
Dynamic Average

Consensus

Ali Karimpour

Professor

Ferdowsi University of Mashhad, Iran



Ali Karimpour  Aug 2024

2

Reference



Ali Karimpour  Aug 2024

3

Contents

Introduction

Challenges with Dynamic Problem

Application of Dynamic Average Consensus in Network Systems

Dynamic Average Consensus in Network Systems

Average Consensus

Dynamic Average Consensus Problem Formulation

Introduction



Ali Karimpour  Aug 2024

4

Introduction

The dynamic average consensus problem: The multi-agent 

network collectively compute the average of the set of time-

varying signals.

This problem arises in scenarios with multiple agents, where each one 

has access to a time-varying signal of interest(for example, a distributed 

energy resource taking a sequence of frequency measurements in a 

micro-grid).
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Introduction

Different type of the dynamic average consensus problem:

• Centralized

• Flooding

• Distributed

In this approach all of the information gather in a single place(agent), perform the 

computation (in other words, calculate the average), and then send the solution 

back through the network to each agent. 

In this approach, every agent act as the centralized agent. 
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Introduction

Different type of the dynamic average consensus problem:

• Centralized

• Flooding

• Distributed

1) The algorithm is not robust to failures of the centralized agent

2)   The method is not scalable

3)   Each agent must have a unique identifier

4)   The calculated average is delayed by an amount that grows with the network size

5) The reference signals from each agent are exposed over the entire network 

(which is unacceptable in applications involving sensitive data).

1) All centralized drawback except number 1.

1) Hard to derive.
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Averaging Consensus

Different type of the average consensus problem:

1) Static Average Consensus

2) Dynamic Average Consensus

Agents seek to agree on a specific combination of fixed quantities. 

Several simple and efficient distributed algorithms with exact 

convergence guarantees (see Lectures on Network Systems Francesco Bullo)

 

Agents seek to agree on a specific combination of variable quantities. 

If there is a static average consensus algorithm that is able to converge 

infinitely fast then we can use static average consensus. 

Solving this problem is challenging because the local interactions 

among agents involve only partial information, and the quantity that the 

network seeks to compute is changing as the agents run their routines. 
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Example: Consider a group of six agents with the communication topology of a 

directed ring which each process described by a fixed value plus a sine wave whose 

frequency and phase are changing randomly over time. 𝜔~𝑁 0,0.25 , 𝜑~𝑁(0, (
𝜋

2
)2)

Each agent measure the process according to every 2 sec.

To obtain the average, the following two approaches are used:

2- The dynamic average consensus algorithm [more specifically, strategy (S15)].

1- The standard static discrete-time Laplacian average consensus algorithm.

𝑥𝑖 𝑘 + 1 = 𝑥𝑖 𝑘 − 𝛿 σ𝑗=1
𝑛 𝑎𝑖𝑗 𝑥𝑖(𝑘) − 𝑥𝑗(𝑘)  𝑖 = 1, 2, … , 6 

Challenges with Dynamic Problem 

𝑢1 𝑚 = 1.1 2 + sin 𝜔 𝑚 𝑡 𝑚 + 𝜑 𝑚 − 0.55

𝑢2 𝑚 = 1 2 + sin 𝜔 𝑚 𝑡 𝑚 + 𝜑 𝑚 + 1

𝑢3 𝑚 = 0.9 2 + sin 𝜔 𝑚 𝑡 𝑚 + 𝜑 𝑚 + 0.6

𝑢4 𝑚 = 1.05 2 + sin 𝜔 𝑚 𝑡 𝑚 + 𝜑 𝑚 − 0.9

𝑢5 𝑚 = 0.96 2 + sin 𝜔 𝑚 𝑡 𝑚 + 𝜑 𝑚 − 0.6

𝑢6 𝑚 = 1 2 + sin 𝜔 𝑚 𝑡 𝑚 + 𝜑 𝑚 + 0.4

1 2

3

45

6
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Challenges with Dynamic Problem 

Figure 2 (a) 𝛿 = 0.5 

standard static 

discrete-time 

Laplacian average 

consensus algorithm.

