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Introduction

The dynamic average consensus problem: The multi-agent
network collectively compute the average of the set of time-
varying signals.

This problem arises in scenarios with multiple agents, where each one
has access to a time-varying signal of interest(for example, a distributed

energy resource taking a sequence of frequency measurements in a
micro-grid).
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Introduction

Different type of the dynamic average consensus problem:

 Centralized

In this approach all of the information gather in a single place(agent), perform the
computation (in other words, calculate the average), and then send the solution
back through the network to each agent.

* Flooding

In this approach, every agent act as the centralized agent.

 Distributed

3)
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Introduction

Different type of the dynamic average consensus problem:

« Centralized
1) The algorithm is not robust to failures of the centralized agent
2) The method is not scalable

3) Each agent must have a unique identifier
4) The calculated average is delayed by an amount that grows with the network size

5) The reference signals from each agent are exposed over the entire network
(which is unacceptable in applications involving sensitive data).

 Flooding

1) All centralized drawback except number 1.

e Distributed

1) Hard to derive. :
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Averaging Consensus

Different type of the average consensus problem:
1) Static Average Consensus

Agents seek to agree on a specific combination of fixed quantities.

Several simple and efficient distributed algorithms with exact
convergence guarantees (see Lectures on Network Systems Francesco Bullo)

2) Dynamic Average Consensus
Agents seek to agree on a specific combination of variable quantities.

If there Is a static average consensus algorithm that is able to converge
Infinitely fast then we can use static average consensus.

Solving this problem is challenging because the local interactions
among agents involve only partial information, and the quantity that the
network seeks to compute is changing as the agents run their routines.
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Challenges with Dynamic Problem

Example: Consider a group of six agents with the communication topology of a
directed ring which each process described by a fixed value plus a sine wave whose

frequency and phase are changing randomly over time. w~N(0,0.25), p~N (0, (g)z)
u;(m) = 1.1(2 + sin(w(m)t(m) + (p(m))) — 0.55

u,(m) = 1(2 + sin(w(m)t(m) + <p(m))) +1 ( E g )
usz(m) = 0.9(2 + sin(w(m)t(m) + <p(m))) + 0.6 %/ M
u,(m) = 1.05(2 + sin(a)(m)t(m) + <p(m))) — 0.9

us(m) = 0.96(2 + sin(w(m)t(m) + p(m))) — 0.6 %&%
ug(m) = 1(2 + sin(a)(m)t(m) + go(m))) + 0.4

Each agent measure the process according to every 2 sec.

To obtain the average, the following two approaches are used:

1- The standard static discrete-time Laplacian average consensus algorithm.
xi(k + 1) = x;(k) — 6 X7 a;(x; (k) — x;(k)) T A
2- The dynamic average consensus algorithm [more specifically, strategy g815
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Challenges with Dynamic Problem
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Dynamic Average Consensus Problem Formulation

Different type

1- Dynamic average consensus in discrete time

of dynamic — 2- Dynamic average consensus in continues time

averaging problems

——

3- Dynamic average consensus in continues time-discrete time

1- Dynamic average consensus in discrete time
x'(tks1) = © (I (x), U (t)} jenin), 1€ (1,...,N},

Driving command

Self variables of ith agent

Out-neighbors variables of ith agent

such that x'(t) — u®8(k) as tx — oc.
Input: J'(k) and {I (k)} jc n'

Output: x'(k+1),J'(k+1),and I'(k+ 1)
Step 1. X'(k+1) —c'(J (te), {I (te)} jen')
Step 2. Generate J'(k+1)and /'(k + 1)
Step 3. Broadcast /'(k+ 1)
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Dynamic Average Consensus Problem Formulation

2- Dynamic average consensus in continuous time

II — f.j(]j(f),« [F(f)l_iEh’:mt)r ! & {-lr ---ri\'r:r

Driving command‘

Self variables of ith agent

Out-neighbors variables of ith agent

such that x'(#) — U*8(t) as t — oo.

3- Dynamic average consensus in continuous time-discrete time

(1) =), () jeain), i€(L,...,N},

Driving command

Self variables of ith agent

Out-neighbors variables of ith agent

such that x'(f) — u®™%(t) as t — oc.
13
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Dynamic Average Consensus Problem Formulation

Desirable properties of
dynamic average consensus

—

« Scalability, the amount of computations and
resources required on each agent does not grow with
the network size of network.

* Robustness, to the disturbances present in
practical scenarios, such as communication delays
and packet drops, agents entering/leaving the
network, initial condition, and noisy
measurements

 Correctness, meaning the algorithm converges to
the exact average or, alternatively, a formal
guarantee can be given about the distance between
the estimate and the exact average.

