# ADVANCED CONTROL

Ali Karimpour Professor

Ferdowsi University of Mashhad

#### Reference:

Chi-Tsong Chen, "Linear System Theory and Design", 1999.

I thank my student, Alireza Bemani for his help in correction slides of this lecture.

## Lecture 3

## Basic Idea of Linear Algebra-Part II

## Topics to be covered include:

- Functions of Square Matrix.
- Lyapunov Equation.
- Some Useful Formula.
- \* Quadratic Form and Positive Definiteness.
- Singular Value Decomposition.
- Norm of Matrices

## What you will learn after studying this section

- Calculation of Function of Square Matrix
- Minimal Polynomials and Characteristic Polynomials
- Cayley-Hamilton Theorem
- Equal Polynomials on the Spectrum of A
- Lyapunov Equation and its Solution
- Symmetric Matrix and Quadratic Form and Orthogonal Matrix
- Matrix and PD/ND Matrix
- Singular Value Decomposition
- Null Space and Range Space From SVD
- Norm of Matrices

Polynomial of square matrices  $f(\lambda) = \lambda^3 + 2\lambda^2 - 6 \rightarrow f(A) = A^3 + 2A^2 - 6I$ 

**Block matrices** 

$$A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix} \rightarrow A^2 = \begin{bmatrix} A_1^2 & 0 \\ 0 & A_2^2 \end{bmatrix} \cdots \rightarrow A^k = \begin{bmatrix} A_1^k & 0 \\ 0 & A_2^k \end{bmatrix} \implies f(A) = \begin{bmatrix} f(A_1) & 0 \\ 0 & f(A_2) \end{bmatrix}$$

Jordan form

$$A = Q\hat{A}Q^{-1}, \quad \hat{A} = Q^{-1}AQ$$

$$A^{k} = (Q\hat{A}Q^{-1})(Q\hat{A}Q^{-1})....(Q\hat{A}Q^{-1}) = Q\hat{A}^{k}Q^{-1}$$

And in general

$$f(A) = Qf(\hat{A})Q^{-1}, \quad f(\hat{A}) = Q^{-1}f(A)Q$$

**Example 1:** The matrix A, its diagonal form, and the corresponding transformation are given. Find  $A^6+12A^4+3A^2$ .

$$A = \begin{bmatrix} 1 & 0 & 12 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix}$$

$$Q = \begin{bmatrix} 12 & 1 & 0 \\ 1 & 0 & 1 \\ 3 & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 12 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} \qquad Q = \begin{bmatrix} 12 & 1 & 0 \\ 1 & 0 & 1 \\ 3 & 0 & 0 \end{bmatrix} \qquad \hat{A} = Q^{-1}AQ = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

We know

$$A^{6} + 12A^{4} + 3A^{2} = Q(\hat{A}^{6} + 12\hat{A}^{4} + 3\hat{A}^{2})Q^{-1}$$

$$\hat{A}^{6} + 12\hat{A}^{4} + 3\hat{A}^{2} = \begin{bmatrix} 4^{6} & 0 & 0 \\ 0 & 1^{6} & 0 \\ 0 & 0 & 1^{6} \end{bmatrix} + 12\begin{bmatrix} 4^{4} & 0 & 0 \\ 0 & 1^{4} & 0 \\ 0 & 0 & 1^{4} \end{bmatrix} + 3\begin{bmatrix} 4^{2} & 0 & 0 \\ 0 & 1^{2} & 0 \\ 0 & 0 & 1^{2} \end{bmatrix} = \begin{bmatrix} 7216 & 0 & 0 \\ 0 & 16 & 0 \\ 0 & 0 & 16 \end{bmatrix}$$

$$A^{6} + 12A^{4} + 3A^{2} = \begin{bmatrix} 12 & 1 & 0 \\ 1 & 0 & 1 \\ 3 & 0 & 0 \end{bmatrix} \begin{bmatrix} 7216 & 0 & 0 \\ 0 & 16 & 0 \\ 0 & 0 & 16 \end{bmatrix} \begin{bmatrix} 12 & 1 & 0 \\ 1 & 0 & 1 \\ 3 & 0 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 16 & 0 & 28800 \\ 0 & 16 & 2400 \\ 0 & 0 & 7216 \end{bmatrix}$$

#### Monic polynomial

A polynomial whose leading coefficient is equal to one is called a **monic polynomial**. For example:

$$\lambda^6 + 12\lambda^4 + 3\lambda^2 + 5$$

#### Minimal polynomial

A monic polynomial of the smallest degree that nullifies a matrix A is called the **minimal polynomial** of the matrix A and it is denoted by:

$$\psi(\lambda)$$

#### Characteristic polynomial

The characteristic polynomial of an  $n \times n$  matrix A is given by:

$$\Delta(\lambda) = |\lambda I - A| = \prod_{i} (\lambda - \lambda_{i})^{n_{i}} \qquad \sum_{i} n_{i} = n$$

The characteristic polynomial of an  $n \times n$  matrix A is given by:

$$\Delta(\lambda) = |\lambda I - A| = \prod_{i} (\lambda - \lambda_{i})^{n_{i}} \qquad \sum_{i} n_{i} = n$$

Calculation of the minimal polynomial (According to Nilpotent property):

$$\psi(\lambda) = \prod_{i} (\lambda - \lambda_{i})^{\overline{n}_{i}} \qquad \sum_{i} \overline{n}_{i} \leq \sum_{i} n_{i} = n$$

 $\overline{n_i}$  is is the size of the largest block corresponding to  $\lambda_i$  in the Jordan form.

