ADVANCED
CONTROL

All Karimpour
Professor
Ferdowsi University of Mashhad

Reference:
Chi-Tsong Chen, “Linear System Theory and Design”, 1999.
| thank my student, Alireza Bemani for his help in correction slides of this lecture.



lecture 4

|_ecture 4

State Space Solutions and

Realization
Topics to be covered include:

<« Introduction.

« Solution of State Equations.

« Equivalent State Equations.

« Realizations.

« Solution of Linear Time-Varying (LTV) Equations.
« Equivalence Time-Varying Equations.

« Time-Varying Realizations. >
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What you will learn after studying this section

Solution of LTI state equations
Equivalent(algebraic) state equations
Zero state equivalent

Realizable state equations

Some different realization

Solution of LTV state equation

Fundamental matrix and stste transition matrix and their properties
State Space Representation for LTV Systems

3
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Introduction

General forms of state-space do
equations: di f(:l?(t):, u(t): t)

- | y(t) — g(m(t)au’(t)a t)
()~ AT B
y(t) = C(t)x(t) + D(t)u(t)

. N
State-space equation for a linear time ~ X(t) = AX(t) + Bu(t)
Invariant (LTI) system y(t) _ CX('[) n Du(t) ’

P

\_

If the initial condition and input are defined, then x(t), y(t) ?

4
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Solution of LTI state equation

Firstmethod: (1) = AX() + BU() x(O,. = X

We saw In the previous section: Ee“ = Ae™ =e™A

dt
By multiplying the state equation by e A, we have:

e “X(t) =e " Ax(t) + e “Bu(t)
e x()—e*Ax(t) =e “Bu(t)  %e*xw)=e"Buw

0

dt
Integrating both sides leads to: e *x(z)|. = [e*Bu(z)dr
And finally X(t) =e*x +[e" " Bu(r)dr

A(t-t,)

State transition equation X(t) =€ X + : e"Bu(r)dr
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Solution of LTI state equation

Second method:  x(t) = Ax(t) + Bu(t) X(t) LtO: X,
By Laplace transform we have:

SX(S) — X, = AX(S) + Bu(s)
X(s) = (sl — A)™x, + (sl — A" Bu(s)

t C A(ts Convolution
X(t) =e"x, + IoeA( 'Bu(r)dz egral

State transition equation X(t) — eA(H")Xto + jtz e BU(T)d T

6
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Solution of LTI state equation

X(t) = Ax(t) + Bu(t) X(t)|. =X
X(t) =le"x + [e"”Bu(r)dr
Methods for calculation eAt

t2 tn :
1- Exponential series: €% = | +’[A-|——|A2 +...+—IA +...

2- Finding a polynomial of order n—1 that is equivalent to eAt with
respect to the spectrum of A. e* =h(A)

3- Using Jordan form of A and... pA — QeAtQ—l

4. Using the inverse Laplace transform @ = L_l((S| = A)_l)
4
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Solution of LTI state equation

Example 1: Consider the following system. . {O —1}({0}“
1 -2 1

Determine x(t)

X(t)=e"x +[ e Bu(r)dr

First, we need to find e/t

-1 s+2 1 S
2541 S80 4 254 1]
s L+t)e —te"
2 et ol

(1+t)e’ —te’ : i|x(o) i { t— [(t—-7)e“u(r)dr }
te” (1-t)e" [A—(t—7))e“u(r)dr

s e S+2 Bl
e" =L((sl —A)")= qu i| j eft | 8°+25+1 s®+2s+1

|: 8
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Solution of LTI state equation

Example 2: Drive x(t) for a unit step applied | -2 1
as the input. X = X+ U

0 S+3 L

0 S
— - s+3

s+2 -1 1) |2 —
eAt _ L—l((SI . A)—l): L1£ le s+2  (s+2)(s+3)

2t

N e e—zt . e—st_
€ = O e—3t

Je 2(t—7) e—z(t—r)_e—S(t—r) {0

0 e [ %(0)] -0 g 30

B 1 7] 2(t-7) —3(t-7) B ]
e t|] € —e " ],
()= w @] Th guen BT =

0 e X, (0) | e

""" pour Aug 2024
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Example 3: a) Derive the state-space equation according to the chosen

states.