14
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Application of Dynamic Average Consensus in Network Systems

o Distributed Formation Control:
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Application of Dynamic Average Consensus in Network Systems

o Distributed State Estimation
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Application of Dynamic Average Consensus in Network Systems

o Distributed Resource Allocation
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Dynamic Average Consensus in Network Systems

Consensus algorithms to solve the static average consensus problem

« Static average consensus problem in continuous time Is:

N

x(t) = — z al-,-(xi(t) 7 xj(t))

Jj=1
! 77

x(t) = —Lx(t) = x(t) —x(0) = —j Lx(t)dt
0

Q—»

1
s'N

x(0)

j > x(1)

L |«

« Static average consensus problem in discrete time is:

N
Xi(k +1) = xi() = ) ay(xi00) — I (k)
j=1

ﬂ >
x(k+1)=U-=-L)x(k)

.

@,

A

T_) )
Xo
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Dynamic Average Consensus in Network Systems

Theorem 1: Convergence guarantees of the continuous and discrete-time
(static average consensus)

Suppose that the communication graph is a constant, strongly connected,
and weight-balanced digraph and that the reference signal x(0)=u at each

agent iIs a constant scalar. Then

Continuous time: As t >0, every state x; (t) of the static average consenst
algorithm converges to u,,, with an exponential rate no worse than the

smallest nonzero eigenvalue of Sym(L).

Discrete time: As k o0, every state , xi(k) of the static average
consensus algorithm converges to u,,, with an exponential rate no worse
than pe(0,1), provided that the Laplacian matrix satisfies

p=|In—L—-1n15/N|, < 1. i
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Dynamic Average Consensus in Network Systems

Consensus algorithms to solve the dynamic average consensus problem

e Static average consensus
problem in continuous time Is:

» Dynamic average consensus
problem in continuous time is:

x(t) = —=Lx(t) + u(t)

; 1§

—> X(1)

u(t) —>Q—)

> X(1)




Dynamic Average Consensus in Network Systems

Dynamic average consensus problem

u(t)—>Q—> Ty ﬁ > X(1)

x(t) = =Lx(t) + u(t) x(0)

So for every agent we have: L |
2(0) = - T, ay (10 =X/ (©) +2(©) (11a)
x1(0) = u'(0) (11b)
Let define:  ei(t) = x'(t) — u9(t)

'él‘ e s e - 'el‘ 'ul‘

é2 i AT (SIS 82 1 uZ

G e A s e 23
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Dynamic Average Consensus in Network Systems

Dynamic average consensus problem ., _,9_, 1E Iy > X(1)
Let define: e (t) = x‘(t) uvd (t) -
'él' TV = . -81- ul_ x(0)
é’ = e’ + w L |«
(€1 0 O 2 R | |17 Bt
Define a new transformation e=TTe

Where T = [\/iﬁ 1y R] such that T is unitary (TT.T=I)

-2 T 1r 27 7 / .
e 8 0 O O e O e1=0, @éi(fe)=—"— F Z x/(to) —U’(to)),
62| — e?| + R |u”
& O o N ezv=—R'LRean+R"U, exn(to) = R"x(to),
e | 0 < 2 (R (W=
5 2 24
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Dynamic Average Consensus in Network Systems

Dynamic average consensus problem ., O— L . x(1)
Define a new transformation e=Te )

e1=0, ei(to) = Z (x/(to) —U/(to)),

€N :—RTLRéz;N+RTU, exn(to) = RTX(f{))

The tracking error of each agent over a strongly connected and
weight-balanced digraph is

2

] supro<c<: | Ia(7)| ’ Z u'(to))
' ()] < Ylean(I* +|er ()| < (e"‘z(’“’)||ﬂx(to)||+ P*‘”/{z )+ - |

Where A, is the smallest non-zero eigenvalue of Sym(L) = % (L + L") and

=(In—(1/N)1n1n) 25
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Dynamic Average Consensus in Network Systems

The tracking error of each agent over a strongly connected and weight-balanced digraph is

2. (x/(to) — u/(to))

N
: 2
' - - —Aa(t— 0<T< HU(T)” =1
i\ < _ 2 2 < ( hat=to) SUPto=z=t | ) (r )
' (B)] < Vlen (I +[e1 ()] \/e T (t0) | + i + ~N )

A, is the smallest non-zero eigenvalue of Sym(L) = %(L + LNy andIT=(In— (1/N)1n1n)

2

« First, it highlights the importance of the special initialization

 Perfect asymptotic tracking for reference input signals with decaying rate.

 Perfect asymptotic tracking for unbounded reference signals whose
uncommon parts asymptotically converge to a constant value.

_ H(IN e Lt [CTOF DR 1) ‘ = H(IN — 7 Iv1h ) ‘

« Finally, the tracking error bound shows that as long as the uncommon part
of the reference signals has a bounded rate, then system tracks the average
with some bounded error. .

