A B
i e
y =Cx + Du pa i Ly -C D

Rosenbrock system matrix

The invariant zeros are then the values of s=z for which the
Rosenbrock’s system matrix P(s) loses rank.

Let {A —B} [I o}
M = i
C -D 910 0

Then the zeros are found as non trivial solutions of

(21, —I\/I)B(Z}:o eig(M, Ig) If Mis square

Z

This is solved as a generalized eigenvalue problem. 12
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Lecture 4

Multivariable Zeros (Through State Space Description )

sl-A B
ke 1)

{System zeros} = {Transmission zeros}+ {i.d. zeros} + {0.d. zeros} - {i.0.d. zeros}

System zero Rosenbrock system matrix  P(s) :{

Input decoupling zeros (i.d.z.)

The value of sthat [sl — A B]losses rank. Output decoupiing zeros
AL
- ™
Output decoupling zeros (0.d.z.) input decoupling 76108
A
The value of sthat| ° |1 K ! “
e value of sthat | osses rank. ] swa T 0 [ "
Invariant zeros
A e
Invariant zerosare those values of s that result . )
i h'd

p(P(s))<min(n+ p(B),n+p(C)) 1-4)"
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Lecture 4

Multivariable Zeros (Through State Space Description )

Element zeros

G(s)=

y:

Transmission zeros or blocking zeros

System zeros and invariant zeros

-1
0
0

0

1

5+1
1

5+1

Decoupling zeros (input and output)
0

_

5+3
1

5+1 |

0 O
-2 0
0 -3
0 O

_:1 0 1 Ofx+5u

— No Element Zero

0
0
—4

X+

1

1
0
0

5-1 2

s7+1 s +3
GEs)= 1 5+1

(s +3)

= Flement Zeros at s = +1

5+1

(s+2)(s+3)(s+4)
(s+1D)(s+2)(s+3)(s+4)

s= -2 and -4 are output decoupling zero (0.d.z)
s=-3 and -4 are input decoupling zero (i.d.z)

+5:M

9(8)= s+1

s= -4 is input-output decoupling zero (i.0.d.z)

s=-6/5 is transmission or blocking zero

s=-6/5, s=-2, s=-3 and s=-4 are system zero(invariant zeros) 14
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Lecture 4

Multivariable Zeros (Through State Space Description )

Let g A
5 0 0 0 0 s+5 O 0 :0
(= _ 0 s+2 0 ‘0 1
X 0 2 0 |x+/0 1 G(s) = 2s+8 —s—4 P(s) = :
0 0 -3 2 -1 s+3  s+3 o 0 s+3:2 -1
y=[1 0 1x+[2 -1l -1 0 112 -1]

Element zeros
s=-4, -4

Decoupling zeros (input and output)
s= -2 is output decoupling zero (0.d.z)

s= -5 Is input decoupling zero (i.d.z)
Transmission zeros or blocking zeros

: s= -4 Is transmission or blocking zero
Invariant zeros

s= -4, s=-5 are Iinvariant zeros.

System zeros 1

5= _4’ S:_51 S:_Z are SyStem Zero%r. Ali Karimpour Mar 2022



Lecture 4

Multivariable Zeros (Through State Space Description )

Meaning of invariant zero? -5 0 0] [0 0]
x={0 -2 0 (x+|/0 1 |u
0 0 -3 |2 -1
y=[ 0 1x+[2 -1ju

s= -4, s=-5 are Invariant zeros.

s= -4, s=-5, s=-2 are system zeros.

3 :[kn K. k”]
k21 I‘(22 k23
-5 0 0] [0 0] 0 0
x=[| 0 -2 0 |-[0 1 |K|[x+[0 1]|r
0 0 -3] |2 -1 2 -1
y=( 0 1]-[2 —-1]K)x+[2 —1]r

Derive invariant zeros of new system and compare it with old one!?

Derive system zeros of new system and compare it with old one!? =~ -2 ?7?7?