_—

1F|+ 1
X3

T_i,_

|
B

-~

y=1[0 1]{

x] [0
x| |1

B MEH!

X, }
X2

b) Derive the state-space equation according to the chosen states.

HEEHHEA,
=
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Equivalent state equation

Similarity transformation

X = AX+bu o
wW=PX
y =Ccx+du A=PAP? bH=Pb

E=cp™ d=d
1- It can lead to a simpler system.

2- It doesn’t change the eigenvalues.
3- Similar transfer function.
4- |t doesn’t change observability.

5- 1t doesn’t change controllability.

lecture 4

v'v:AW+ Ou

y =Cw+du

11
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Equivalent state equation

Invariance of eigenvalues

X = AX + bu W= PX v‘v:AW+5u
A=P AP Db=Pb i R
y=CX-I-C|U A T y = Ew+du

sl —Al=0 \Sl
e\spp-l AP - \P(sl AP = | }KHS' N‘P/A‘

Similarity transform doesn't change the eigenvalueizs
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Equivalent state equation

Similar transfer function

X = AX + bu W= PX VV=AW+5U
A=P AP* b=Pb i .
yZCX-I-dU A T y = Ew+du

g(s)=¢(sl —A)*b+d =cP*(sl —PAP*)'Pb+d
=cP'P(sl —A)"P'Pb+d =c(sl —A)'b+d
=9g(s)

Similarity transform doesn't change the transfer function
13
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Equivalent state equation

The application of similarity transformations.

Finding simpler similar systems.

Canonical form, Jordan form, modal form, ....

Scaling for better implementation.

14
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Equivalent state equation

The application of similarity transformations {x _{— 0.1 2 }F}{lo}

- u
Example 4: Consider following system: 0 —lix] (04

2 2

: X
y=[0.2 —1]{ }
XZ
- [y.x,t]=step(A,b,c.d);
100 | | : : : plot(t,x,t,y)
grid on

xlabel('Time(sec)’)
Suppose we need states to be
within the range of +10

Gl
B0

40

X, =7X, X, =7X,

?7 0
X=Px= X
1l 10 20 30 40 Ll B0 O r) 15

Time(sec) I
Dr. Ali Karimpour Aug 2024
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Equivalent state equation

The application of similarity transformations in scaling

MEREIMERE A L

- Xl ; 2 _| 2
y=102 ‘1]M ¢=cP*  d=d y = ]{ }
12 : : : : :

All states are in the

I S S e B S S . range within +10

(R 1
: i i i i i 6
0 10 20 30 40 a0 B0

Time(sec) Dr. Ali Karimpour Aug 2024
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Zero state equivalent

Definition 1: Two sets of state-space equations are zero-state equivalent
If there transfer functions are similar.

Example 5: a) Are the following state-space equations similar? b) Are
they zero-state equivalent?

{x {—2 O}{xl} H X=-2X+U
= +| |

X, 0 -1|x 0 y =X

=[1 1] &

-l

It is clear that they aren’t similar

U U

1 1
J— S e —
9(s) S+ 2 9(s) S+ 2

So the mentioned state-space equations are zero-state equivalent,

Dr. Ali Karimpour Aug 2024
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Zero state equivalent

Theorem 1: Two sets of state-space equations are X = AX+bu
zero-state equivalent if and only if the following y =cX +du
relations hold. W= Aw+Dbu

cA"b=cA™b m=0,1 2,....

Proof: Since two sets of state-space equations are zero-state equivalent,
their transfer functions must be the same:

d+c(sl —A)'b=d +c(sl —A)'b
With the use of series expansion, we have:
d +cbs” +cAbs” +cA’bs® +...=d +cbs* +CcAbs”’ + c—:ﬂzﬁsl‘; e

Dr. Ali Karimpour Aug 2024
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Realization

Skt Se This transformation Input-output desc_ription
X = Ax + Bu . (Transfer function)
yindg 0 =0 gl G(s)=C(sl -A)'B+E

Input-output description el State-space equations
(Transfer function) ; :
. T X = AX + Bu
i This transformation
G(s)=C(sl—A) "B+E is not unique y =Cx+Eu

Important note: For which types of systems does a state-space
description exist?

19
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Realization

Theorem 2: The transfer matrix G
IS @ proper matrix.
Proof: It is evident that to prove the theorem, both sides must be shown.