Ali Karimpour Aug 2024
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Dynamic Average Consensus in Network Systems

xi(t) = =X, ay (Xi(t) % Xj(t)) + U (8) (11a) | x(0)
x(0) = u'(0) (11b) 0,

z

. 2 [ 20 (x/(to) — u/(to))
|€j(t)| = ‘w./"éZ:i\J(f)"2 + e (f)|2 < \/(eiz“’“” TIX (to)] + SUP“,gfg/{" Mua(7)| ) n ( j=1 ) ’
2

N (14)

Theorem 2:

(Convergence of above system over a Strongly connected and weight-balanced digraph)
Let G be a strongly connected and weight-balanced digraph. If T} x/(to) = Z 2, u/(to)
then the trajectories of system are then bounded and satisfy

}igg|x‘(ﬂ— U™e(t)| = YE{?), ie{l,..., N}, f;ﬁﬁ}lj (.'IN —%lwllﬁ] u(z) || =y(f) <ce.

The smallest nonzero eigenvalue of the symmetric part of the graph Laplacian is a
measure of connectivity of a graph. For highly connected graphs, it is expected that
the diffusion of information across the graph is faster. 5

Moreover, Z?’ﬂxj(t) = Z;\/:] Uj(f) for t € [to, ). Ali Karimpour Aug 2024



Introduction 1l (Basic Notions from Graph Theory)

Effect of graph connectivity on eigenvalues of SYM(L)
Consider following graphs

010000 (1 1 0 0 0 O] eig((L+L")/2) =
001000 01 -1 0 0 0 0
000100 0 0 1 -1 0 0 0.5000 %
A=loooo10/'" o 0 0 14 o Upach A, =05 ®)
00000 1 0 0 0 0 1 —1 auy
10000 0] -1 0 0 0 0 1 iRt
i | 2.0000
020000 [2-2 0 0 0 O] eig((L+L)/2) = D-203)
001010 o 2-1 o0-1 o 8'gg28 2 Y
000100 00 0 1.=1 0.0 ' A/ =10.634 1
A= L= 1.1771 2
000010 0 0 0o 1-1 0 20000 /1
00000 2 0 0 0 0 2 =2 23660 / (9
20000 0 20 0 0 0 2 3.8229 :
. eig((L+L")/2) = 3
0 3 0 0 0 0 3 -3 Lh] 0 0 0
0020 10 o 3 -2 0 -1 0 0.0000 3 2
0 001 01 - | o o 2 -1 0 -1 0.9641 - E y %
A=l 000 10 0 0o 0 1 -1 0 1.7929 A, = 0.964 (6)< 8
0D 000 0 2 o o 0O o 2 -2 2.5546 1
3 00000 5 o 0 0 0 3 3.2071 2
5.4813 1
Highly connected graph Largest smallest non-zero eigenvalue in

(strongly connected and balance) symmetric part of the Laplacianat karimpour Aug 2024



Dynamic Average Consensus in Network Systems

Implementation Challenges of (11) U0 —Q—1 Sy —:CT > ()
1) high gain on Laplacian L - Larger 1, x(0)
—> Smaller tracking error L |«

> In physical systems, increase of the control (& = ~LX@+U® x(0) =u’ (0)

effort. #() = = B ay; (xH(©) = 1) + 1 ()
2) It requires the derivative of the reference signals. x(0) = «'(0)

- - - - i avg (OO) .
- Computing the derivative can be costly and lim ') - us(h] < Y, el N, (15)

prone to error(in applications where the input
signals are Measured online)

3) Initialization condition requiring. - Agents must initialize with x;(t,)=ui(t,)

—> any perturbation in u; results in a steady-state error in the tracking process.

4) If an agent leaves the operation permanently = initialization is no longer valid

29
—> reinitialization or a steady-state error in their tracking signal. Ali Karimpour Aug 2024



Dynamic Average Consensus in Network Systems

implementation Challenges of (11) and solutionsun —o—| 1, T_,xm
#(6) = =T a; (x'(@®) — 2/ (©) +ui(©)  (11a) ‘ «©
xi(0) = u'(0) (11b) .

Now let: p; = u; - X; N
u(t) > X(1)

pie) = T ay (x1(0) —/(®) TNipi(te) =0  (16a)

| —

A
-
A

xi(t) = u'(t) — p'(t) (16b) p(0)

We note that the initialization condition can be easily satisfied if each agent starts at
p'(0) = 0. Note that this requirement is mild because p' is an internal state for agent i and,

therefore, Is not affected by communication errors.

30
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Dynamic Average Consensus in Network Systems

Time trajectory of states in (11 or 16)

#(6) = =S 0 (2@ - )+ () (1la) = TV, 40 = T, w(t)

= ZIiV:1 x'(t) = ZIiV:1 u'(t) + (Z{V:1 x'(tp) — Z%V:1 ui(to))
Thus, If the perturbation on the reference input measurement is removed,
then (11) still inherits the adverse effect of the initialization error.