16
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Lecture 4

Multivariable Zeros (Through State Space Description )

Generally we have:

{System zeros} = {Transmission zeros} + {i.d. zeros}+ {0.d. zeros} - {i.0.d. zeros}

{Transmission zeros} c {Invariant zeros} c {System zeros}

System zeros
Invariant zero

Decoupling zeros

Transmission zeros

For square systems with m=p inputs and outputs and n states, limits on the number
of transmission zeros are: -y - 0= At most n—m+ rank(D) zeros

D =0: At most n—2m + rank(CB) zeros
D =0 and rank(CB) = m: Exactly n—m zeros
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Lecture 4

Multivariable Zeros (Through State Space Description )

Example 4-2: Consider the state space realization

il 0
P=101 0
gie 6 - o
PO 10
[A —B} Q=074 (4.0
M = AL
EPID 0 26 5 —1
150

D = 0: At most n—m+ rank(D) zeros
D =0: At most n—2m+ rank(CB) zeros
D =0 and rank(CB) = m: Exactly n—m zeros

G

0_

B—

T 1
o O O B+

C=410]

() W@ )]

o r O O

LCI'(DCD(DI

Number of zeros<3-2-1+0=1

X = AX + Bu
y =Cx+ Du

D=0

18
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Lecture 4

Multivariable Zeros (Through State Space Description )

Exercise 4-2: Consider the state space realization

2 05 SR 0
X={0 -1 0 |x+|1u
e 22T e T R
a- Is this system controllable? -1 1 0 0
T X+| _|u
0 -2 -1 0

b- Is It observable?
c- Findi.d.zand o.d.z and 1.0.d.z.

d- Is there an input decoupling zero which is not an invariant zero? Why?

e- Find a maximum value for the number of transmission zeros of
the system. 19
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Lecture 4

Multivariable Zeros (Through Transfer Function Description )

Which kind of zeros can be derived from G(s)?
* Element zeros * Transmission zeros or blocking zeros
Definition 4-2
Z; 1S a zero (transmission zero) of G(s) If the rank of G(z;) Is less than
the normal rank of G(s). The zero polynomial is defined as
2(s) =115 (s - 7)

Where n, is the number of finite zeros (transmission zero) of G(s).

20
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Lecture 4

Multivariable Zeros (Through Transfer Function Description )

Theorem 4-2
The zero polynomial z(s) corresponding to a minimal realization of the
system Is the greatest common divisor of all the numerators of all
order-r minors of G(s) where r is the normal rank of provided that
these minors have been adjusted in such a way that they have the pole

polynomial ¢(s) as their denominators.

corresponding to a minimal realization of a system??
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Lecture 4

Multivariable Zeros (Through Transfer Function Description )

Example 4-3

1 (s—1)(s+2) 0 (s —1)°

G(S):(s+1)(s+2)(s—1) —(s+D(s+2) (s-D(s+1) (s-D1(s+I

according to example 4-1 the pole polynomial is:

o(s) =(s+1)(s+2)*(s -1
The minors of order 2 with @¢(S) as their denominators are
2(s=1)(s+2) (s—=1)(s+2) AT
(s+1D(s+2)%(s-1) (s+D(s+2)*(s-1) (s+D(s+2)*(s-1)

The greatest common divisor of all the numerators of all order-2 minors is

Z(s)=s-1
Remark: See rank of G(s) at z=1.

22
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Lecture 4

Multivariable Zeros

X = AX + Bu
y =Cx+ Du

3_

0 1 2 0 1 0 0 O
C: D:

1 1100 0 0O

1

Exercise 4-3: Consider the state space realization

(28 0.4 0 0 |
04 -22 O 0
-08 -16 -30 O
| /6 -08 0 10

(@ e SN D e (o
oSO P P DN

a- Find the transmission zeros of the system directly through state space form.

b- Find the transfer function of system ( note that the numerator and the denominator
of each element must be prime ).

c- Find the transmission zeros of the system through its transfer function.
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Lecture 4

System type in SISO systems

Consider a transfer function g(s) and shows it in following form.

1
g(s) = ;91(5)

Where [ is the largest integer number such that g, (s) has no zero at 0.

In this condition [ is the type of g(s) and its meaning is shown in

following figure.

4 N

At steady-state
if . e()=0 At steady-state

- —0 g(s) T y(t) = r(t)
r(t)=zi:0ait‘ I

\ e
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Lecture 4

System type in MIMO systems

Consider a transfer matrix G(s) and shows it in following form.

: _
sl i 0
s e AR
cs)=|Y 5 G1(s)
g 4 1
0.0 0 —
B stm.