L G(s) is realizable ———>  G(s) is a proper matrix }

qxp(S) 18 realizable if and only If G(s)

G(s) Is a proper matrix — G(s) is realizable

First, we prove the first part.

Since G(s) Is realizable, there exists a state-space representation. X=Ax+Bu
y =Cx+ Du
So, the corresponding transfer function is:
adj(sl — A
G(S):C(SI_A)—lB_I_D:C J( )B-l-D ..........................................
sl —A
20
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Realization

Theorem 2: The transfer matrix G
IS @ proper matrix.

G(s) Is a proper matrix > G(s) is realizable
Now, we prove the second part.

qxp(S) 18 realizable if and only If G(s)

G(s) is a proper matrix transfer function, so we have:

G(s) =G(x) +G_(s) :G(oo)+dgs)[le” +Ns?+..+N s+N |

In above relation:  d(s)=S"+aS" +..+a S+a
Now we claim that the state-space equations of the system are given by:

—al, -al, .. -al -al] [l
I o .. 0, 0,
X = O:p I:p O:p ():p X+ 0:p u C(SI ! A)—lB_I_ D 8 :G(S)
0, o .. I 0, | |0, ]
y=[N. N, .. N, N]Jx+G(o)u 21
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Realization

Theorem 2: The transfer matrix G,,,(s) 1s realizable if and only if G(s)

IS @ proper matrix.
Now we claim that the state-space eguations of the system are given by:

_—al —al .. —al —al h
o VT 0 o helek  CBI=AB+D=....=G(s)
o, o . 1L o | |0
y=[N, N, .. N Nr]x—i-_G(oo)u S
Z, Z &7 =L
VA / —
(SI _A)—lB £ .2 B Ah (SI —A) .2 SZ3 Z2
SL. =i
_Zh_ _Zr_ SZ;"ZZ

SZ. ==l Lol =l Szl:(_al_%_ sztl

S SDr AlyKarimpour Aug 2024
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Realization

Theorem 2: The transfer matrix G,,,(s) Is realizable if and only If G(s)

IS @ proper matrix.

—al

—a2|p _ar—llp
, o0, . 0,
X= Op Ip Op Op
|0, 0, .. 1 0, |
y=[N, N, .. N, NIx+G(=)u
Sr—l
Z = | /
(sl

C(sl = A)"B+G(x0)=C

—al ]|
rp

(L~

&
jou  C(sI—A)'B+D=...=G(s)
o,| BSZ =L 57 =7 -
/
: —al—iz—...—:f;jzl+|P
_\Srz | — 1
*d(s) d(s)
o
Z

+D= L[le“‘l +NS?+...+ N |+G(c0)
d(s)

23
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Realization

Example 6: Find the state-space of following system:

45-10 3 ]
e S
| (2s+1)(s+2) (s+2)

45-10 3 ] T —12 3 ]
| 2s+1 s+2 |_|2 0 25 +1 S+2
G(s)= 1 s+1 {o o} 1 s+1
| (2s+1)(s+2) (s+2) | L (2s+1)(s+2) (s+2) |
G(s)—_z 0 N 1 -6(s+2)* 3(s+2)(s+0.5)
10 0] s+455°+65+2| 05(5+2) (s+1)(s+0.5)

2 0 1 -6 3 -24 75 -24 3
G(s) = + S+ S+
0 0] $°+455°+6s+2|| 0 1 05 15 1 05

24
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Realization

Example 6: Find the state-space of following system:

45-10 3 ]
e S
| (2s+1)(s+2) (s+2)

2 0 1 -6 3 —-24 1.5 -24 3
G(s) = + s* + S+
0 0| s°+45s°+6s+2|| 0 1 05 15 1 05

~45 0 (-6 0 -2 0 10
0 -45/0 -6:0 -2/ (01
|1 o0io0 0 i0 O 0 0
X = I X+ u
o 1 :0 010 0] 0.0}
0O 01 0 0 O 0 0
0 0i0 1 0 0] |00
6 3 i-24 75,-24 3 2 0
y= ! ! X+ u
{ 0 1 05 15! 1 0.5} {0 0} 25
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e
Y(5)=G((8) =G(s)| .