(3 communication)

(b) 20 communication

States doesn’t 

converge to average.

Figure 2 (c) 𝛿 = 0.5
dynamic discrete-time 

Laplacian average 

consensus algorithm.

(3 communication)

(d) 20 communication

All states converge to 

average.
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Dynamic Average Consensus Problem Formulation

Different type

 of  dynamic

averaging problems

1- Dynamic average consensus in discrete time

2- Dynamic average consensus in continues time

3- Dynamic average consensus in continues time-discrete time

1- Dynamic average consensus in discrete time

Driving command 

Self variables of ith agent

Out-neighbors variables of ith agent
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2- Dynamic average consensus in continuous time

Driving command 

Self variables of ith agent

Out-neighbors variables of ith agent

Dynamic Average Consensus Problem Formulation

3- Dynamic average consensus in continuous time-discrete time

Driving command 

Self variables of ith agent

Out-neighbors variables of ith agent
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Dynamic Average Consensus Problem Formulation

• Scalability, the amount of computations and

resources required on each agent does not grow with

the network size of network.

Desirable properties of 

dynamic average consensus

• Robustness, to the disturbances present in 

practical scenarios, such as communication delays 

and packet drops, agents entering/leaving the 

network, initial condition, and noisy 

measurements

• Correctness, meaning the algorithm converges to 

the exact average or, alternatively, a formal 

guarantee can be given about the distance between 

the estimate and the exact average.
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Application of Dynamic Average Consensus in Network Systems

• Distributed Formation Control:
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Application of Dynamic Average Consensus in Network Systems

• Distributed State Estimation
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Application of Dynamic Average Consensus in Network Systems

• Distributed Resource Allocation



Ali Karimpour  Aug 2024

19

Contents

Introduction

Challenges with Dynamic Problem

Application of Dynamic Average Consensus in Network Systems

Dynamic Average Consensus in Network Systems

Average Consensus

Dynamic Average Consensus Problem Formulation



Ali Karimpour  Aug 2024

20

Dynamic Average Consensus in Network Systems

Consensus algorithms to solve the static average consensus problem

• Static average consensus problem in continuous time is:

ሶ𝑥 𝑡 = − ෍

𝑗=1

𝑁

𝑎𝑖𝑗 𝑥𝑖 𝑡 − 𝑥𝑗(𝑡)

ሶ𝑥 𝑡 = −𝐿𝑥(𝑡) 𝑥 𝑡 − 𝑥 0 = − න
0

𝑡

𝐿𝑥 𝑡 𝑑𝑡

• Static average consensus problem in discrete time is:

𝑥𝑖 𝑘 + 1 = 𝑥𝑖 𝑘 − ෍

𝑗=1

𝑁

𝑎𝑖𝑗 𝑥𝑖 𝑘 − 𝑥𝑗(𝑘)

𝑥 𝑘 + 1 = 𝐼 − 𝐿 𝑥(𝑘)
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Dynamic Average Consensus in Network Systems

Theorem 1: Convergence guarantees of the continuous and discrete-time 

(static average consensus)

Suppose that the communication graph is a constant, strongly connected, 

and weight-balanced digraph and that the reference signal x(0)=u at each 

agent is a constant scalar. Then

Continuous time: As t →∞, every state xi (t) of the static average consensus 

algorithm converges to uavg with an exponential rate no worse than the 

smallest nonzero eigenvalue of Sym(L).