N
pit) = X ay (x"(t)—xf(t)) ipl(t) =0 (16a) :>Zpi(t) =0
=2l

N N
= > p©) = ) pito)
=1 i=1

So, for the case of the alternative algorithm (16) when the perturbations
are removed, then (16) recovers the convergence guarantee of the

perturbation-free case.

31
Ali Karimpour Aug 2024



Dynamic Average Consensus in Network Systems

Presence of Additive Reference Input Perturbations in (11 or 16)
Lemma 1: Convergence of (16) Over a Strongly Connected and Weight-
Balanced Digraph in the Presence of Additive Reference Input Perturbations

Let G be a strongly connected and weight-balanced digraph. Suppose wi(t) is an additive
perturbation on the measured reference input signal u(t). Then if Z?Ll A TER

the trajectories of system 16 are then bounded and satisfy

Y () + ()

lim | x'(f) — u™8(t)| < ’
t— o ;1_2

1ell,..., N},

where
v(t) = suprepo |[(In — (1/N)IN1Q)U(T)| <o @(f) = SUPreftw) I(In—(1/N)1n15) W(7)| < oo

Moreover, ¥._, p/(t) = 0 for t € [to, )

The perturbation w' in Lemma 1 can also be regarded as a bounded communication
perturbation. Therefore, (16) [and similarly (11)] is considered naturally robust to
bounded communication error. e

Ali Karimpour Aug 2024



Dynamic Average Consensus in Network Systems

Implementation of eq(16) for following system. | /B
Study of agent departure and arrival (departure agent 4 at 10° | /e X
and arriving agent five at 20° and p®(20)=0) | M@w@
Objectives are moving by following equations and agents want iy
to track there mean. x7(#)=(t/20)* +0.5sin((0.35 + 0.05)) ¢ + (5 — ) Z) 13 i Fe
5/ -
+4-2(1-1), 1€{1,2,3,4) / | |
Figurval-1[l[a]
s ", Yl S
v ] v N B v b ‘. -
= (a) .‘ v(;) #’
Drawbacks: —
« Steady state error when the agents change. —_—

10 15 20 25 30
Time
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Dynamic Average Consensus in Network Systems

Implementation of eq(16) for following system. | /B
Perturbation of input signals u(t)=x(t) -4cost /@ X
att €[0,2], and t €[3,5] SR W
Obijectives are moving by following equations and agents want AR i
to track there mean. <k () =(t/20)? + 0.5sin((0.35 +0.05))t + (5 — ) Z WS,
- / W
+4-2(0-1), 1€{1,2,3,4] % |
IFigurf.T 1I]H:|]I

6

n
T

Despite the perturbation, including the initial
measurement error of u'(0)=x*(0)-4

Fortunately noise compensated very good. <2 \4\ '
N

B
T
=




Dynamic Average Consensus in Network Systems

Implementation of eq(11) for following system. | a
Initialization error for agent one u,(0) = x,(0) - 4 / /e X
‘
A i
U 4 Physical Lay

Objectives are moving by following equations and agents want |
to track there mean. x7(#)=(t/20)*+05sin((0.35+0.05)t + (5 - Z) 13 * .=

+4-2(1-1), 1€{1,2,3,4) / -
Figure 10(c)
6 T T T
1 —
A —
Drawbacks: gl
* Steady state error when it start by nonzero < 2f 1
initial condition. T —
-1 F
_2|
0 1 2 3 4 5 & T 8 9 10



Dynamic Average Consensus in Network Systems

Implementation of eq(11)/eq(16) for following system.

Objectives are moving by following equations and agents want g/g X
to track there mean. x:(1)=(t/20)* +0.5sin((0.35+0.05)t + (5~ %) / @Y‘*

+4-2(-1), 1€{1,2,3,4) y o
Scenario 4: Graph topology changes in different times as: o IR il
1—2 I o9 0 ¢ I:I =
Figure 10(d)
o @ 0o I

[0,1) [1,2) [23) [3.4) [4,10)

Fortunately graph changes compensated.




Dynamic Average Consensus in Network Systems

Cyber Layer /

Implementation of eq(16) for following system.

Study of agent departure and arrival (departure agent 4 at 10° | x/g X
and arriving agent five at 20° p5(20)=0) s SR
Figure 10(a) 7“7

4 T T T i / U 4 | Physical Layer/

72

—
5

Discussion: D Do "
« Initialization is very important in the study of departure or arriving.