u
p

y(s) =G(s)u(s)=G_(s)u, +G (s_)u; +--+G_(S)u,
y(s) =G(s)u(s) =y,.(s)+ Y., (s)+---Y,(s)
e AL ol

y—y.+y.-[c. ¢ Xl}[dl dz]{“l}
_XZ u2




Realization
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Example 7: Find the state-space of following - 4s-10 3
system: Ge)=| 2 i
| (2s+1)(s+2) (s+2) ]

Column 1 Column 2 - 3

[ 4s-10 ] G.(s) = g:%

G, (s)= 251+1 512
| (25 +1)(s+2) | G ()= _O}r 1 {3(S+2)}
2] N 0] s*+4s+4| s+1

O s*+25s+1

6.(5) = 2], 1 {—685.;2)}

o

o |-25 -1 1
X = X +| |u
1 0 0
-6 -12 2
y, = X +| |u,
0 05 0

o (1[0 1 3] [6
o el
s*+25s+1|| O

—3 6X—l—ou
ycz_llz 0l 2 57
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Realization

Example 7: Find the state-space of following

system:

Column 1

Column 2

o [-25 -1] [1 |
X = X +| |u X,
1 0 0

[-6 -12 )
YaZl o o5 [

25

1

0

0

—6
0

13

-1 0 0 1 0

0 0 0 0 0
X+

0 -4 -4 |0 1

0 1 0] |00

~12 3 6] [2 Ofu,
X+
05 1 1| |0 0]u

lecture 4

4s-10 3
e S
| (2s+1)(s+2) (s+2)

1 oot

3 6 0
Yoo = 1 1X2+ Ouz

28

Dr. Ali Karimpour Aug 2024



lecture 4

Solution of LTV state equation

In this section, we aim to solve an LTV system
X(t) = A()X(t) + B(t)u(t)
y(t) =C(t)x(t) + D(t)u(t)

First, we solve the homogeneous part.
X(t) = At)x(t)

Definition 2(Fundamental matrix): Let A be an n x n matrix.
Consider n linearly independent initial conditions X, (t,), X5(t), ...
, X(tp) and their corresponding responses x,(t), Xs(t), ... , X,(t).
The fundamental matrix Is then defined as:

X(@t)=[x@t) %@ - x )]

29
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Solution of LTV state equation

Example 8: Find the fundamental matrix of 0 0
. _ X(t) = X(t)
following system: t 0
Consider following initial condition:

o |2 [ 1
0=, Xl(t){o.w} { 1 1 }
=3 = X (1) = 2 2
0~ 1 (0 1 0.5t 0.5t +2
x.( 2| 77 |05t +2

Now let follo;/ving Initial condition:

1
x,(0) = xﬁ){o_az} :X(t)_{ 1 o}

0
0.5t 1
0
X<, xz(t>=m

Note: Fundamental matrix is ..... 30
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Solution of LTV state equation

Note: The fundamental matrix X(t) satisfies the following homogeneous

eguation.
X(t) = A(t)x(t)

So we have:

X (t) = A(t) X (t)

LLemmal: The fundamental matrix X(t) is non-singular for all times.

31
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Solution of LTV state equation

Definition 3: (State Transition Matrix):

Let X(t) be any fundamental matrices of the following homogenous system:

x(t) = At)x(t)

So, the state transition matrix defined as:
DO(t,t )= X ()X (t)

The state transition matrix is the unique solution of the following
equation:

0
S ML) = ADO(L,)

Ot ,t)=1
32
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Solution of LTV state equation

Example 9: Derive the state transition matrix for the 0
following system: X(t) = L O}X(t)
According to previous example the fundamental matrix ot the system is:

1 1
X(t) =
0.5t 0.5t +2

1 1 J0.25t+1 -05 1 0
Ot,t)= X)X ()= O(t,t) =
0.5t 05t°+2]| —0.25° 0.5 0.5(t" 1) 1

And another fundamental matrix Is:

1 0
X(0)= {O.Stz 1}

1 o 1 o0 I
cp(t,to)=><(t)Xl(to){olsﬁ J{_O.Stz J q)(t’t(’){o.zs(tz—t;) 1}

Note: The state transition matrix ................ 33

Dr. Ali Karimpour Aug 2024



lecture 4

Property of state transition matrix

- o=

2-  Dtt)= DO(ty,t)