Where {l;, l,, ..., L.,,} Is the largest integer number such that G;(s) has

no zero at 0.

In this condition {l4, [,, ..., L,,,;} is the type of G(s) and its meaning is
shown In the next slide.

25
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Lecture 4

System type in MIMO systems

Example 4-4: Derive type of following system and explain it by simulation. [ 1 =
s+1
Solution: We rewrite G(s) as: s < s+3 s(s+2)]
_[1 0 ]fs+1
)= [0 1/s] s 1
S i seN B A

Step Respon

From: In{1) From: In(2)

So {0, 1} is the type

of G(s) and now:

Tor Cut(1)

Step to input two:

Amplitude

To: Cut(2)
o] ]

27
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Lecture 4

Poles and Zeros in Multivariable Systems

Topics to be covered include:

Multivariable Poles and Zeros and System Type

Direction of Poles and Zeros

Smith-McMillan Form

Matrix Fraction Description (MFD) and Smith-McMillan Form

Transmission zero assignment

28
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Lecture 4

Directions of Poles and Zeros

Zero directions:
Let G(s) have a zero at s = z, Then G(s) losses rank at s = z and
there will exist nonzero vectors u, and Y, such that

G(z)u, =0 yI'G(z) =0

U, IS input zero direction and y, Is output zero direction

We usually normalize the direction vectors to have unit norm

o], =1 v.], =2
29
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Lecture 4

Directions of Poles and Zeros

Pole directions:

Let G(s) have a pole at s = p. Then G(p) Is infinite and we may

somewhat crudely write

G(pu, =0 Yy G(p)=c

u, Is input pole direction and y, Is output pole direction

At = pt, q, A= pq,

p

e _ pH
Yo _Ctp 7 B 90 30
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Lecture 4

Directions of Poles and Zeros

Example4-5: i {3_1 A }
G(s)=——

s+2|45 2(s-1)

It hasazeroatz=4andapoleatp=-2.

1[ 2 4] [0588 -0809][1475 0 70653 0.757 ]"
G(3,)=G(3) == =
5145 4| [0809 0588| 0 0271]0.757 -0.653

1] 3 4 0.55 150 0]0.6
G(z)=G(4)=— =
6145 6 0.83 0 0]038
Now let the input as: Output zero direction Input zero direction
=087 15171 4 =08]eh 1 [-08
t) = 2 IRy, £
"= 06 }e A s+2{4.5 2(3—1)}{ 0.6 }3—4 s+2{ 1.2}
y(t) = _102'8(_9;} which does not contain any component of the input signal e*
L e Dr. Ali Karimpour Mar 2022




Lecture 4

Directions of Poles and Zeros

— — — — — — R—

Example4-6:
G(S):__l_{s—l 4 }
s+2|45 2(s-1)

It hasazeroatz=4andapoleatp =-2. G(p)=(3(—2)={OO OO}
oo O

27?11
N s e Let f le £=0.001
&)= f E)=— et TOor exampile & =0VU.
; s o e Bt s

0.83(9010 O
0 0.00

Output pole direction Input pole direction 32
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Lecture 4

One Property of Zero Direction

System zero WL e
-C D
The value of s that P(s) losses rank. Rosenbrock system matrix

Thus we have a zero at s=z:

z —A B [ Xz ]
= 0
P e —u,] *
Now show that the output of following system is zero for all t
X = AX+ Bu
y =Cx + Du e y(t)=0, forall t>=0

X(0)=x,, u(t)=ue"

33
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Lecture 4

Minimality

A state space system (A, B, C and D) is minimal if it is a system with
the least number of states giving its transfer function.

If there Is another system (A, B;, C; and D,) with fewer states having
the same transfer function, the given system is not minimal.

For SISO systems, a system is minimal if and only if the transfer

function numerator polynomial and denominator polynomial have
No common roots.

For MV systems one must use the definition of MV zeros.

Theorem4-3 . Asystem (A, B, C and D) is minimal if and only if
It has no input decoupling zeros and no output decoupling zeros.