We need Robustness to Initialization and Permanent Agent
Dropout 3

Ali Karimpour Aug 2024



Continuous-Time Dynamic Average Consensus Algorithms

Robustness to Initialization and Permanent Agent Dropout

;Nr

f','{"(f] = —Z bii(x' — x7), (19a)
y = _ N G q=-Lix, (20a)
X :—CL'{I _I! ZHU "L — "L Z ji L}' _t} + U, (J.gb) X:—{I{X—U]—LPX'FL;L] + 1, (20b)
i=1
g'(to), x'(t) €R, i€ll,..., N}, (19¢)

x = —a(x —u)—Lpx — L7 [ "Lix(t)dz + L q(to) + u.
1o

In (19), the agents are allowed to use two different adjacency matrices, [a;] and [b;], so
that they have an extra degree of freedom to adjust the tracking performance of the

algorithm. u(t)
u(t) 1 | X(t)
—_—

Draw back of (19):
It doesn’t work for directed graph since of LT
In equation (20b).

-
il




Continuous-Time Dynamic Average Consensus Algorithms

Robustness to Initialization and u(t) _1
Permanent Agent Dropout 0, 1

Theorem 3: Convergence of (19)

L Tl |

Let L, and L, be Laplacian matrices corresponding to strongly connected and weight-
balanced digraphs. Let y(t) = supcepo|(In— (1/N)In1H)u()] <o

Starting from any initial condition x(0) , g(0) and for any a € R the trajectories of
(19) satisfy

k[ B]y(=)
A 4

lim|x/(t) — u™s(f)| <

e{l,...,N},
Moreover

N

Zﬁm—Zuﬂ+ewm
j

x! (to) — Z Llf(fo

1 =

for t € [ty, ) -

Ali Karimpour Aug 2024



Continuous-Time Dynamic Average Consensus Algorithms

@ Cyber Layer /

<N

Objectives are moving by following equations and agents want / &
I > - . T ”"\ﬁ»m/“ |
to track there mean. x7(t)=(t/20)* +0.5sin((0.35 +0.05)t + (5~ )= ) .

v Physical Layg(
+4-2(1-1), 1€{1,2, 3, 4} *

Comparing eq.(19) with eq.(16) on agent departure and arrival

i .

Study of agent departure and arrival (departure agent 4 at 10° 2 aaml 'v A

and arriving agent five at 20° and p>(20)=0) .. L
Simulation for eq. (16) Simulation for eq. (19) or (20)

Figure 10(a)

Figure 12 ( & = 0.8)

72

10 15 20 25 30 0 10 15 20 25 30 004
Time Time |



Continuous-Time Dynamic Average Consensus Algorithms

Controlling the Rate of Convergence
All consensus algorithms presented in (11) or (16) and also (19) are that the rate of
convergence is dictated by network topology as well as some algorithm parameters.

However, in some applications, the task is not just to obtain the average of the dynamic
Inputs but rather to physically track this value, possibly with limited control authority.

To allow the network to prespecify its desired worst rate of convergenceg, first-order-
Input dynamic consensus (FOI-DC) proposed.

eq' =— ) bi(z'— 7)),

j=1

) N N
ez' =—(Z'+ pu'+U’) = D ai(z' =)+ D_bii(g' — q),
h i=1

j=1

(24a)

X'=—px'—z', ie{l,...,N}. (24b)

41
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Continuous-Time Dynamic Average Consensus Algorithms

Controlling the Rate of Convergence

Asmall value for e in (24a) | = 20 =

: = (24a)
leads to fast dynamic.

2

/
N
ez'=—(C'+pu+U)— D ai(z' —z Z g =4,
. 'I=1

i=1
The slow dynamics (24b) then ¥=—px'—z, ie{l,..,N}. (24b)

uses the signal generated by the fast dynamics to track the average of
the reference signal across the network at a prespecified smaller rate p.

2 )

+€”f | sup Hﬁu(r + u(t H)
i to<t=<t

et <e

e'(to) |+ sup (e€1“”0)

ho=<t=<t

No need to initialization.

For small value of € (fast dynamic in 24a)

() <e

42
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Continuous-Time Dynamic Average Consensus Algorithms
Controlling the Rate of Convergence

E.24 ( £=0.04, 3=0.1) E.24 ( «=0.04, 3=1) E.24 ( «=0.04, 3=10)
5 T T T T ] T T T T T ] 5 T T T T
4 F 4t
3r 3
2 2
; \ 5 > p

JE— / —_—

or X, 0 X,

r _}{3 _}{3

A %, el %,

_ua\'g —_—u

2 — X -2 — X
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

Time Time Time

E.24( =04, 3=1) E.24( €=0.04, 3=1) E.24( =0.004, §=1)

0 5 10 15 20 25 30 g 5 10 15 20 25 30 0 5 10 1’ 20 2 S
. " Time
Time Time
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Continuous-Time Dynamic Average Consensus Algorithms