3- D(t,,t))D(1;,tp) = D(t,,1)

34
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Solution of LTV state equation

In this section, we aimed to solve an ~ X(t) = A(t)x(t) + B(t)u(t)
i y(t) = C(t)X(t) + D(t)u(t)

\We propose that the solution X(t) = @ (t,t))x +[ @(t,7)B(r)u(r)dz

to the above system is: _ (D(t,to)(xto +[ D(t,,7) B(z')u(z')dr)

To prove our proposal, we must show it meets the initial condition:
X(t,) =D(t,,t,)x +[ P, 7)B(r)u(r)dr =X

It must also satisfy the mentioned equation:

X(E) = eovreeeeeeeeeee e, = A()X(t) + B(t)u(t)
So, the output Is:

y(t) =C(t)D(t,t,)x +C(t)[ D(t,7)B(r)u(r)dz + D(t)u(t) 2

Dr. Ali Karimpour Aug 2024



Solution of LTV state equation

In this section, we aimed to solve an ~ X(t) = A(t)x(t) + B(t)u(t)

sl y(t) = C()X(t) + D(t)u(t)
\We propose that the solution X(t) = @(t,t)x_+[ ®(t,7)B(r)u(z)dz
to the above system is: _ (D(t,to)(xto +[ D, 7) B(z')u(z')dr)

So, the output Is:

y(t) =C(t)D(t,t,)x + C(t)ﬁo d(t,7)B(r)u(zr)dzr + D(t)u(t)
Zero-input response is:

y(t) =C(t)d(t,t,)x X(t) =D(t,t,)x

Zero-state response Is:

y(t) = C(t)ﬁo d(t,7)B(z)u(r)dz + D(t)u(t)

36

y(t) =] (C(t)D(t,7)B(z) + D(t)S(t —7))u(zr)dr



Solution of LTV state equation

In this section, we aimed to solve an ~ X(t) = A(t)x(t) + B(t)u(t)
) y(t) = C(O)X(t) + D()u(t)
\We propose that the solution X(t) = @(t,t))x +[ @(t,7)B(r)u(r)dz
to the above system is: _ (D(t,to)(xto +[ D, 7) B(z')u(z')dr)
So, the output Is:

y(t) =C(t)D(t,t,)x + C(t)ﬁo d(t,7)B(r)u(z)dz + D(t)u(t)
Zero-state response Is:

| y(t) = [, (CO)P(t,7)B(z) + D()S(t —7) Ju(z)dz
We previously saw:

y(t) =, G(t.,7)u(r)dz
G(t,7) =C(t)P(t,7)B(r) + D(t)(t —7) =C(t) X (t) X *(£)B(z) + D(t)S(t —7)

Dr. Ali Karimpour Aug 2024
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Equivalent state equation for LTV systems

Similarity transformation

X = AX + bu — W=AW+5U
wW=PXx
y =CX+du A=P AP bH=Pb y =Cw+du

d=d
Key properties: Similar eigenvalues and transfer functions.

But in LTV system:

E=cP™

X = A(t)X + b(t)u Similarity LTV transformation \{j = A(t)W+ S(t)u
>

y=c(t)x+d(t)u w=P(t)x y = E(t)w+ d (t)u

AlD)= . B(t)=P(t)b, &(t)=cP(t), d =

Key properties: Similar impulse response. 48
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Equivalent state equation for LTV systems

X=A(t)x+b(t)u Similarity LTV transformation W = A(t)W + B(t)u

y =c(t)x+d(t)u W y = E(t)w+d (t)u
Theorem 3: Let A, be an arbitrary constant matrix. There exists a
transformation matrix P(t) such that: At)=A
Proof:
X = A(t)X T b(t)u Similarity LTV transformation W= AOW+ B(t)u
— = A
y =c(t)x+d(t)u WP (O y=C(t)w+d(t)u
4 Fundumental matrix ! Fundumental matrix
X (t) W (t) = e*
W (t) =e™ =P(t) X (1) P(t) =e™ X7 (t)

ING T = A 39
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Equivalent state equation for LTV systems

In the special case of the previous theorem where A,=0, we have:

\: I}
e
3 \ . :Qv:
i

:J D
u 5 W % hod 3 +{.
—— N [ = ¢

+

40
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Equivalent state equation for LTV systems
X = A(t)X 4 b(t)u Similarity LTV transformation W = A(t)W n B(t)u

y =c(t)x+d(t)u W:p(?) y =CE(t)w+d(t)u

Definition 4: A matrix P(t) is called a Lyapunov transformation if:

1- P(t) is nonsingular.