**Theorem 1:** (Cayley-Hamilton Theorem): The matrix A satisfies its own characteristic equation.

**Proof:** We know

$$\Delta(\lambda) = \prod_{i} (\lambda - \lambda_i)^{n_i} = \psi(\lambda)h(\lambda)$$

By Nilpotent property):

$$\Delta(A) = \psi(A)h(A) = 0.h(A) = 0$$

The **characteristic polynomial** of an  $n \times n$  matrix A is given by:

$$\Delta(\lambda) = |\lambda I - A| = \prod_{i} (\lambda - \lambda_i)^{n_i} \qquad \sum_{i} n_i = n$$

The **minimal polynomial** of an  $n \times n$  matrix A is given by:

$$\psi(\lambda) = \prod_{i} (\lambda - \lambda_i)^{\overline{n}_i} \qquad \sum_{i} \overline{n}_i \leq \sum_{i} n_i = n$$

 $\psi(\lambda) = \prod_{i} (\lambda - \lambda_{i})^{\overline{n}_{i}} \qquad \sum_{i} \overline{n}_{i} \leq \sum_{i} n_{i} = n$  **Example 2:** Find the characteristic polynomial and the minimal polynomial of the following matrices:

$$I) \quad A = \begin{bmatrix} \lambda_1 & 1 & 0 & 0 & 0 \\ 0 & \lambda_1 & 1 & 0 & 0 \\ 0 & 0 & \lambda_1 & 1 & 0 \\ 0 & 0 & 0 & \lambda_1 & 0 \\ 0 & 0 & 0 & 0 & \lambda_2 \end{bmatrix}$$

$$II) \quad A = \begin{bmatrix} \lambda_1 & 1 & 0 & 0 & 0 \\ 0 & \lambda_1 & 1 & 0 & 0 \\ 0 & 0 & \lambda_1 & 0 & 0 \\ 0 & 0 & 0 & \lambda_1 & 0 \\ 0 & 0 & 0 & 0 & \lambda_2 \end{bmatrix}$$

$$\left| \Delta(\lambda) = \left| \lambda I - A \right| = \prod_{i} (\lambda - \lambda_{i})^{n_{i}} = (\lambda - \lambda_{1})^{4} (\lambda - \lambda_{2}) \right|$$

$$\psi(\lambda) = \prod_{i} (\lambda - \lambda_{i})^{\overline{n}_{i}} = (\lambda - \lambda_{1})^{4} (\lambda - \lambda_{2})$$

$$|\Delta(\lambda)| = |\lambda I - A| = \prod_{i} (\lambda - \lambda_{i})^{n_{i}} = (\lambda - \lambda_{1})^{4} (\lambda - \lambda_{2})$$

$$\psi(\lambda) = \prod_{i} (\lambda - \lambda_{i})^{\overline{n}_{i}} = (\lambda - \lambda_{1})^{3} (\lambda - \lambda_{2})$$

**Example 2:** Find the characteristic polynomial and the minimal polynomial of the following matrices:

III) 
$$A = \begin{bmatrix} \lambda_1 & 1 & 0 & 0 & 0 \\ 0 & \lambda_1 & 0 & 0 & 0 \\ 0 & 0 & \lambda_1 & 1 & 0 \\ 0 & 0 & 0 & \lambda_1 & 0 \\ 0 & 0 & 0 & 0 & \lambda_2 \end{bmatrix}$$

$$IV) \quad A = \begin{bmatrix} \lambda_1 & 1 & 0 & 0 & 0 \\ 0 & \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_1 & 0 & 0 & 0 \\ 0 & 0 & \lambda_1 & 0 & 0 \\ 0 & 0 & 0 & \lambda_1 & 0 \\ 0 & 0 & 0 & \lambda_2 \end{bmatrix}$$

$$V) \quad A = \begin{bmatrix} \lambda_1 & 0 & 0 & 0 & 0 \\ 0 & \lambda_1 & 0 & 0 & 0 \\ 0 & 0 & \lambda_1 & 0 & 0 \\ 0 & 0 & 0 & \lambda_1 & 0 \\ 0 & 0 & 0 & 0 & \lambda_2 \end{bmatrix}$$

$$|\Delta(\lambda)| = |\lambda I - A| = \prod_{i} (\lambda - \lambda_{i})^{n_{i}} = (\lambda - \lambda_{1})^{4} (\lambda - \lambda_{2})$$

$$\psi(\lambda) = \prod_{i} (\lambda - \lambda_i)^{\bar{n}_i} = (\lambda - \lambda_1)^2 (\lambda - \lambda_2)$$

$$|\Delta(\lambda)| = |\lambda I - A| = \prod_{i} (\lambda - \lambda_{i})^{n_{i}} = (\lambda - \lambda_{1})^{4} (\lambda - \lambda_{2})$$

$$\psi(\lambda) = \prod_{i} (\lambda - \lambda_{i})^{\overline{n}_{i}} = (\lambda - \lambda_{1})^{2} (\lambda - \lambda_{2})$$

$$\left| \Delta(\lambda) = \left| \lambda I - A \right| = \prod_{i} (\lambda - \lambda_{i})^{n_{i}} = (\lambda - \lambda_{1})^{4} (\lambda - \lambda_{2})^{n_{i}}$$

$$\psi(\lambda) = \prod_{i} (\lambda - \lambda_{i})^{\overline{n}_{i}} = (\lambda - \lambda_{1})(\lambda - \lambda_{2})$$

Consider an arbitrary polynomial  $f(\lambda)$  and a matrix A of size  $n \times n$ .