An Alternative Algorithm for Directed Graphs

As observed, eq.(19/20) is not q=-Lix, (20a)
Implementable over directed

x =—a(x —u)—Lpx+Liq+¢ 20b
graphs because of (L,") . x=—alx—u)—Lpx+Liq+d, (20b)

Authors of [19], proposed a modified proportional and integral agreement feedback
dynamic average consensus algorithm whose implementation does not require the
agents to know their respective columns of the Laplacian (L,"). This algorithm is:

. N . .
g'=aBf ) aj(x'—x), (25a)
i=1

N .
=—a(—u)—B> aj(x'—x)—g'+u, (25b)
j=1
_ . N .
x'(to), q'(to)) € R s.t. D g/ (to)) =0, (25¢)
j=1

Equivalently:
x=—a(x—u)—plx—ap [ Lx(t)dr—qt))+ U,
~ 10
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Continuous-Time Dynamic Average Consensus Algorithms

An Alternative Algorithm for Directed Graphs
q'=op i ajj(x' —x), (25a)
j=1

V=—a(x'—Uu)—p> ajlx'—x)—g'+u, (25b)
i=1

. . N
x'(to), ' (to) €R s.t. D g/(to) =0, (25¢)
=1

]

X =—0oa(x—U) —,:’_%L:!r:—ic}:,ﬂ_ff Lx(7)d7 — q(to) + U,

£
Theorem 4: Convergence of (25) Over Strongly Connected and Weight-Balanced
Digraphs for Dynamic Input Signals [19]
Let G be a strongly connected and weight-balanced digraph. If ¥, g/ (t,) = 0 then

forany a, B € R, the the trajectory of (25) satisfy

ACD)
B2’

}ijl1|.\"(f) —u™s(1)] < ic{l,..., N, (26)

Where v (1) =sup-ci-|(Iv =(1/N)In10)U(2)| <o and the convergence rate to the error baund is
min{a, ﬁRe(l‘lz)} Ali Karimpour Aug 2024



Continuous-Time Dynamic Average Consensus Algorithms

An Alternative Algorithm for Directed Graphs
Compact form of (25)  x =—a(x—u) — fLx— o | Lx(v)dt —q(to) + U,

£

Compact formof (11)  x(t) =—Lx(t) + u(t),

Compact form of (16) p (f) =—Lx(t) +u(t), x(t)=u(t)—p ().

Remarkl: U(s) = X(s) is the same for all of systems(11, 16 and 25)

Remark2: Both 25 and 16 (unlike 11) enjoy robustness to reference signal

measurement perturbations and naturally preserves the privacy of the input of each
agent against adversaries.

Remark3: Specifically, an adversary with access to the time history of all network
communication messages cannot uniquely reconstruct the reference signal of any

agent in (25), which is not the case for (16) and (11)??!1, A
Ali Karimpour Aug 2024



Continuous-Time Dynamic Average Consensus Algorithms

Review of different continuous-time dynamics.

. - i - _ bl} i_ j’ 19
ii(f):—ia;;(x"(t)—xf(t))+L’J’(t), ie(l,..., N}, q(t) ]Zl (x' — x7) 19)
j=1

. ) . N . . N - , i
(11) X =—a(x' —u') =Y ay(x' = ')+ D bi(g' —¢')+ U,
j=1 i=1

x(0) = Ui (0).
q'(ty), x'(t)eR, ie€ll,..., N},
N
N bz 2 ]'=« a;i(x' — x7), 29)
€' =—j221 bij(z' = 2)), 4y 1 ﬂ,; i( ) (

N .
N N o . . . . . "
e =— (24 pul+0) = Y g —2) + D bu(g— g, | X' =—a('—u)=BD aj(x'—x)—q'+ 1,
j=1 j=1 j=1

i i1 i ] N '
¥==px'—z, iell,...,N}. x'(to), q'(to) € R s.t. Z g’ (to) =0,
i=1

Algorithm (11) (19) (24) (25)
J'(t) K.amy  KO.gEu0r  Ko.Z0,90, K@), 90,
u(t), u(t)} u(t), u(t)}

{1/ ()} je N X (Oienie  @).9' Oients 20V (Oienne X (0).9'(1)} jeniu

. : N
Initialization ~ x'(0) = u/(0) None None Y. 4(0)=0
requirement =i



Discrete-Time Dynamic Average Consensus Algorithms

Implementing of continuous-time algorithms on practical cyber-physical systems requires
continuous communication between agents.

This requirement is not feasible in practice due to constraints on the communication bandwidth.
To address this issue, the discrete-time dynamic average consensus algorithms where the
communication among agents occurs only at discrete-time steps are studied.

In continuous time, the parameters may be scaled to achieve any desired convergence rate,
whereas in discrete time, the parameters must be carefully chosen to ensure convergence.