2- P(t) and P'(t) are continuos.

3- P(t) and P-1(t) are bounded for all t.

41
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Equivalent state equation for LTV systems

Exanwem:ForfcmmegsystemWHu
a similarity transformation such that: x,] |0 -1]x] |0
3 0 O N 1]{)(1}
At) = A = y=1
(t) = A {o o} X,
Show the new system. Is it a Lyapunov transformation?
The desired similarity transformation is: P(t) =e™X (1)
1 Ofe* O] [e* O Is it not a Lyapunov
P(t) = = :
0 11 0 e 0 e transformation.

A) =(Pt)A+P() )P (1) =@e; g}{_oz _OJ{ZSH SDF““) :B 8}

: e 017 Te® /
b(t):P(t)b(t){ 4 et}M{o} ety =ct)P'®)=[e €] d)=0

Dr. Ali Karimpour Aug 2024
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Realization for LTV systems

State-space equation Thjs transformation Impulse response

X= Al iaGa ) B =CEXDX (2)B()
is unique ’
y=C(t)x+ D(t)u +D)S(t—7)

Impulse response

Realization State-space equation
G(t,7)=C(t)X(t)X "(r)B - v =
(t,2) AR IR This transformation i
+D(t)o(t—17) is not unique y=C(t)x+ D(t)u

Important note: For which types of systems does a state-space
description exist?

43
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Realization

Theorem 4: The impulse response matrix G,.,(¢,7) Is realizable if and
only if G(t,z) can be decomposed as follows:.

Proof: It is evident that to prove the theorem, both sides must be shown.

[impulse response matrix G(t,t) C———> G(t,z) =M (t)N(z)+ D(t)S(t —T)}

IS realizable

G(t,z) =M (t)N(z) + D(t)o(t —z) ——— impulse response matrix G(t,r)

_ : IS realizable
First, we prove the first part.

Since G(t,7) Is realizable, there exists a state-space representation.
X =A(t)x+ B(t)u
y=C(t)x+ D(t)u

So, the corresponding impulse response matrix is:

G(t,7) =C(t)®(t,7)B(r) + D(t)S(t —7) =.........= M (t)N(r) + D(t)S5(t - 7)

Dr. Ali Karimpour Aug 2024



lecture 4

Realization

Theorem 4: The impulse response matrix G,.,(¢,7) Is realizable if and
only if G(t,z) can be decomposed as follows:.

Proof: It is evident that to prove the theorem, both sides must be shown.

G(t,z)=M ()N (z)+ D(t)o(t —z) —— impulse response matrix G(t,)

Is realizable

Now, we prove the second part.

We propose that the state-space equation is:

0
X=|:
0

y = M (t)x + D_(t)u

0

0

X+ N(@tu = G(t,7) =C(t)D(t,7)B(r) + D(t)S(t—7)

=M (@)IN(z)+D(t)o(t —7)
=M({U)N(z)+D(t)o(t—17)

45
Dr. Ali Karimpour Aug 2024



lecture 4

Realization for LTV systems

Example 11: Consider the impulse response of an LTI system given by
g(t)=te’. If possible, find one LTI realization and one LTV realization.

LTI realization:

1 1

g(t) =te”

g(s) =

LTV realization:

gt-7)=(t-r)e"

e—z

glt—7)=[e" te* ]{_ 7

At
T

(S—A) S —2As+ 1

24 =7 1

X+| _u
g
0 1x

el e
X+ u
0 0 e

-e/u te/lt ]X
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Dr. Ali Karimpour Aug 2024



Exercises

lecture 4

Exercise 1: Derive the response of system to initial condition H

Lo

Exercise 2: Derive the response to unit step.

(zero Initial condition)

Exercise 3: Derive the Jordan and modal
canonical forms for following system.

fE2=r70 0 1
W =i =l 0 1 |[x+|{0|u
AR 2 12 1

y=[1 -1 0Jx

47
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EXxerc

1Ses

Exercise 4: Find a similarity transformation such
that the range of state variables is the same as the
output for the given system. If a step input with

amplitude a is applied, adjust a such that all states ¥~

and the output remain within the range of £10.