Function  $f(\lambda)$  can be expressed as:

$$f(\lambda) = q(\lambda)\Delta(\lambda) + h(\lambda)$$

Now, to compute f(A)f(A)f(A), we have:

$$f(A) = q(A)\Delta(A) + h(A)$$

And according to the Cayley-Hamilton theorem:

$$f(A) = q(A).0 + h(A) = h(A)$$
  $\Rightarrow$   $f(A) = h(A)$ 

The polynomial  $h(\lambda)$  that is equivalent to  $f(\lambda)$  on the spectrum of A is called the polynomial equivalent to  $f(\lambda)$  on the spectrum of A.

Note: The degree of  $h(\lambda)$ ?

Note: Calculation of  $h(\lambda)$ ?

 $h(\lambda)$ 

Calculation of  $h(\lambda)$  for the case where the matrix A has non-repeated eigenvalues.

$$f(\lambda) = q(\lambda)\Delta(\lambda) + h(\lambda)$$

$$f(\lambda) = q(\lambda)\Delta(\lambda) + \beta_{n-1}\lambda^{n-1} + \dots + \beta_1\lambda + \beta_0$$

By substituting the eigenvalues of A into the above equation, we get:

$$f(\lambda_{1}) = q(\lambda_{1})\Delta(\lambda_{1}) + \beta_{n-1}\lambda_{1}^{n-1} + \dots + \beta_{1}\lambda_{1} + \beta_{0} \longrightarrow f(\lambda_{1}) = \beta_{n-1}\lambda_{1}^{n-1} + \dots + \beta_{1}\lambda_{1} + \beta_{0}$$

$$f(\lambda_{2}) = q(\lambda_{2})\Delta(\lambda_{2}) + \beta_{n-1}\lambda_{2}^{n-1} + \dots + \beta_{1}\lambda_{2} + \beta_{0} \longrightarrow f(\lambda_{2}) = \beta_{n-1}\lambda_{2}^{n-1} + \dots + \beta_{1}\lambda_{2} + \beta_{0}$$

$$f(\lambda_n) = q(\lambda_n)\Delta(\lambda_n) + \beta_{n-1}\lambda_n^{n-1} + \dots + \beta_1\lambda_n + \beta_0 \quad \rightarrow \quad \left\{ f(\lambda_n) = \beta_{n-1}\lambda_n^{n-1} + \dots + \beta_1\lambda_n + \beta_0 \right\}$$

$$f(\lambda_{1}) = \beta_{n-1}\lambda_{1}^{n-1} + ... + \beta_{1}\lambda_{1} + \beta_{0}$$

$$f(\lambda_2) = \beta_{n-1}\lambda_2^{n-1} + ... + \beta_1\lambda_2 + \beta_0$$

$$f(\lambda_n) = \beta_{n-1} \lambda_n^{n-1} + \dots + \beta_1 \lambda_n + \beta_0$$

After solving the nnn equations with nnn unknowns, the values of the unknowns are obtained.

$$\beta_{n-1}, \beta_{n-2}, ..., \beta_1, \beta_0$$

Calculation of  $h(\lambda)$  for the case where the matrix A has non-repeated eigenvalues.

**Theorem 2:** Consider the equation  $f(\lambda)$  and the matrix A with dimensions  $n \times n$  with the following characteristic equation.

$$\Delta(\lambda) = \prod_{i=1}^{m} (\lambda - \lambda_i)^{n_i} \quad where \quad n = \sum_{i=1}^{m} n_i$$

 $\Delta(\lambda) = \prod_{i=1}^{m} (\lambda - \lambda_i)^{n_i} \quad \text{where } n = \sum_{i=1}^{m} n_i$ The polynomial  $h(\lambda)$  of degree n-1, equivalent to  $f(\lambda)$  over the spectrum of A, is defined as follows.

$$h(\lambda) = \beta_0 + \beta_1 \lambda + \dots + \beta_{n-1} \lambda^{n-1}$$

After solving the following n equations with n unknowns, the unknown coefficients of  $h(\lambda)$  are calculated.