Here, a simple method using root locus techniques for choosing the parameters to optimize the
convergence rate is provided. It is also shown how to further accelerate the convergence by
Introducing extra dynamics into the dynamic average consensus algorithm.

TABLE 2 The arguments of the driving command in (2) for the reviewed

discrete-time dynamic average consensus algorithms together with their
initialization requirements.

Algorithm (27) (29) (30) (31)

J'(t) {uk. pi} {uk. PPk} fulophgkd  {ukphPk-1, Gk -1}

PO)ens  Odienta  (djentn (XkoPRbients (X Pidjent

Initia_lization _i p{j =0 _i p{; =0 None None 48
requirement /=1 /=1
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Discrete-Time Dynamic Average Consensus Algorithms

For simplicity of exposition, assume the communication graph is constant, connected, and
undirected so,

Laplacian matrix is

then symmetric : Real eigenvalues  ——  A,=0,2,>%,, ..., A,

Suppose we have lower and upper bounds on A,and A..

J?\r

| | N
P = ai(x'(H—x(1), D pl(t)=0, (16a)
j=1

. . N ) , _
pia1=pk+ki D aij(xk—x;), poeR, (27a)
j=1 i=1

X(t) =ui(r) — pi(t). (16b) X} = Ui — pi, (27b)
Uy X 0=zI—(I—kiL).
—0 > 27 . :
B The characteristic equation corresponding to the
B eigenvalue of L is then A
— " 1leL I Im(z2)
_T z-1 0:1+/1_fl. N
z— TP
Po Good convergence if A0, | A0
eigenvalues are in the circle —1/\ ;’\1 Re(z)
__2 A=A s=p TS imp
ki = 1ot An and p= T A A= An =1
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Discrete-Time Dynamic Average Consensus Algorithms

While the previous choice of parameters optimizes the convergence rate, even faster convergence
can be achieved by introducing extra dynamics into the dynamic average consensus algorithm.

Xy

URLO

ki
z-1

o

L
F

L}

Po

Figure 13(a)

k,z

(z-pA)(z-1)

1g

—> TO*—
PDJ

;Ji_-J = (1 +p‘jp§r—p2pi_-l + ki Z aij(xp — x}h),
j=1

pE ceR, ie{l,...,N},
X = Hi_-—p);

4 2 1

ki =— —— i @
(Vi +Van) & 08
_ % 2 0.6
VAN +4 A2 S 04

@
g 0.2

o

(29a)

(29b)

Figure 13(c)

A

k.

Im(z)

—— Figure 13(a)
(Nonaccelerated, Nonrobust)
———Figure 13(c)
(Accelerated, Nonrobust)

-_—
-——
-

-

U 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 0.7 08 09 1

AplAy

n
T

1

-
N

(b)
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Discrete-Time Dynamic Average Consensus Algorithms

Robust Dynamic Average Consensus Algorithms

N i i X i j i i
q'(t)=—2_ by(x' — /), (19a) Gi+1 = Pt Ky Zl ai((xe—xp) + (pk—py),  (30a)
y I , N , N T _ _ N _ .
M=—a@ —u')= Y ai(x' =)+ Y bi(g' —q/)+ U, (190) "= pla=pitk ) a;xi—x), (30b)
j=1 j=1 j=1
q'(to), x'(t) €R, iefl,..., N}, (19¢) xk=ui—qi, pogoeR, ie(l,..,N}, (30

Xy

i
r

50

T_ ;Eﬂpl =:
=

z—;1I {_

Accelerated version using extra dynamics, given by

Yk Xk i i o2 o i i
—0 > Gis1=20gk— P qi—1+ kp D ai((xk— xp) + (pk—py), (Bla)
_ j=1
‘L kpz i 2y i 2 S i j
(z- P}E I jqL “O{ Pk+1 = (1 +p_)p;_- — P Pk-1 + k; Z H;‘_I.'{xk— XL, (31b)
j=1
T_ ki z Il xh=uj— qi, ;JE, qf} cR, ie{l,...,N}, (31c)
(z-pP)z-1)
Details of the results for this two algorithms can be found in [57]. 51
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Discrete-Time Dynamic Average Consensus Algorithms

k z

S
(z-p)z-1)

(©)

(Figure 13 b and d) are slower than those of

2 L
k
z—lr1 ! ‘_
FIGURE 13
(b)
Xk Uy Y X
> Ny
- kpz
«J - ‘
k;z
- A1 {Lk
(d)
1
Although the convergence rates of the standard and P
accelerated Pl dynamic average consensus algorithms E’E oel
y ] EJ: 0.4+
(Figure 13 a and c), respectively, they have the .
2 0.
O

additional advantage of being robust to initial conditions.