Discrete time: As k →∞, every state , xi(k) of the static average 

consensus algorithm converges to uavg with an exponential rate no worse 

than ρϵ(0,1), provided that the Laplacian matrix satisfies
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Dynamic Average Consensus in Network Systems

Consensus algorithms to solve the dynamic average consensus problem

• Static average consensus 

problem in continuous time is:

• Dynamic average consensus 

problem in continuous time is:

ሶ𝑥 𝑡 = −𝐿𝑥 𝑡 + ሶ𝑢(𝑡)
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Dynamic Average Consensus in Network Systems

Dynamic average consensus problem

ሶ𝑥 𝑡 = −𝐿𝑥 𝑡 + ሶ𝑢(𝑡)

So for every agent we have:

ሶ𝑥𝑖 𝑡 = − σ𝑗=1
𝑁 𝑎𝑖𝑗 𝑥𝑖 𝑡 − 𝑥𝑗 𝑡 + ሶ𝑢𝑖(𝑡) (11𝑎)                                  

𝑥𝑖 0 = 𝑢𝑖 0  (11𝑏)

Let define: 𝑒𝑖 𝑡 = 𝑥𝑖 𝑡 − 𝑢𝑎𝑣𝑔(𝑡)

ሶ𝑒1

ሶ𝑒2

. .
ሶ𝑒𝑁

=

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

𝑒1

𝑒2

. .
𝑒𝑁

+

ሶ𝑢1

ሶ𝑢2

. .
ሶ𝑢𝑁
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Dynamic Average Consensus in Network Systems

Dynamic average consensus problem

Let define: 𝑒𝑖 𝑡 = 𝑥𝑖 𝑡 − 𝑢𝑎𝑣𝑔(𝑡)

Define a new transformation ҧ𝑒 = 𝑇𝑇𝑒

Where      𝑇 =
1

𝑁
𝟏𝑵 𝑅  such that T is unitary (TT.T=I)

ሶ ҧ𝑒1

ሶ ҧ𝑒2
…
ሶҧ𝑒𝑁

=

0 0
0 . .

0 0
. . . .

0 . .
0 . .

. . . .

. . . .

ҧ𝑒1

ҧ𝑒2
…
ҧ𝑒𝑁

+ 𝑅𝑇

0
ሶ𝑢2

…
ሶ𝑢𝑁

ሶ𝑒1

ሶ𝑒2

. .
ሶ𝑒𝑁

=

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

𝑒1

𝑒2

. .
𝑒𝑁

+

ሶ𝑢1

ሶ𝑢2

. .
ሶ𝑢𝑁
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Dynamic Average Consensus in Network Systems

Dynamic average consensus problem

Define a new transformation ҧ𝑒 = 𝑇𝑇𝑒

The tracking error of each agent over a strongly connected and

 weight-balanced digraph is

Where መ𝜆2 is the smallest non-zero eigenvalue of 𝑆𝑦𝑚 𝐿 =
1

2
(𝐿 + 𝐿𝑇) and
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Dynamic Average Consensus in Network Systems

መ𝜆2 is the smallest non-zero eigenvalue of 𝑆𝑦𝑚 𝐿 =
1

2
(𝐿 + 𝐿𝑇) and

The tracking error of each agent over a strongly connected and weight-balanced digraph is

• First, it highlights the importance of the special initialization

• Perfect asymptotic tracking for reference input signals with decaying rate.

• Finally, the tracking error bound shows that as long as the uncommon part 

of the reference signals has a bounded rate, then system tracks the average 

with some bounded error.

• Perfect asymptotic tracking for unbounded reference signals whose 

uncommon parts asymptotically converge to a constant value.



Ali Karimpour  Aug 2024

27

Dynamic Average Consensus in Network Systems

The smallest nonzero eigenvalue of the symmetric part of the graph Laplacian is a 

measure of connectivity of a graph. For highly connected graphs, it is expected that 

the diffusion of information across the graph is faster.

ሶ𝑥𝑖 𝑡 = − σ𝑗=1
𝑁 𝑎𝑖𝑗 𝑥𝑖 𝑡 − 𝑥𝑗 𝑡 + ሶ𝑢𝑖 (𝑡) (11𝑎)                                  

𝑥𝑖 0 = 𝑢𝑖 0  (11𝑏)

ሶ𝑋 𝑡 = −𝐿𝑋(𝑡) + ሶ𝑈(𝑡) 𝑥𝑖(0) = 𝑢𝑖 (0) 

Theorem 2: 

(Convergence of above system over a Strongly connected and weight-balanced digraph)

