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Lecture 3

Basic Idea of Linear Algebra-Part II

Topics to be covered include:

v Functions of Square Matrix.

v Lyapunov Equation.

v Some Useful Formula.

v Quadratic Form and Positive Definiteness.

v  Singular Value Decomposition.

v  Norm of Matrices 
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• Calculation of Function of Square Matrix 

•   Cayley-Hamilton Theorem

• Equal Polynomials on the Spectrum of A

• Lyapunov Equation and its Solution

• Symmetric Matrix and Quadratic Form and Orthogonal Matrix 

•    Matrix and PD/ND Matrix

• Singular Value Decomposition

•   Null Space and Range Space From SVD

• Norm of Matrices

• Minimal Polynomials and Characteristic Polynomials

What you will learn after studying this section
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Function of Square Matrix

62)( 23 −+= f IAAAf 62)( 23 −+=→Polynomial of square matrices

Block matrices
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And in general
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400
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1201

A

Example 1: The matrix A, its diagonal form, and the corresponding 

transformation are given. Find A6+12A4+3A2.

Function of Square Matrix
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( ) 1246246 ˆ3ˆ12ˆ312 −++=++ QAAAQAAA

We know

















=

















+

















+

















=++

1600

0160

007216

100

010

004

3

100

010

004

12

100

010

004

ˆ3ˆ12ˆ

2

2

2

4

4

4

6

6

6

246 AAA

















=
















































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Function of Square Matrix

Monic polynomial

Minimal polynomial

Characteristic polynomial

A polynomial whose leading coefficient is equal to one is called a 

monic polynomial. For example:

5312 246 +++ 

A monic polynomial of the smallest degree that nullifies a matrix A is 

called the minimal polynomial of the matrix A and it is denoted by:

The characteristic polynomial of an n×n matrix A is given by:

in

i
i

AI )()(  −=−= nn
i

i =

)(
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Function of Square Matrix

Calculation of the minimal polynomial(According to Nilpotent property):

in

i
i

)()(  −= nnn
i

i

i

i =

Theorem 1: (Cayley-Hamilton Theorem): The matrix A satisfies its 

own characteristic equation.

Proof: We know

)()()()(  hin

i
i

=−=

0)(.0)()()( === AhAhAA 

The characteristic polynomial of an n×n matrix A is given by:

in

i
i

AI )()(  −=−= nn
i

i =

ni is is the size of the largest block corresponding to λi in the Jordan form.

By Nilpotent property):
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Function of Square Matrix

in

i
i

AI )()(  −=−= nn
i

i =

in

i
i

)()(  −= nnn
i

i

i

i =
Example 2: Find the characteristic polynomial and the minimal polynomial of the 

following matrices:
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i
i
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i
i
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i
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AI

)()()()( 2

3

1  −−=−= in

i
i

The characteristic polynomial of an n×n matrix A is given by:

The minimal polynomial of an n×n matrix A is given by:
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Function of Square Matrix

Example 2: Find the characteristic polynomial and the minimal polynomial of the 

following matrices:
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Function of Square Matrix

Consider an arbitrary polynomial f(λ) and a matrix A 
of size n×n.

)()()()(  hqf +=

Now, to compute f(A)f(A)f(A), we have:

)()()()( AhAAqAf +=

And according to the Cayley-Hamilton theorem:

)()(0).()( AhAhAqAf =+=

Note: The degree of h(λ)?

The polynomial h(λ) that is equivalent to f(λ) on the spectrum of A is 
called the polynomial equivalent to f(λ) on the spectrum of A.

)()( AhAf =

Function f(λ) can be expressed as:

Note: Calculation of h(λ)?
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Function of Square Matrix

)()()()(  hqf +=

Calculation of h(λ) for the case where the matrix A has non-repeated eigenvalues.

01

1

1 ...)()()(  ++++= −

−

n

nqf

By substituting the eigenvalues of A into the above equation, we get:

011

1

11111 ...)()()(  ++++=
−

−

n

nqf 011

1

111 ...)(  +++=→
−

−

n

nf

021

1

21222 ...)()()(  ++++=
−

−

n

nqf 021

1

212 ...)(  +++=→
−

−

n

nf

......................................................

01

1

1 ...)()()(  ++++=
−

− n

n

nnnnn qf 01

1

1 ...)(  +++=→
−

− n

n

nnnf

After solving the nnn equations with nnn unknowns, the values of the unknowns are 
obtained.

.....................................

0121 ,...,,,  −− nn
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Function of Square Matrix

1

110
....)( −

−
+++= n

n
h 

minlhf ii

l

i

l ,...,2,1  and   1,...,1,0for  )()( =−== 

After solving the following n equations with n unknowns, the unknown 
coefficients of h(λ) are calculated.

Theorem 2: Consider the equation f(λ) and the matrix A with dimensions 

n×n with the following characteristic equation.

 ==
=−=

m

i i

n

i

m

i
nnwherei

11
)()( 

The polynomial h(λ) of degree n −1, equivalent to f(λ) over the spectrum of 
A, is defined as follows.