In this relation:

$$f^{l}(\lambda_{i}) = h^{l}(\lambda_{i})$$
 for  $l = 0, 1, ..., n_{i} - 1$  and  $i = 1, 2, ..., m$ 

$$f^{l}(\lambda) = \frac{d^{l}f(\lambda)}{d\lambda^{l}}, \quad h^{l}(\lambda) = \frac{d^{l}h(\lambda)}{d\lambda^{l}}$$

And finally:

$$f(A) = h(A)$$

#### **Example 3**: Determine A<sup>100</sup>.

$$A = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}$$

Let  $f(\lambda) = \lambda^{100}$ 

The eigenvalues of A should now be calculated.

$$\Delta(A) = |\lambda I - A| = \begin{vmatrix} \lambda & -1 \\ 1 & \lambda + 2 \end{vmatrix} = \lambda^2 + 2\lambda + 1 \qquad \lambda_1 = \lambda_2 = -1$$

Now,  $h(\lambda)$  should be considered as follows:

$$h(\lambda) = \beta_0 + \beta_1 \lambda$$

$$f(-1) = h(-1)$$
  $\Rightarrow$   $(-1)^{100} = \beta_0 - \beta_1$ 

$$f'(-1) = h'(-1)$$
  $\Rightarrow$   $100(-1)^{99} = \beta_1$ 

Now,  $h(\lambda)$  is given by:

$$h(\lambda) = -99 - 100\lambda \qquad A^{100} = -99 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - 100 \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} = \begin{bmatrix} -99 & -100 \\ 100 & 101 \end{bmatrix}$$

#### **Example 4:** Determine $e^{At}$ .

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 0 & 1 & 0 \\ 1 & 0 & 3 \end{bmatrix}$$

Let 
$$f(\lambda t) = e^{\lambda t}$$

The eigenvalues of A should now be calculated.

$$\Delta(A) = |\lambda I - A| = (\lambda - 1)^2 (\lambda - 2)$$

$$\lambda_1 = \lambda_2 = 1, \quad \lambda_3 = 2$$

Now,  $h(\lambda)$  should be considered as follows:

$$h(\lambda) = \beta_0 + \beta_1 \lambda + \beta_2 \lambda^2$$

$$f(1) = h(1)$$
  $\Rightarrow$   $e^t = \beta_0 + \beta_1 + \beta_2$ 

$$\beta_0 = -2te^t + e^{2t}$$

$$f'(1) = h'(1)$$
  $\Rightarrow$   $te^t = \beta_1 + 2\beta_2$   $\beta_1 = 3te^t + 2e^t - 2e^{2t}$ 

$$\beta_1 = 3te^t + 2e^t - 2e^2$$

$$f(2) = h(2)$$
  $\Rightarrow$ 

$$f(2) = h(2)$$
  $\Rightarrow$   $e^{2t} = \beta_0 + 2\beta_1 + 4\beta_2$   $\beta_2 = -te^t - e^t + e^{2t}$ 

$$\beta_2 = -te^t - e^t + e^{2t}$$

Now f(A) is:

Now 
$$f(A)$$
 is:
$$e^{At} = \beta_0 I + \beta_1 A + \beta_2 A^2 = \dots = \begin{bmatrix} 2e^t - e^{2t} & 0 & 2e^t - 2e^{2t} \\ 0 & e^t & 0 \\ e^{2t} - e^t & 0 & 2e^{2t} - e^t \end{bmatrix}$$

$$2e^{t}-e^{2t} = 0 = 2e^{t}-2e^{2t}$$

$$e^{t}$$
 0

$$e^{2t} - e^{t} = 0 \quad 2e^{2t} - e^{t}$$

#### **Example 5**: Determine e<sup>At</sup>.

Let  $f(\lambda t) = e^{\lambda t}$ 

The eigenvalues of A should now be calculated.

$$\Delta(A) = |\lambda I - A| = (\lambda - 1)^{2}(\lambda - 2)$$

Now,  $h(\lambda)$  should be considered as follows:

$$f(1) = h(1) \Rightarrow e^{t} = \beta_{0} + \beta_{1} + \beta_{2}$$

$$f'(1) = h'(1) \Rightarrow te^{t} = \beta_{1} + 2\beta_{2}$$

$$f(2) = h(2) \Rightarrow e^{2t} = \beta_{0} + 2\beta_{1} + 4\beta_{2}$$

Now f(A) is:

$$e^{At} = \beta_0 I + \beta_1 A + \beta_2 A^2 = \dots = \begin{bmatrix} 2e^t - e^{2t} & 2te^t & 2e^t - 2e^{2t} \\ 0 & e^t & 0 \\ e^{2t} - e^t & -te^t & 2e^{2t} - e^t \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 2 & -2 \\ 0 & 1 & 0 \\ 1 & -1 & 3 \end{bmatrix}$$

$$\lambda_1 = \lambda_2 = 1, \quad \lambda_3 = 2$$

$$h(\lambda) = \beta_0 + \beta_1 \lambda + \beta_2 \lambda^2$$

$$\beta_0 = -2te^t + e^{2t}$$

$$\beta_1 = 3te^t + 2e^t - 2e^{2t}$$

$$\beta_2 = -te^t - e^t + e^{2t}$$

Comparison with the previous example!