Let G be a strongly connected and weight-balanced digraph. If 

then the trajectories of system are then bounded and satisfy

Moreover,
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Effect of graph connectivity on eigenvalues of SYM(L)

Consider following graphs

1 2

3

45

6

eig((L+L')/2) =

0

0.5000

0.5000

1.5000

1.5000

2.0000

1 2

3

45

6

2

2

2

1

1

1

1

eig((L+L')/2) =

0.0000

0.6340

1.1771

2.0000

2.3660

3.8229

1 2

3

45

6

3

3

1

2
1

12

1

eig((L+L')/2) =

0.0000

0.9641

1.7929

2.5546

3.2071

5.4813

Highly connected graph

(strongly connected and balance)
Largest smallest non-zero eigenvalue in 

symmetric part of the Laplacian 

Introduction II (Basic Notions from Graph Theory) 

መ𝜆2 = 0.5

መ𝜆2 = 0.634

መ𝜆2 = 0.964
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Dynamic Average Consensus in Network Systems

Implementation Challenges of (11)

1) high gain on Laplacian L 

2) It requires the derivative of the reference signals.

3) Initialization condition requiring. 

4) If an agent leaves the operation permanently

ሶ𝑥𝑖 𝑡 = − σ𝑗=1
𝑁 𝑎𝑖𝑗 𝑥𝑖 𝑡 − 𝑥𝑗 𝑡 + ሶ𝑢𝑖 (𝑡) 

𝑥𝑖 0 = 𝑢𝑖 0  

ሶ𝑋 𝑡 = −𝐿𝑋(𝑡) + ሶ𝑈(𝑡) 𝑥𝑖(0) = 𝑢𝑖 (0) 

→ Smaller tracking error

→ Larger መ𝜆2

→ In physical systems, increase of the control 

effort.

→ Computing the derivative can be costly and 

prone to error(in applications where the input 

signals are Measured online)

→ Agents must initialize with xi(t0)=ui(t0) 

→ any perturbation in ui results in a steady-state error in the tracking process. 

→ initialization is no longer valid

→ reinitialization or a steady-state error in their tracking signal.
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Dynamic Average Consensus in Network Systems

Implementation Challenges of (11) and solutions

ሶ𝑥𝑖 𝑡 = − σ𝑗=1
𝑁 𝑎𝑖𝑗 𝑥𝑖 𝑡 − 𝑥𝑗 𝑡 + ሶ𝑢𝑖 (𝑡) (11𝑎)                         

𝑥𝑖 0 = 𝑢𝑖 0  (11𝑏) 

Now let: pi = ui - xi

ሶ𝑝𝑖 𝑡 = σ𝑗=1
𝑁 𝑎𝑖𝑗 𝑥𝑖 𝑡 − 𝑥𝑗 𝑡  σ𝑗=1

𝑁 𝑝𝑗 𝑡0 = 0 (16𝑎)                         

𝑥𝑖 𝑡 = 𝑢𝑖 𝑡 − 𝑝𝑖 𝑡  (16𝑏) 

We note that the initialization condition can be easily satisfied if each agent starts at 

pi(0) = 0. Note that this requirement is mild because pi is an internal state for agent i and, 

therefore, is not affected by communication errors.
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Dynamic Average Consensus in Network Systems

Time trajectory of states in (11 or 16)

Thus, if the perturbation on the reference input measurement is removed, 

then (11) still inherits the adverse effect of the initialization error. 

So, for the case of the alternative algorithm (16) when the perturbations

are removed, then (16) recovers the convergence guarantee of the 

perturbation-free case.