34
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Lecture 4

Poles and Zeros in Multivariable Systems

Topics to be covered include:

Multivariable Poles and Zeros and System Type

Direction of Poles and Zeros

Smith-McMillan Form

Matrix Fraction Description (MFD) and Smith-McMillan Form

Transmission zero assignment

35
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Lecture 4

Smith Form of a Polynomial Matrix

—

Suppose that I'I(s) is a polynomial matrix.

Smith form of TI(s) Is denoted by TT_(s) , and it Is a pseudo diagonal
In the following form

Where T1,(s) =diag{, (s),Z, (S) ..., (5)]

r

Ai
Xia

g(s) isafactorof £ ,(s) and &(S)=

36
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Lecture 4

Smith Form of a Polynomial Matrix

Where TI,(s) = diagig, (5),2, (5) 12, (5)]
g;(s) isafactorof & _,(s) and 5‘i(5)=;%i

X0 =1
7. = gcd {all monic minors of degree 1}
%> = gcd {all monic minors of degree 2}

%, = gcd {all monic minors of degree r}

37
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Lecture 4

Smith Form of a Polynomial Matrix

The three elementary operations for a polynomial matrix are used
to find Smith form.

« Multiplying a row or column by a non-zero constant;
» Interchanging two rows or two columns; and

 Adding a non-zero polynomial multiple of a row or column to
another row or column.

IT,(8) = L (8- L () LU STIG)R (SR, (8) R,y (5)

I1,(s) = L(S)II(S)R(s)

38
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Lecture 4

Smith Form of a Polynomial Matrix

Example 4-7

4 —(5+2)]
T1(s) =
5) 2(s+2) A
£ 2
7 =1 Y, =0cd{l,s+2,s+2,1}=1

7, =0co{s® +4s+3}= (s +1)(s +3)

gy =2L=1 £(B)=22=(5+D(5+3)
X0 A1

1 0
I1,(s) =
0 (s+1)(s+3)
Exercise 4-4: Derive R(s) and L(s) that convert I1(s)to I1(s) 39
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Lecture 4

Smith Mc-Millan Form of a Transfer Function Matrix

Theorem 4-4 (Smith-McMillan form)
Let G(s)=[0;(S)] be an m xp matrix transfer function, where 9 (S)

are rational scalar transfer functions, G(s) can be represented by:

G(s) = %H(s)

Where 71(s) I1s an mx p polynomial matrix of rank r and d(s) is the least

common multiple of the denominators of all elements of G(s) .

Then, G(s)is Smith McMillan form of G(s) and can be derived directly by

Gla) o (oy 2 2| e 0) P
d(S) d(S) 0 0 0 0 .
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Lecture 4

Smith Mc-Millan Form of a Transfer Function Matrix

Theorem 4-4 (Smith-McMillan form)

1 e _ 1 |II(s) O] [M(s) O
G(S)Zd—(SSH(S) G(S)—@HS(S)—C‘(S){ 0 O}_{ 0 O}

M (s) = diag %) 5 0) £ ()
Rt 36

G(s) = L(5)G(S)R(S) G(s) = L(5)G(s)R(S)

The matrices E(s) , L(s) , ﬁ(s) and R(s) are unimodular and

L(s)=L(s)" , R(s)=R(s)™
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Lecture 4

Smith Mc-Millan Form of a Transfer Function Matrix

Example 4-8
7 / 5 i
G(s) = (s+1) 2(s +2) (s_+11)
(s+1) 2(s+1)(s +2) |

4 —(s+2)

G(s) =LH(S) ) I1(s) :{2(3+2) —-0.5

1(s) } d(s)=(s+1D(s+2)

s 0
S(S){o (s+1)(s+3)}

1
sy A _| (s+1)(s+2)
SORFruN0 O i
S+2 | T
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Lecture 4

Smith Mc-Millan Form of a Transfer Function Matrix

Example 4-9

1
[(s)=|s*+s—4 2s°—-s-8

| s°-4

1 0
I1,(s)=|0 3(s*-4)

0 0

1

G(S):@H(S):—

G(s) =

-1

252 -8

1

d(s)

d(s)

[1(s)

1_[4 (S) = Hs (S) =

Hs (S) - L2 (S) L1 (S)H(S) R3 (S) R4 (S)

1 -1
— 11 5 s°+s—4 2s°—s-8
(s+D)(s+ )_ ?_4 252 _g
1 -1 ] 1
I1,(s)=|0 3(s*-4) I1,(s)=|0
0 3(s2-4) 0
(1 0
0 (s*-4)