#### **Example 6:** Determine $e^{\hat{A}t}$ .

Let 
$$f(\lambda t) = e^{\lambda t}$$

The eigenvalues of A should now be calculated.

$$\hat{A} = \begin{bmatrix} \lambda_1 & 1 & 0 & 0 \\ 0 & \lambda_1 & 1 & 0 \\ 0 & 0 & \lambda_1 & 1 \\ 0 & 0 & 0 & \lambda_1 \end{bmatrix}$$

$$\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = \lambda_1$$

Now,  $h(\lambda)$  should be considered as follows:

$$h(\lambda) = \beta_0 + \beta_1(\lambda - \lambda_1) + \beta_2(\lambda - \lambda_1)^2 + \beta_3(\lambda - \lambda_1)^3$$

$$f(\lambda_1) = h(\lambda_1)$$
  $\Rightarrow$   $f(\lambda_1) = \beta_0$   $f^1(\lambda_1) = h^1(\lambda_1)$   $\Rightarrow$   $f^1(\lambda_1) = \beta_1$ 

$$f^{2}(\lambda_{1}) = h^{2}(\lambda_{1})$$
  $\Rightarrow$   $f^{2}(\lambda_{1}) = 2\beta_{2}$   $f^{3}(\lambda_{1}) = h^{3}(\lambda_{1})$   $\Rightarrow$   $f^{3}(\lambda_{1}) = 6\beta_{3}$ 

$$e^{\hat{A}t} = \begin{bmatrix} e^{\lambda_1 t} & te^{\lambda_1 t} & t^2 e^{\lambda_1 t} / 2! & t^3 e^{\lambda_1 t} / 3! \\ 0 & e^{\lambda_1 t} & te^{\lambda_1 t} & t^2 e^{\lambda_1 t} / 2! \\ 0 & 0 & e^{\lambda_1 t} & te^{\lambda_1 t} \\ 0 & 0 & 0 & e^{\lambda_1 t} \end{bmatrix}$$

Example 7: Determine  $(sI - A)^{-1}$ ,  $e^{At}$ .

 $A = \begin{bmatrix} \lambda_1 & 1 & 0 & 0 & 0 \\ 0 & \lambda_1 & 1 & 0 & 0 \\ 0 & 0 & \lambda_1 & 0 & 0 \\ 0 & 0 & 0 & \lambda_2 & 1 \\ 0 & 0 & 0 & 0 & \lambda_2 \end{bmatrix}$ 

Based on the previous example, we have:

$$e^{At} = \begin{bmatrix} e^{\lambda_1 t} & te^{\lambda_1 t} & t^2 e^{\lambda_1 t} / 2! & 0 & 0 \\ 0 & e^{\lambda_1 t} & te^{\lambda_1 t} & 0 & 0 \\ 0 & 0 & e^{\lambda_1 t} & 0 & 0 \\ 0 & 0 & 0 & e^{\lambda_2 t} & te^{\lambda_2 t} \\ 0 & 0 & 0 & 0 & e^{\lambda_2 t} \end{bmatrix} (sI - A)^{-1} = \begin{bmatrix} \frac{1}{s - \lambda_1} & \frac{1}{(s - \lambda_1)^2} & \frac{1}{(s - \lambda_1)^3} & 0 & 0 \\ 0 & \frac{1}{s - \lambda_1} & \frac{1}{(s - \lambda_1)^2} & 0 & 0 \\ 0 & 0 & \frac{1}{s - \lambda_1} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{s - \lambda_1} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{s - \lambda_2} & \frac{1}{(s - \lambda_2)^2} \\ 0 & 0 & 0 & 0 & \frac{1}{s^2 - \lambda_2} \end{bmatrix}$$

Dr. Ali Karimpour Aug 2024

Exponential series:

$$e^{\lambda t} = 1 + \lambda t + \frac{\lambda^2 t^2}{2!} + \dots + \frac{\lambda^n t^n}{n!} + \dots$$
 (I)

By substituting A into the above equation, we have:

$$e^{At} = I + tA + \frac{t^2}{2!}A^2 + ... + \frac{t^n}{n!}A^n + ...$$

Important property of  $e^{At}$ 

$$e^{0} = I$$
  $e^{A(t_1 + t_2)} = e^{At_1} e^{At_2}$   $e^{At} = e^{At} = e^{At} = e^{At}$   $e^{At} = e^{At} = e^{At}$ 

And a very important property:

$$e^{(A+B)t} \neq e^{At}e^{Bt}$$

Exponential series:

$$e^{\lambda t} = 1 + \lambda t + \frac{\lambda^2 t^2}{2!} + \dots + \frac{\lambda^n t^n}{n!} + \dots$$
 (I)

By substituting A into the above equation, we have:

$$e^{At} = I + tA + \frac{t^2}{2!}A^2 + ... + \frac{t^n}{n!}A^n + ...$$

We know

$$L\left(\frac{t^{k}}{k!}\right) = s^{-(k+1)}$$

So:

$$L(e^{At}) = s^{-1}I + s^{-2}A + s^{-3}A^{2} + ... + s^{-n-1}A^{n} + ...$$

With some simplification, we have:

$$L(e^{At}) = (sI - A)^{-1}$$

$$e^{At} = L^{-1}((sI - A)^{-1})$$

#### Lyapunov Equation

Consider the following equation:

$$\begin{array}{ccc}
n \times m & n \times m \\
AM + MB = C \\
\uparrow & \uparrow \\
n \times n & m \times m
\end{array}$$

This equation is called the **Lyapunov equation** and actually has nm equations and nm unknowns (the elements of the matrix M)  $n \times 1$ 

Reminder:

$$A\mathbf{x} = \mathbf{y}$$

$$A: R^n \mapsto R^m$$

$$\stackrel{\uparrow}{m \times n} \stackrel{\uparrow}{m \times 1}$$

The Lyapunov equation can also be represented as follows:

$$\begin{array}{ccc}
n \times m & n \times m \\
AM + MB = C \\
\uparrow & \uparrow \\
n \times n & m \times m
\end{array}$$

$$A(\mathbf{M})=C$$

$$\mathcal{A}\colon R^{\scriptscriptstyle{n\times m}} \mapsto R^{\scriptscriptstyle{n\times m}}$$