ሶ𝑥𝑖 𝑡 = − σ𝑗=1
𝑁 𝑎𝑖𝑗 𝑥𝑖 𝑡 − 𝑥𝑗 𝑡 + ሶ𝑢𝑖 (𝑡) (11𝑎)                         ⟹ σ𝑖=1

𝑁 ሶ𝑥𝑖 𝑡 = σ𝑖=1
𝑁 ሶ𝑢𝑖 𝑡                 

⟹ σ𝑖=1
𝑁 𝑥𝑖 𝑡 = σ𝑖=1

𝑁 𝑢𝑖 𝑡 + σ𝑖=1
𝑁 𝑥𝑖 𝑡0 − σ𝑖=1

𝑁 𝑢𝑖 𝑡0                 

ሶ𝑝𝑖 𝑡 = σ𝑗=1
𝑁 𝑎𝑖𝑗 𝑥𝑖 𝑡 − 𝑥𝑗 𝑡  σ𝑗=1

𝑁 𝑝𝑗 𝑡0 = 0 (16𝑎)                         ⟹ ෍

𝑖=1

𝑁

ሶ𝑝𝑖 𝑡 = 0

⟹ ෍

𝑖=1

𝑁

𝑝𝑖 𝑡 = ෍

𝑖=1

𝑁

𝑝𝑖 𝑡0
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Dynamic Average Consensus in Network Systems

Lemma 1: Convergence of (16) Over a Strongly Connected and Weight-

Balanced Digraph in the Presence of Additive Reference Input Perturbations

Let G be a strongly connected and weight-balanced digraph. Suppose wi(t) is an additive 

perturbation on the measured reference input signal ui(t). Then if  σ𝑗=1
𝑁 𝑝𝑗 𝑡0 = 0

the trajectories of system 16 are then bounded and satisfy

where

Moreover, σ𝑗=1
𝑁 𝑝𝑗 𝑡 = 0  𝑓𝑜𝑟 𝑡 ∈ [𝑡0, ∞)

The perturbation wi in Lemma 1 can also be regarded as a bounded communication 

perturbation. Therefore, (16) [and similarly (11)] is considered naturally robust to 

bounded communication error. 

Presence of Additive Reference Input Perturbations in (11 or 16)
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Dynamic Average Consensus in Network Systems

Implementation of eq(16) for following system. 

Study of agent departure and arrival (departure agent 4 at 10s 

and arriving agent five at 20s and p5(20)=0)

Drawbacks:

• Steady state error when the agents change.

Objectives are moving by following equations and agents want 

to track there mean.
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Dynamic Average Consensus in Network Systems

Implementation of eq(16) for following system. 

Fortunately noise compensated very good.

Perturbation of input signals u1(t)=x1(t) -4cost 

at t ϵ[0,2], and t ϵ[3,5] 

Despite the perturbation, including the initial 

measurement error of u1(0)=x1(0)-4

Objectives are moving by following equations and agents want 

to track there mean.
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Dynamic Average Consensus in Network Systems

Implementation of eq(11) for following system. 

Drawbacks:

• Steady state error when it start by nonzero 

      initial condition.

Initialization error for agent one u1(0) = x1(0) - 4

Objectives are moving by following equations and agents want 

to track there mean.
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Dynamic Average Consensus in Network Systems

Implementation of eq(11)/eq(16) for following system. 

Scenario 4: Graph topology changes in different times as:

Fortunately graph changes compensated.

Objectives are moving by following equations and agents want 

to track there mean.
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Dynamic Average Consensus in Network Systems

Implementation of eq(16) for following system. 

Study of agent departure and arrival (departure agent 4 at 10s 

and arriving agent five at 20s p5(20)=0)

Discussion:

• Initialization is very important in the study of departure or arriving.

We need Robustness to Initialization and Permanent Agent 

Dropout
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Continuous-Time Dynamic Average Consensus Algorithms

Robustness to Initialization and Permanent Agent Dropout

In (19), the agents are allowed to use two different adjacency matrices, [aij] and [bij], so 

that they have an extra degree of freedom to adjust the tracking performance of the 

algorithm.

Draw back of (19):

It doesn’t work for directed graph since of LI
T 

in equation (20b). 