=220
x={1 0

lecture 4

i 0 1
1 [x+(0|u
0 -2 -2 1

?1 -1 0x

Exercise 5: Consider the following systems. Are they similar? Are they

zero-state equivalent?

y=[1
Exercise 6: Find a realization for the
Glven system.

B 1
X={0 2 2|x+|1
0 0 1 0

G(s) =

PSR 1
X201 =215 xq{l}u
rogelig = 0
y=[1 -1 O0]x
2 e
s+1 (s+1)(s+2)
il sk 8
s+1 S+ 2  Dr. A Karimpour Aug 2024
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Exercises

Exercise 7: Find the realization by BE 253
determining a realization for each column G(s) = S+; (s+1)(s+2)
and then augmenting them. =7 >

' S+1 S+ 2

Exercise 8: Derive the fundamental matrix and the state transition
matrix for the given systems.

; {0 1} e —sint 0
0 t Ay | 0 —cost

Exercise 9: Derive an LTI realization for the given systems.

| =sint 0
X= X
{ 0 —cosJ 49
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Exercises

Exercise 10: Derive an LTI realization and an LTV realization if possible.
g (t) i tZe/lt
Exercise 11: Derive an LTI realization and an LTV realization if possible.

g(t,7) =sint(e “’)cosr

Exercise 12: For the matrix A:{a“(t) a”(t)} show that:
a (t) a,(t)

detd(t,t,) =exp|[ (a,(r) + a,(z))dz]

Exercise 13: Show that X(t)=e~CeBt is a solution for following
system.

X = AX + XB X(0)=C 4
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Exercises

CDll(t’to) q)lz(t’to)

Exercise 14: Let d(t,t ) =
q)zl(t’to) CI)22(1-"":0)

} IS the state transition

matrix of following system 7 {Al(t) A (t)}x
0 A
Shoe that: ®_(t,t)=0 foralltandt
(8/ot)D (t,t)=Ad (t,t) for i=1,2
Exercise 15: show that the solution of

X (t) = AX (1) - X (t)A

X(t)=e*X(0)e ™
and eigenvalues of X(t) is independent of t. 51
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Exercises

Exercise 16: Consider the following system(Final 2014):
a) Using a similarity transformation, convert the system to one where

the eigenvalues are on the main diagonal.
b) Using an appropriate variable change,
convert the system to one where the matrix
A=0. What is the relationship between the

Impulse response of the new system and the
original system?

X2

Exercise 17: Consider the following system(Final 2014):

a) Using a similarity transformation, convert
the system to the controllable canonical form
If possible.

a) Using an appropriate variable change,
convert the system to one where the matrix
A=0.

0 0

=B 0

0 0

=

0

-5
=[1 2 3]x

X+

lecture 4

X+

52
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Exercises

Exercise 18: Derive the fundamental matrix and the state transition
matrix for the given systems(Fianl 2014).

e
X = X

93
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Answer 1:

Answer 2:

xa):{

cost +sint
cost —sint

y(t)=5e"'sint fort>0

Answer 5: Not similar but zero state equivalent.

Answer 6:

|

-3 0 -2
aisld A
=20/ 510
Q=170
2 2 4
o sl AR

e

—2
0
0

:ﬂx{

X+

Answers to selected problems

LN SO ke

lecture 4

y
u
1 54
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Answer 8:

Answer 9:

Answer 10:

Answer 12:

lecture 4

Answers to selected problems

1 [fe5 gr
H{f:l :'-'[ fu 0.5 }
0 et

1 L Jrr:] S5 e
Dir.mp) =
0

1,
g0 =13

e[y ]

0 2
E.-H'-Ln;l U_s{erem — i
D) = 0 ==
em-:.:—u:-:u I 0
¢{r1 ID} = [ {:. F—Elﬂr-!-:-lﬂfr]

-
i~e
x=0-x+ | =2re™™ |u v=T[e" re" " e"x

E,a.ll'

3 =30 A7 l
i={1 0 'l]:!x-i—i:l} u v=[0D0 2 be
{ l 0 0
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