Solution of the Lyapunov equation: M = lyap(A, B, -C)

#### **Lyapunov Equation**

Linear algebraic equation:

$$A\mathbf{x} = \mathbf{y}$$

A scalar  $\lambda$  is an eigenvalue of A if there exists a non-zero vector v such that

$$A\mathbf{v} = \lambda \mathbf{v}$$

Lyapunov equation

$$\begin{array}{ccc}
n \times m & n \times n \\
AM + MB = C \\
\uparrow & \uparrow \\
n \times n & m \times m
\end{array}$$

$$A(\mathbf{M})=C$$

$$\mathcal{A}: \mathbb{R}^{n\times m} \mapsto \mathbb{R}^{n\times m}$$

A scalar  $\mu$  is an eigenvalue of  ${\mathcal A}$  if there exists a non-zero matrix V such that

$$\mathcal{A}(V) = \mu V$$

#### Some Useful Formula

Suppose A and B are square matrices, then:

$$\rho(AB) \le \min \left( \rho(A), \rho(B) \right)$$

Suppose C and D are arbitrary non-singular matrices, then:

$$\rho(AC) = \rho(A) = \rho(DA)$$

Let A be an m $\times$ n matrix and B be an n $\times$ m matrix, then:

$$\det(I_m + AB) = \det(I_n + BA)$$

For proof define:

$$N = \begin{bmatrix} I_m & A \\ 0 & I_n \end{bmatrix} \qquad Q = \begin{bmatrix} I_m & 0 \\ -B & I_n \end{bmatrix} \qquad P = \begin{bmatrix} I_m & -A \\ B & I_n \end{bmatrix}$$

$$\det(I_m + AB) = \det(NP) = \det(QP) = \det(I_n + BA)$$

## **Quadratic Form and Orthogonal Matrix**

Symmetric Matrices and Quadratic Form (Square) and Orthogonal Matrix (Unitary)

**Definition 1:** A matrix  $M \in \mathbb{R}^{n \times m}$  is symmetric if

$$M = M^T$$

**Definition 2:** For a symmetric matrix M and any vector x, the expression  $x^TMx$  is called a quadratic form.

**Definition 3:** A matrix  $M \in \mathbb{R}^{n \times n}$  is called orthogonal (or unitary, in the complex case) if all of its columns are orthonormal, meaning each column is of unit length and orthogonal to the other columns. We have

$$M^TM=I$$
,  $M^T=M^{-1}$ 

Theorem 3: For any real symmetric matrix M, there exists an orthogonal matrix Q such that:

$$M = QDQ^{\mathsf{T}} \quad or \quad D = Q^{\mathsf{T}} MQ$$

Matrix D is diagonal, with its diagonal elements being the eigenvalues of M, and the columns of Q are the eigenvectors of M.

**Proof:** It is clear that D is a similarity transformation of M. Therefore, to prove the theorem, we need to show:

- The eigenvalues of *M* are real.
- There are no generalized eigenvectors.
- Q is orthogonal.

Suppose  $\lambda$  is an eigenvalue of M. Then:

$$Mv = \lambda v$$

$$v^*Mv = v^*\lambda v$$

$$v^*Mv = \lambda v^*v$$

Real

 $\rightarrow \lambda$  is real

#### **Definite Matrices**

**Definition 4:** A symmetric matrix M is called **positive definite** if, for any nonzero vector  $x \in \mathbb{R}^n$ 

 $x^{T}M x \in R^{+}$ 

**Definition 5:** A symmetric matrix M is called negative definite if, for any nonzero vector  $x \in \mathbb{R}^n$ 

$$x^{T}M x \in R^{-}$$

**Definition 6:** A symmetric matrix M is called positive semi definite if, for any nonzero vector  $x \in \mathbb{R}^n$ 

$$x^{\mathsf{T}} M x \in R^{\scriptscriptstyle +} \cup \{0\}$$

**Definition 7:** A symmetric matrix M is called negative semi definite if, for any nonzero vector  $x \in \mathbb{R}^n$ 

$$x^{\mathsf{T}} M x \in R^{\mathsf{-}} \cup \{0\}$$

**Theorem 4:** A real symmetric matrix *M* is **positive definite** (positive semi-definite) if and only if any of the following conditions hold.

- 1- Positive Eigenvalues: All eigenvalues of M are positive (positive or zero).
- 2- Positive Quadratic Form: For any non-zero vector x, the quadratic form  $x^TMx$  is positive (positive or zero), i.e.,  $x^TMx > 0$ .
- 3- Positive Quadratic Form: For any non-zero vector x, the quadratic form  $x^TMx$  is positive (positive or zero), i.e.,  $x^TMx > 0$ .
- 4- Existence of a Non-Singular Matrix N: There exists a non-singular matrix N such that  $M = N^T N$  (There exists a matrix N such that  $M = N^T N$ , where N can be non-singular or rectangular with dimensions  $m \times n$  where  $m \le n$ ).