Ali Karimpour  Aug 2024

39

Continuous-Time Dynamic Average Consensus Algorithms

Robustness to Initialization and 

Permanent Agent Dropout

Let LP and LI be Laplacian matrices corresponding to strongly connected and weight-

balanced digraphs. Let

Theorem 3: Convergence of (19)

Starting from any initial condition x(0) , q(0) and for any 𝛼 ∈ 𝑅>0  the trajectories of 

(19) satisfy

Moreover

for 𝑡 ∈ [𝑡0, ∞)
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Continuous-Time Dynamic Average Consensus Algorithms

Comparing eq.(19) with eq.(16) on agent departure and arrival 

Simulation for eq. (16) Simulation for eq. (19) or (20)

Objectives are moving by following equations and agents want 

to track there mean.

Study of agent departure and arrival (departure agent 4 at 10s 

and arriving agent five at 20s and p5(20)=0)
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Continuous-Time Dynamic Average Consensus Algorithms

Controlling the Rate of Convergence

All consensus algorithms presented in (11) or (16) and also (19) are that the rate of 

convergence is dictated by network topology as well as some algorithm parameters. 

To allow the network to prespecify its desired worst rate of convergenceβ, first-order-

input dynamic consensus (FOI-DC) proposed.

However, in some applications, the task is not just to obtain the average of the dynamic 

inputs but rather to physically track this value, possibly with limited control authority.
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Continuous-Time Dynamic Average Consensus Algorithms

Controlling the Rate of Convergence

A small value for ϵ in (24a) 

leads to fast dynamic. 

The slow dynamics (24b) then

uses the signal generated by the fast dynamics to track the average of 

the reference signal across the network at a prespecified smaller rate β.

No need to initialization.

For small value of ϵ (fast dynamic in 24a) 
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Continuous-Time Dynamic Average Consensus Algorithms
Controlling the Rate of Convergence



Ali Karimpour  Aug 2024

44

Continuous-Time Dynamic Average Consensus Algorithms

An Alternative Algorithm for Directed Graphs

Equivalently:

As observed, eq.(19/20) is not 

implementable over directed 

graphs because of (LI
T) .

Authors of [19], proposed a modified proportional and integral agreement feedback 

dynamic average consensus algorithm whose implementation does not require the

agents to know their respective columns of the Laplacian (LI
T). This algorithm is:
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Continuous-Time Dynamic Average Consensus Algorithms

An Alternative Algorithm for Directed Graphs

Let G be a strongly connected and weight-balanced digraph. If σ𝑗=1
𝑁 𝑞𝑗 𝑡0 = 0 then

for any 𝛼, 𝛽 ∈  𝑅>0 the the trajectory of (25) satisfy

Theorem 4: Convergence of (25) Over Strongly Connected and Weight-Balanced 

Digraphs for Dynamic Input Signals [19]

where                                                      and the convergence rate to the error bound is 

min{𝛼, 𝛽𝑅𝑒 𝜆2 }. 
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Continuous-Time Dynamic Average Consensus Algorithms

An Alternative Algorithm for Directed Graphs

Compact form of (25)

Remark1: 𝑈(𝑠) → X(s) is the same for all of systems(11, 16 and 25)

Remark3: Specifically, an adversary with access to the time history of all network 

communication messages cannot uniquely reconstruct the reference signal of any 

agent in (25), which is not the case for (16) and (11)??!!. 

Compact form of (11)

Compact form of (16)

Remark2: Both 25 and 16 (unlike 11) enjoy robustness to reference signal 

measurement perturbations and naturally preserves the privacy of the input of each 

agent against adversaries. 
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Continuous-Time Dynamic Average Consensus Algorithms

Review of different continuous-time dynamics.



Ali Karimpour  Aug 2024

48

Discrete-Time Dynamic Average Consensus Algorithms

Implementing of continuous-time algorithms on practical cyber-physical systems requires

continuous communication between agents. 

This requirement is not feasible in practice due to constraints on the communication bandwidth. 

To address this issue, the discrete-time dynamic average consensus algorithms where the 

communication among agents occurs only at discrete-time steps are studied.

In continuous time, the parameters may be scaled to achieve any desired convergence rate, 

whereas in discrete time, the parameters must be carefully chosen to ensure convergence.