L(s)I1,(s)R(s) = L(s)G(s)R(s)

1~
(s+1)(5+2)

G(s) = 0 ‘Z‘Ti
0 0

Dr. Ali Karimpour M;r 2022



Lecture 4

Poles and Zeros in Multivariable Systems

Topics to be covered include:

Multivariable Poles and Zeros and System Type

Direction of Poles and Zeros

Smith-McMillan Form

Matrix Fraction Description (MFD) and Smith-McMillan Form

Transmission zero assignment

44
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Lecture 4

Matrix Fraction Description (MFD)

Matrix Fraction Description for Transfer Matrix

1
G(s) = @ N (s) Suppose G is an pxq matrix so

GEsyEAdisil [ N(s)= DSIN () 7 0 e P

G(s) =N (S)(d (S) | ] yl e NR (S) DI;1 (S) Right I\/Iatrix(;rl\z;céi[());] Description

But this forms are not irreducible.

Irreducible RMFD and LMFD can be derived directly through SMM

form.
45
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Matrix Fraction Description Lecture 4
&
Smith-McMillan form

Let G(s) iSa mxm matrix and its the Smith McMillan is G(s)

et define: N(s)idiag(gl(s),...,gr(s),O,...,O) D(s)idiag(él(s),...,5r(s),1,...,1)

G(s)=N(@s)D(s)* or  G(s)=D(s)N(s)
We know that

G(s) = L(s)G(S)R(s) =L(s)N(5)D(s)*R(5) =L(s)N(S)(R(S)D(S))" =Ng(s)Dy(s)™

G(s)=L(5)G(S)R(s) =L(s)D(s)*N(s)R(s) =(D(s)L(s))"N(S)R(s) =D, (s)*N,(s)
It Is easy to see that when a RMFD is irreducible, then

* s=2z Isatransmission zeroof G(s) if and only if N _(s) or N.(s) losses rank at s=z

* S=p isapoleof G(s) if and only if D, (s) or D, (s)issingular at s=p
This means that the pole polynomial of G(s)is p(s) = det(G(s))

46
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Example 4-10

Matrix Fraction Description
&
Smith-McMillan form

G(s) = L(s)G(s)R(s) =

1 0 01 o
it | 0 s—Z{
s’ —4 1 07570

Lecture 4

1 -1
(s+D(s+2) (s+D(s+2)
G(s) = s’ +s—4 2s’ —s-8
| +D)GE+2) (5+D)(s+2)
S—2 2s—4
(s+1) (s+1)
¢ ; .
5 A 0 0Ol (s+1(s+2)
s LA 10 0 E[l
iy S s+10
L O O_
& 1 0 |
(s+2)és+1) 3(11} E) _?j: s°+s—4 s-2
s°—4 s-2]
RMED: [N, (s)

(s+2)(s+1)

0

=
s+1

s+1

3

Dy (s)

DI Al
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Example 4-10

G(s) = L(s)G(s)R(s) =

s?+s—4 1 0
| s* -4

0
0

e

Matrix Fraction Description

G(s) =

L0 0 s+ T menand (10
s+1 0| |0 s-2
0

1

Lecture 4

&
Smith-McMillan form
1 -1 7
(s+D(s+2) (s+D(s+2)
G | 2s? —s5-8
(s+D(s+2) (s+D(s+2)
S—2 2s—4
(s+1) (s+1)
¢ : 3
0 o] G+D+2)
o Bl M e 1
0 sy Ll
s+1]0 3}
e
L O O —
S s+ DD w0y ol =1
{O _3}= (s+1)(4-s°—s) s+1 O 0 3(s-2)
0O O g S -1 1_ 0 0
LMFD DL(S) NL(S)48
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Lecture 4

Poles and Zeros in Multivariable Systems

Topics to be covered include:

Multivariable Poles and Zeros and System Type

Direction of Poles and Zeros

Smith-McMillan Form

Matrix Fraction Description (MFD) and Smith-McMillan Form

Transmission zero assignment

49
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Transmission zero assignment

. — Ay 4B
Pole assignment G(s) { X = Ax+Bu
= CX
State feedback
U=r—KXx
New system

X = (A-BK)x + Br
G (s)
S y:Cx

When can one assign the poles in arbitrary place?