0 1 1 1 1 1 1 1 1 -
0O 01 02 03 04 05 06 07 08 0.9

Aol

——Figure 13
Figure 13
- ——Figure 13
Figure 13

a) (Nonaccelerated, Nonrobust)
b) (Nonaccelerated, Robust)
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d) (Accelerated, Robust)
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Discrete-Time Dynamic Average Consensus Algorithms

Theorem 5: Optimal Convergence Rates of Discrete-Time Dynamic Average Consensus

Algorithms

Let G be a connected, undirected graph. Suppose the reference signal u; at each agent is a
constant scalar. Consider the dynamic average consensus algorithms in Figure 13, with the
parameters chosen according to Table 3 [the algorithms in Figure 13(a) and (c) are initialized

such that the average of the initial integrator states is zero]. The agreement states x; converge
to uav9 exponentially with rate p.

TABLE 3 The parameter selection for the dynamic average consensus algorithms of Figure 13 as a function of the minimum
and maximum nonzero Laplacian eigenvalues Az and Aw, respectively, with A,.= A2/Ax. N/A: not applicable.

Figure 13(a)

Figure 13(b)

Figure 13(c)

Figure 13(d)

P

An—A>
An+ Az

8—84 +A47°
8—12
JA-A)@4+A25-1)) - A.(1-1)
2(1+15)

0< A, =<3-+5

, 3—v5 <A <1

t’;ﬂ_N—v!iz

w“J.;LN-i-\fﬂu_z

- - - 'llll - - I

6—241 ;1,-!-,1,;41,2 241 A,—i—)l,)’ 0< A <2(2-1)
2+2v1—Ar— A:

—3-2/1—A, + A, +2V2+2/1—4, — A, -
_1_2?'!1_.'1;"_!1; '

(V2 -1) <A, =1

ki

(v“E + vIA_N)Z

(1-p)?

A2

ks
N/A

1 p(1=p)Ar
AN p+Ar—1

N/A

2+2vV1 -2 — Ak
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Perfect Tracking Using a Prior Knowledge of the Input Signals

The design of the dynamic average consensus algorithms described in the discussion so far
does not require prior knowledge of the reference signals and is therefore broadly applicable.

U

The convergence guarantees of these algorithms are strong only when the reference signals are
constant or slowly varying. The error of such algorithms can be large, however, when
the reference signals change quickly in time.

This section describes dynamic average consensus algorithms, which are capable of tracking
fast time-varying signals with either zero or small steady-state error.

—

_ : 1) Reference signals have a known model,
In each case, their design assumes

some specific information about _1 ) Reference signals are band limited,
the nature of the reference signals.

3) Reference signals have bounded derivatives.

S—

o4
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Appendix (Basic Notions from Graph Theory)

A weighted digraph is a triplet G = (V, E, A), where (V, E) is a digraph and A ¢ RN*N is
a weighted adjacency matrix with the property that a; > 0 if (i, J)eE otherwise a;; = 0.

E ¢ VXV is the edge set. An edge from i to j, denoted by (i,J) means that agent j can

send information to agent 1.
The out-degree matrix D°! is the diagonal matrix with entries D;cut= deu(i),for all i € V.

A digraph is weight balanced if, at each node i€V, the weighted out-degree and
weighted in-degree coincide.

The (out-) Laplacian matrix is L = Dout - A.

_ e 0010 1 0 -1 0
A weight ew A_|1 00 -1 2 0 -1
balanced digraph: ok o200/ 0 2 2 o
(D)

0010 0 0 -1 1

A weighted digraph is undirected if a; = a;; for all 1, j € V.
1 0110 (2 -1 1 0]
i 0 2 1 _ o _
A weight ewo o 1 Sl 1 4 -2
undirected graph 1 -1 -2 4 -
O= 0110 01 -1 2
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Appendix (Basic Notions from Graph Theory)

Property of Laplacian matrix:
Based on the structure of L, at least one of the eigenvalues of L is zero and the rest of

them have nonnegative real parts.
For strongly connected digraphs, rank(L) = N - 1.

In a strongly connected digraph it is possible to reach any node starting from any other
node by traversing edges in the direction(s) in which they point.

For strongly connected and weight-balanced digraphs, denote the eigenvalues of
Sym(L) = (L + LT) /2 one of them is zero and others nonnegative real.

For strongly connected and weight-balanced digraphs,
0 < A21 <R"Sym(L)R < Anl,
where R € RV*W-1 gatisfies [(1/¥V/N)1n RJ[(1/¥N)1n R] =[(1/¥YN)1x R]'[(1/¥YN)1x R]=In.
Intuitively, the Laplacian matrix can be viewed as a diffusion operator over the graph.
[Lx]i= 2 ai(x'—x),

jev
The smallest nonzero eigenvalue 1, of the symmetric part of the graph(strongl%
connected ansd balance) Laplacian is a measure of connectivity of a graphAIi(g;@,;p(jurs,ljgzgz)4
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