In this relation:

l

l
l

l

l
l

d

hd
h

d

fd
f











)(
)(,

)(
)( ==

And finally:
)()( AhAf =

Calculation of h(λ) for the case where the matrix A has non-repeated eigenvalues.
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








−−
=

21

10
A

Example 3: Determine A100.

Function of Square Matrix

Let f(λ)=λ100

The eigenvalues of A should now be calculated.

12
21

1
)( 2 ++=

+

−
=−= 




 AIA 121 −== 

Now, h(λ) should be considered as follows:

 10)( +=h

10

100)1()1()1(  −=−−=− hf

1

99)1(100)1()1( =−−=− hf

Now, h(λ) is given by:

 10099)( −−=h 






 −−
=









−−
−








−=

101100

10099

21

10
100

10

01
99100A
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













 −

=

301

010

200

A

Function of Square Matrix

)2()1()( 2 −−=−=  AIA 2,1 321 === 

2

210)(  ++=h

210)1()1(  ++== tehf

21 2)1()1(  +== ttehf

Now f(A) is:

















−−

−−

==++=
tttt

t

tttt

At

eeee

e

eeee

AAIe
22

22

2

210

20

00

2202

....

210

2 42)2()2(  ++== tehf

tt ete 2

0 2 +−=

ttt eete 2

1 223 −+=

ttt eete 2

2 +−−=

Let f(λt)=e λt

The eigenvalues of A should now be calculated.

Now, h(λ) should be considered as follows:

Example 4: Determine eAt.
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















−

−

=

311

010

220

A

Function of Square Matrix

)2()1()( 2 −−=−=  AIA 2,1 321 === 

2

210)(  ++=h

210)1()1(  ++== tehf

21 2)1()1(  +== ttehf

















−−−

−−

==++=
ttttt

t

ttttt

At

eeteee

e

eeteee

AAIe
22

22

2

210

2

00

2222

....

210

2 42)2()2(  ++== tehf

tt ete 2

0 2 +−=

ttt eete 2

1 223 −+=

ttt eete 2

2 +−−=

Comparison with 

the previous 

example!

Example 5: Determine eAt.

Let f(λt)=e λt

The eigenvalues of A should now be calculated.

Now, h(λ) should be considered as follows:

Now f(A) is:
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

















=

1

1

1

1

000

100

010

001

ˆ









A

Function of Square Matrix

14321  ====

3

13

2

12110 )()()()(  −+−+−+=h

0111 )()()(  == fhf





















=

)(000

!1/)()(00

!2/)(!1/)()(0

!3/)(!2/)(!1/)()(

)ˆ(

1

1

1

1

1

2

1

1

1

1

3

1

2

1

1

1









f

ff

fff

ffff

Af

11

1

1

1

1

1 )()()(  == fhf

21

2

1

2

1

2 2)()()(  == fhf
31

3

1

3

1

3 6)()()(  == fhf





















=

t

tt

ttt

tttt

tA

e

tee

ettee

etettee

e

1

11

111

1111

000

00

!2/0

!3/!2/
2

32

ˆ









Example 6: Determine 𝑒 ෠𝐴𝑡.

Let f(λt)=e λt

The eigenvalues of A should now be calculated.

Now, h(λ) should be considered as follows:
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





















=

2

2

1

1

1

0000

1000

0000

0010

0001











A

Function of Square Matrix

Based on the previous example, we have:























=

t

tt

t

tt

ttt

tA

e

tee

e

tee

ettee

e

2

22

1

11

111

0000

000

0000

000

00!2/2











( ) ( )

( )

( )



































−

−−

−

−−

−−−

=− −

2

2

22

1

2

11

3

1

2

11

1

1
0000

11
000

00
1

00

00
11

0

00
111

)(











s

ss

s

ss

sss

AsI

Example 7: Determine (𝑠𝐼 − 𝐴)−1, eAt.
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Function of Square Matrix

Exponential series: )(...
!

...
!2

1
22

I
n

tt
te

nn

t +++++=




...
!

...
!2

2

2

+++++= n

n

At A
n

t
A

t
tAIe

Important property of 𝑒𝐴𝑡

By substituting A into the above equation, we have:

Ie =0 2121 )( AtAtttA

eee =
+

  AtAt ee −−

=
1

AeAee
dt

d AtAtAt ==

And a very important property:
BtAttBA eee + )(

But in the special case: ….
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Function of Square Matrix

We know

)1(

!

+−=






 k

k

s
k

t
L

So:

( ) ...... 12321 +++++= −−−−− nnAt AsAsAsIseL

With some simplification, we have:

( ) 1)( −−= AsIeL At ( )11 )( −− −= AsILeAt

Exponential series: )(...
!

...
!2

1
22

I
n

tt
te

nn

t +++++=




...
!