Transmission zero assignment?

50
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Lecture 4

Transmission zero assignment

— — — — R—

Zeros position depends on the location of sensors and actuators.

Changing zero position can affect the output response.

Theorem4-5: Transmission zeros cannot be assigned by state feedback.

'sl-A B
Proof Systemisdefinedby  P(s) = }
s, P dEp)
. . 'sI-A+BK B
System with feedbackis: P, (s)= e
—C+

sl-A+BK B]| [sI-A BJI 0 | 0
"0 ok ol e olx 1Pk 1
~-C+DK D -C DK 1 K |
PP ()= p(P(s))
Theorem4-6: Transmission zeros cannot be assigned by output feedback.

Dr. Ali Karimpour Mar 2022



Lecture 4

Transmission zero assignment

What about following structures?

X = AX + Bu w=Fw+GU " -
G K(s —K(s)—>{ G(s) |—>
(S){y_—(lx (){U——HW—I—DG )

Theorem4-7: Transmission zeros cannot be assigned by series compensation.

sI-F 0 G |
P(s)=| -BH sI-A BD P.(s)|=|P(s)|P'(s)
i 0 —-C 0 |
_l 0 O__SI -F 0 G_ {Znew}: {Zsystem }U {Zcontroller}

-0 siI—.A B| 0 I 0
0 -C 0| -H 0 D

52
Dr. Ali Karimpour Mar 2022



Lecture 4

Transmission zero assignment

What about following structures?

r* i G(s) y >
X=AXx+B(r—u W=Fw+QGy L
G(s) { ke { UE‘K(A‘)u—

u=Hw+ Dy

y =CX

Theorem4-8: Transmission zeros cannot be assigned by dynamic feedback.

SI-F ~GC 0
P.(s)=| BH sI-A+BDC B
0 —C 0 |
SI-F 0 GJI 0 0

=| BH |
0 0

BD|O sI-A B

0O -C O

P, (s)|=sI — F||P(s)

{Znew }: {pcontroller }U {Zsystem }
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Lecture 4

Transmission zero assignment

——s{ K (s) ——]
u ' y

Basic idea! > €L8) #)-
Let;

A method to assign transmission zero.

G(S) :E
S+1

Clearly there Is one pole at s= -1 and one transmission zero at s= -2.
Now let:

K(s)=k G (s)=3t2 k= (KHDs+2+k
s+1 S+1

Where is the pole and transmission zero of new system?
o4
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Lecture 4

Transmission zero assignment

A method to assign transmission zero. —ulmis)

By

i 1 G(s) ——rO—»
Let G Is a square matrix with m inputs and m outputs.

In the case of 2m>n a static controller (K(s)=K) can help.
Otherwise, a dynamic controller can help.

X = AX+ Bu X=AXx+ Bu
G(s) G(s)+K

y, =Cx+ Du y=Cx+(K+D)u

If K+D is nonsingular( K assigned by designer)
. |2=(A-B(K+D)'C)z+B(K+D)"
u=—(K+D)Cz+(K+D)'y
Now assign poles of inverse system by suitable K.
95

This is simply an output feedback for ?? Sl e




Lecture 4

Transmission zero assignment

Example 4-11: Suppose we want to assign transmission
zeros of following system at roots of (s+2)(s?+3s+4)

\
~
—_
]
-

u

1 ? :(J(S)—:_PO—D
_|s+1 s+3
G(s) = 1 1
| S+1 s+1]
s=1 Is transmission zero of system. State space of system Is:
(1 -8 -8 (0 O]
0 1 2
A=|1 -5 -4 B:—loc{ }
0 0 1
0 0 -1] 1 1]
Now try to assign poles of:
A-B(K +D)*C
ANSwer ISs: o -1
|11

56
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Lecture 4

Transmission zero assignment

—— K(s) j
u j Y

Let G Is a square matrix with m inputs and m outputs.
In the case of 2m < n a dynamic controller can help.

(X = Ax+Bu Tx1 TA 0oTx] B
G(s) - = +
LY, =Cx+Du Augmented||2| |0 F|z| |G
<
(2=Fz+Gu =

K(s); y=[C H]{

A method to assign transmission zero.