Here, a simple method using root locus techniques for choosing the parameters to optimize the 

convergence rate is provided. It is also shown how to further accelerate the convergence by

introducing extra dynamics into the dynamic average consensus algorithm.
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Discrete-Time Dynamic Average Consensus Algorithms

For simplicity of exposition, assume the communication graph is constant, connected, and 

undirected so,

Laplacian matrix is

 then symmetric
Real eigenvalues λ1=0, λ2>λ1, …., λn

Suppose we have lower and upper bounds on λ2 and  λn.

The characteristic equation corresponding to the 

eigenvalue of L is then

Good convergence if 

eigenvalues are in the circle
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Discrete-Time Dynamic Average Consensus Algorithms

While the previous choice of parameters optimizes the convergence rate, even faster convergence 

can be achieved by introducing extra dynamics into the dynamic average consensus algorithm.
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Discrete-Time Dynamic Average Consensus Algorithms

Robust Dynamic Average Consensus Algorithms

Accelerated version using extra dynamics, given by

Details of the results for this two algorithms can be found in [57].
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Discrete-Time Dynamic Average Consensus Algorithms

Although the convergence rates of the standard and 

accelerated PI dynamic average consensus algorithms

(Figure 13 b and d) are slower than those of 

(Figure 13 a and c), respectively, they have the 

additional advantage of being robust to initial conditions.
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Discrete-Time Dynamic Average Consensus Algorithms

Theorem 5: Optimal Convergence Rates of Discrete-Time Dynamic Average Consensus 

Algorithms

Let G be a connected, undirected graph. Suppose the reference signal ui at each agent is a 

constant scalar. Consider the dynamic average consensus algorithms in Figure 13, with the 

parameters chosen according to Table 3 [the algorithms in Figure 13(a) and (c) are initialized 

such that the average of the initial integrator states is zero]. The agreement states xi converge

to uavg exponentially with rate ρ.
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Perfect Tracking Using a Prior Knowledge of the Input Signals

The design of the dynamic average consensus algorithms described in the discussion so far 

does not require prior knowledge of the reference signals and is therefore broadly applicable. 

The convergence guarantees of these algorithms are strong only when the reference signals are 

constant or slowly varying. The error of such algorithms can be large, however, when

the reference signals change quickly in time.

This section describes dynamic average consensus algorithms, which are capable of tracking 

fast time-varying signals with either zero or small steady-state error. 

1) Reference signals have a known model,
In each case, their design assumes

some specific information about 

the nature of the reference signals.
2) Reference signals are band limited,

3) Reference signals have bounded derivatives.
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Appendix (Basic Notions from Graph Theory) 

E ϵ V×V is the edge set. An edge from i to j, denoted by (i,j) means that agent j can 

send information to agent i.

A weighted digraph is a triplet G = (V, E, A), where (V, E) is a digraph and A ϵ RN×N is 

a weighted adjacency matrix with the property that aij > 0 if (i, j)ϵE otherwise aij = 0.

The out-degree matrix Dout is the diagonal matrix with entries Dii
out= dout(i),for all i ϵ V.

A digraph is weight balanced if, at each node iϵV, the weighted out-degree and 

weighted in-degree coincide.

The (out-) Laplacian matrix is L = Dout - A.

A weight 

balanced digraph:

A weighted digraph is undirected if aij = aji for all i, j ϵ V.

A weight 

undirected graph
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Appendix (Basic Notions from Graph Theory) 

Property of Laplacian matrix:
Based on the structure of L, at least one of the eigenvalues of L is zero and the rest of 

them have nonnegative real parts.

For strongly connected digraphs, rank(L) = N - 1.

For strongly connected and weight-balanced digraphs, denote the eigenvalues of 

Sym(L) = (L + LT) /2 one of them is zero and others nonnegative real.

For strongly connected and weight-balanced digraphs,

Intuitively, the Laplacian matrix can be viewed as a diffusion operator over the graph.

In a strongly connected digraph it is possible to reach any node starting from any other 

node by traversing edges in the direction(s) in which they point.

The smallest nonzero eigenvalue      of the symmetric part of the graph(strongly 

connected ansd balance) Laplacian is a measure of connectivity of a graph. (next slide)
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