#### **Theorem 5:**

- 1- A matrix H of size  $m \times n$  with  $m \ge n$  has rank n if and only if the matrix  $H^TH$  of size  $n \times n$  has rank n or  $\det(H^TH) \ne 0$ .
- 2- A matrix H of size  $m \times n$  with m  $\leq$ n has rank m if and only if the matrix  $HH^T$  of size  $m \times m$  has rank m or  $\det(HH^T) \neq 0$ .

**Proof:** We prove both sides of part 1, and part 2 is similar to part 1.

(I) 
$$\rho(H^T H) = n \implies \rho(H) = n$$

If rank(H) < n, non-zero vector v exists such that:

$$Hv = 0$$
  $\Rightarrow$   $H^THv = 0$   $\Rightarrow$  contradiction

(II) 
$$\rho(H) = n \Rightarrow \rho(H^T H) = n$$

If rank(HTH)<n, a non-zero vector v such that:

 $H^{\mathsf{T}}Hv = 0 \Rightarrow v^{\mathsf{T}}H^{\mathsf{T}}Hv = 0 \Rightarrow (Hv)^{\mathsf{T}}Hv = ||Hv||_{2}^{2} = 0 \Rightarrow Hv = 0 \Rightarrow \text{ction}$ 

## Singular Value Decomposition (SVD)

**Theorem 6:** Suppose  $M \in \mathbb{C}^{l \times m}$ , then there exist unitary matrices  $\Sigma \in \mathbb{R}^{l \times m}$ ,  $Y \in C^{1 \times 1}$ , and  $U \in C^{m \times m}$  such that:

$$M = Y \Sigma U^H$$

$$\Sigma = \begin{bmatrix} S & 0 \\ 0 & 0 \end{bmatrix}$$

$$S = \begin{bmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_r \end{bmatrix} \qquad \sigma_1 \ge \sigma_2 \ge \dots \dots \ge \sigma_r > 0$$

$$\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_r > 0$$

$$Y = [y_1, y_2, ..., y_l], U = [u_1, u_2, ..., u_m]$$

Where  $\sigma_i$  are singular values

Columns of matrix Y are ....

Columns of matrix *U* are ....

## Singular Value Decomposition (SVD)

**Example 8:** Decompose the singular values of the given matrix.

$$M = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 4 & 1 \\ 4 & 2 & 8 \end{bmatrix}$$

$$M = \begin{bmatrix} 0.04 & -0.53 & -0.85 \\ 0.38 & -0.77 & 0.51 \\ 0.92 & 0.34 & -0.17 \end{bmatrix} \begin{bmatrix} 9.77 & 0 & 0 \\ 0 & 4.53 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.50 & -0.33 & -0.80 \\ 0.35 & -0.77 & 0.53 \\ 0.79 & 0.55 & 0.27 \end{bmatrix}^{H}$$

$$u_{1} = \begin{bmatrix} 0.50 \\ 0.35 \\ 0.79 \end{bmatrix} \qquad Mu_{1} = 9.77 \begin{bmatrix} 0.04 \\ 0.38 \\ 0.92 \end{bmatrix} = 9.77 y_{1} \qquad u_{2} = \begin{bmatrix} -0.33 \\ -0.77 \\ 0.55 \end{bmatrix} \qquad Mu_{2} = 4.53 \begin{bmatrix} -0.53 \\ -0.77 \\ 0.34 \end{bmatrix} = 4.53 y_{2}$$

$$u_3 = \begin{bmatrix} -0.80 \\ 0.53 \\ 0.27 \end{bmatrix}$$
 Has no affect on the output or

$$Mu_3 = 0$$

The range space of matrix M is: ...

The null space of matrix M is: ...

#### Norm of vectors

$$\|x\|_p = \left(\sum_i |a_i|^p\right)^{\frac{1}{p}}$$

$$p \ge 1$$

For p=1 we have 1-norm or sum norm

$$\|x\|_1 = \left(\sum_i |a_i|\right)$$

For p=2 we have 2-norm or euclidian norm

$$||x||_2 = \left(\sum_i |a_i|^2\right)^{1/2}$$

For p=∞ we have ∞-norm or max norm

$$||x||_{\infty} = \max_{i} \{|a_i|\}$$

#### Norm of matrices

The notion of norms can also be extended to matrices.

Sum matrix norm (extension of 1-norm of vectors) is:  $||A||_{sum} = \sum_{sum} ||A||_{sum} = \sum_{sum} ||A||_{sum}$ 

$$||A||_{sum} = \sum_{i,j} |a_{ij}|$$

Frobenius norm (extension of 2-norm of vectors) is:

$$\|A\|_F = \sqrt{\sum_{i,j} \left| a_{ij} \right|^2}$$

Max element norm (extension of max norm of vectors) is:  $|A|_{\max} = \max_{i,j} |a_{ij}|$ 

#### Induced matrix norm

A norm for matrices is called a **matrix norm** if it has the following property:

$$||AB|| \le ||A||.||B||$$

The induced norm is defined as follows:

$$||A||_{ip} = \max_{||x||_p=1} ||Ax||_p$$

Every induced norm is a matrix norm.