X

|y, =Hz+Eu Z

} +(E+D)u
We want to assign transmission zeros ??

Now assign poles of inverse system by suitable F,G,H and E.

Try that E+D is nonsingular( E assigned by designer). 57
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Lecture 4

Transmission zero assignment

A method to assign transmission ([x] [A 0]x N B |
Zero. G(s)+K(s)||z] |0 Flz| |G
<
= X
If E+D is nonsingular( E assigned y=[C H ]{ }+ (E +D)u
by designer) \ .

Now assign poles of inverse system by suitable F,G,H and E.

BAE A0 |8 (E+D)'[C H]w+ B (E+D)"y
(G(s)+K)" ; 0 F| |G G
lu=—(E+D)'[C H]w+(E+D)'y

Now try to assign poles of following matrix by suitable F,G,H and E.

{A O}—{B}(E +D)*[C H]

0 F G
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Lecture 4

Transmission zero assignment

A method to assign transmission zero.

Now try to assign poles of following by suitable F,G,H and E.

We have: {g 'S}E}(E+D)1[C H]
B 2}{2}@%)1[6 H]

[A 0] [B O] (E+D)* (E+D)'H JC 0
{o o}{o I}{G(EJFD)l —F+G(E+D)1H}{O J

This is simply an output feedback for ?? 2
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Lecture 4

Transmission zero assignment

Example 4-12: Suppose we want to assign J<6)
transmission zeros of following system at -1, -4 and -5 l
— . > G(s) - g
G(s) = s+1 =
S°+55+6

s=1 Is transmission zeros of system. State space of system is:

A{—OG _15} B:MC:[l -1 D=0

2=2 s0 we need dynamic compensation with r = 1, so, try to assign poles of:

0 1 0 00 { _1 o] | E+D)’ (E+D)*H [-10
A=|-6 -5 0| B=|1 0 é:{o 0 J G(E+D)* —-F+G(E+D)'H| |10 4
0 0 O 01

- SR . E=-1 H=0

e G=-10 F=-4 .
=Hz+ Eu =-U -
yk ChECk flnal SyStemI I?? Dr. Ali Karimpour Mar 2022



Lecture 4

Transmission zero assignment

Exercise 4-6: Suppose we want to assign transmission k)
zeros of following system at -0.5, -1, -1.5, -2 and -2.5 l
(Arbitrary) 66 —O—~
5s* —9s-5
G(s)=

S —8s"+14s-5

For zero assignment procedure see following papers.

A. Khaki Sedigh “Transmission zero assignment for linear
Multivariable plans” 10t IASTED International Symposium, 1991.

R.V Patel and P. Misra “Transmission zero assignment in linear
multivariable systems” ACC/WM5 1992. 61
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Lecture 4

Exercises

Exercise 4-1 till 4-6: Mentioned in the lecture.

Exercise 4-7: Consider following system. (Arbitrary) 1 3 -1 1
a) Find the SMM form of the system. X= _32 cl) ; X 8 y
b) Find the pole and zero polynomial of the system. -

c¢) Find the RMFD and LMFD of the system. y=[1 0 Ok

Exercise 4-8: Consider following transfer function.

-

w v
|+
NN

G(s) =

wn
+
D

a) Find the SMM form of the system system.
b) Find the pole and zero polynomial of the system. 2
c) Find the RMFD and LMFD of the system. T
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Lecture 4

Exercises(Continue)

Exercise 4-9: Consider following transfer function.

1 S+2
s+2 s+4
G(s) = s—2 s+1
s+4 s-3
a) Find the SMM form of the system. 3 4
b) Find the pole and zero polynomial of the system. | S+2 251
c) Findthe RMFD and LMFD of the system.
Exercise 4-10: Find the T s+3 1 R 1 7
degree and the characteristic .| G+D? s+2 s+5 b [E+DT (s +2(+D)
polynomials of the following | ! s+1 1 N 1
proper rational matrices. [(s+3)* s+4 s | | 5+2  (s+2)(s+1)

Exercise 4-11: Assign the zeros of following system on -2 and -4.(Final)

o 5
_|s+1 s+3

SO=T T
Ans: K=diag(0.5,4). | S+1 i
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Lecture 4
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