#### Matrix norm for matrices

$$||A||_{ip} = \max_{||x||_p=1} ||Ax||_p$$

Assuming p=1 in the induced norm formula, we have:

$$||A||_{i1} = \max_{\|x\|_1=1} ||Ax||_1 = \max_j \sum_i |a_{ij}|$$
 Maximum column sum

Assuming  $p = \infty$  in the induced norm formula, we have:

$$||A||_{i\infty} = \max_{\|x\|_{\infty}=1} ||Ax||_{\infty} = \max_{i} \sum_{j} |a_{ij}|$$
 Maximum row sum

Assuming p=2 in the induced norm formula, we have:

$$||A||_{i2} = \max_{\|x\|_2 = 1} ||Ax||_2 = \max_{\|x\|_2 \neq 1} \frac{||Ax||_2}{\|x\|_2} = \sigma_1(A) = \sigma_{\max}(A) = \overline{\sigma}(A)$$

**Exercise 1:** With use of  $e^{\lambda t} = 1 + \lambda t + \frac{\lambda^2 t^2}{2!} + \dots + \frac{\lambda^n t^n}{n!} + \dots$  prove followings:

$$e^{0} = I$$
  $e^{A(t_1+t_2)} = e^{At_1}e^{At_2}$   $[e^{At}]^{-1} = e^{-At}$   $\frac{d}{dt}e^{At} = Ae^{At} = e^{At}A$ 

Exercise 2: Show that the eigenvalues of matrix  $\mathcal{A}$  are all possible sums of the eigenvalues of matrices A and B. Additionally, demonstrate that the matrix V can be formed from the product of the right eigenvectors of A and the left eigenvectors of B.

Exercise 3: Show that for a square symmetric matrix, there are no generalized eigenvectors, and the matrix can be diagonalized using an orthogonal matrix. (Hint: Proof by contradiction)

Exercise 4: Show that if  $\lambda$  is an eigenvalue of matrix A with x as the corresponding eigenvector, then  $f(\lambda)$  is an eigenvalue of the matrix f(A), and x is the corresponding eigenvector.

Exercise 5: Show that functions of a matrix have the commutative property, i.e: f(A)g(A)=g(A)f(A)

**Exercise 6:** Determine B such that  $e^B = C$ . Show that if  $\lambda_i = 0$ , then B does not exist.

$$C = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$$

Now let 
$$C = \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}$$

Determine B such that  $e^B = C$ . Is it true that for every nonsingular matrix C, there exists a matrix B such that  $e^B = C$ ?

**Exercise 7:** If matrix A is symmetric, what is the relationship between its eigenvalues and singular values? (Hint: For symmetric matrices,  $A = A^{T}$ )

Exercise 8: Show that if all eigenvalues of A are distinct, then

$$(sI - A)^{-1} = \sum \frac{1}{s - \lambda_i} q_i p_i$$

where qi and pi are right and left eigenvectors od A associate with  $\lambda_i$ 

Exercise 9: Find M to meet the Lyapunov equation with

$$A = \begin{bmatrix} 0 & 1 \\ -2 & -2 \end{bmatrix} \qquad B = 3 \qquad C = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

$$B = 3$$

$$C = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

What are the eigenvalues of the Lyapunov equation? Is the Lyapunov equation singular? Is the solution unique?

Exercise 10: Repeat exercise 9 for

$$A = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} \qquad B = 1 \qquad C1 = \begin{bmatrix} 3 \\ 3 \end{bmatrix} \qquad C2 = \begin{bmatrix} 3 \\ -3 \end{bmatrix}$$

$$B = 1$$

$$C1 = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

$$C2 = \begin{bmatrix} 3 \\ -3 \end{bmatrix}$$

For two different C.

**Exercise 11:** Check to see the following matrices are positive definite or semidefinite:

$$\begin{bmatrix} 2 & 3 & 2 \\ 3 & 1 & 0 \\ 2 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 & 2 \\ 3 & 1 & 0 \\ 2 & 0 & 2 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 2 \end{bmatrix} \qquad \begin{bmatrix} a_1 a_1 & a_1 a_2 & a_1 a_3 \\ a_2 a_1 & a_2 a_2 & a_2 a_3 \\ a_3 a_1 & a_3 a_2 & a_3 a_3 \end{bmatrix}$$

Exercise 12: Compute the singular values of following matrices:

$$\begin{bmatrix} -1 & 0 & 1 \\ 2 & -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 & 1 \\ 2 & -1 & 0 \end{bmatrix} \qquad \begin{bmatrix} -1 & 2 \\ 2 & 4 \end{bmatrix} \qquad \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

**Exercise 13:** Show that:

$$det \left( I_n + \begin{bmatrix} a_1 \\ a_2 \\ \dots \\ a_n \end{bmatrix} \begin{bmatrix} b_1 & b_2 & \dots & b_n \end{bmatrix} \right) = 1 + \sum_{m=1}^n a_m b_m$$

**Answer of exercise 6:** 

$$B = \begin{bmatrix} ln\lambda_1 & 0 & 0 \\ 0 & ln\lambda_2 & 0 \\ 0 & 0 & ln\lambda_3 \end{bmatrix}$$

$$B = \begin{bmatrix} ln\lambda & 1/\lambda & 0 \\ 0 & ln\lambda & 0 \\ 0 & 0 & ln\lambda \end{bmatrix}$$

**Answer of exercise 10:** Eigenvalues: 0, 0. No solution for  $C_1$ . For any m1,  $[m_1 \ 3 - m_1]^T$  is a solution for  $C_2$ .