...
!2

2

2

+++++= n

n

At A
n

t
A

t
tAIe

By substituting A into the above equation, we have:
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Lyapunov Equation

Consider the following equation:

CMBAM =+

mmnn




mnmn



This equation is called the Lyapunov equation and actually has nm 

equations and nm unknowns (the elements of the matrix M)

yx =AReminder:

1

1









mnm

n

The Lyapunov equation can also be represented as follows:

CMBAM =+

mmnn




mnmn



),,( CBAlyapM −=Solution of the Lyapunov equation:
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Lyapunov Equation

Linear algebraic equation: yx =A

A scalar λ is an eigenvalue of A if there exists a non-zero vector v such that

CMBAM =+

mmnn




mnmn



Lyapunov equation
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Some Useful Formula

( ))(),(min)( BAAB  

)()()( DAAAC  ==

Let A be an m×n matrix and B be an n×m matrix, then:

)det()det( BAIABI nm +=+








 −
=









−
=








=

n

m

n

m

n

m

IB

AI
P

IB

I
Q

I

AI
N

0

0

)det()det()det()det( PQPNPP === )det()det()det()det( BAIQPNPABI nm +===+

Suppose A and B are square matrices, then:

Suppose C and D are arbitrary non-singular matrices, then:

For proof define:
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Quadratic Form and Orthogonal Matrix

23

1, −== MMIMM TT

Symmetric Matrices and Quadratic Form (Square) and Orthogonal 

Matrix (Unitary)

Definition 1: A matrix M∈Rn×m is symmetric if

TMM =

Definition 2: For a symmetric matrix M and any vector x, the 

expression xTMx is called a quadratic form.

Definition 3: A matrix M∈Rn×n is called orthogonal (or unitary, in the 

complex case) if all of its columns are orthonormal, meaning each 
column is of unit length and orthogonal to the other columns. We have
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Quadratic Form and Positive Definiteness

24

Theorem 3: For any real symmetric matrix M, there exists an orthogonal 

matrix Q such that:

MQQDorQDQM TT ==

Matrix D is diagonal, with its diagonal elements being the eigenvalues 

of M, and the columns of Q are the eigenvectors of M.

Proof: It is clear that D is a similarity transformation of M. Therefore, to 

prove the theorem, we need to show:
• The eigenvalues of M are real.  

• There are no generalized eigenvectors.

•  Q is orthogonal.

Suppose λ is an eigenvalue of M. Then:

vMv = vvMvv ** = vvMvv ** = Real is real    →

…….
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Definite Matrices

Definition 4: A symmetric matrix M is called positive definite if, for 

any nonzero vector x∈Rn
+RxMxT

Quadratic Form and Positive Definiteness

−RxMxT

Definition 5: A symmetric matrix M is called negative definite if, for 

any nonzero vector x∈Rn

 0 +RxMxT

Definition 6: A symmetric matrix M is called positive semi definite if, 

for any nonzero vector x∈Rn

 0 −RxMxT

Definition 7: A symmetric matrix M is called negative semi definite 

if, for any nonzero vector x∈Rn
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Quadratic Form and Positive Definiteness

26

Theorem 4: A real symmetric matrix M is positive definite (positive 

semi-definite) if and only if any of the following conditions hold.

1- Positive Eigenvalues: All eigenvalues of M are positive(positive or zero).

2- Positive Quadratic Form: For any non-zero vector x, the quadratic 

form xTMx is positive (positive or zero), i.e., xTMx >0.

4- Existence of a Non-Singular Matrix N: There exists a non-singular 

matrix N such that M = N TN(There exists a matrix N such that M = N TN, where 

N can be non-singular or rectangular with dimensions m×n where m≤n).

3- Positive Quadratic Form: For any non-zero vector x, the quadratic 

form xTMx is positive (positive or zero), i.e., xTMx >0.
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Quadratic Form and Positive Definiteness

27

Theorem 5:

1- A matrix H of size m×n with m≥n has rank n if and only if the 

matrix HTH of size n×n has rank n or det(HTH )≠0.

2- A matrix H of size m×n with m≤n has rank m if and only if the 

matrix HHT of size m×m has rank m or det(HHT)≠0.

nHnHHI T == )()()( 

nHHnHII T == )()()( 

If rank(H)<n, non-zero vector v exists such that:

0=Hv 0= HvH T  contradiction

If rank(HTH)<n,  a non-zero vector v such that:

0=HvH T 0= HvHv TT 
contradi

ction0)(
2

2
== HvHvHv T 0= Hv

Proof: We prove both sides of part 1, and part 2 is similar to part 1.
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Singular Value Decomposition (SVD)

HUYM =









=

00

0S
0........21  r



















=

r

S







...00

......

0...0

0...0

2

1

],......,,[],,......,,[ 2121 ml uuuUyyyY ==

Theorem 6: Suppose M∈Cl×m, then there exist unitary matrices Σ∈Rl×m, 
Y∈Cl×l, and U∈Cm×m such that:

Where σi are singular values

Columns of matrix Y are ….

Columns of matrix U are ….
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Singular Value Decomposition (SVD)















 −

=

824

143

121

M

H

M

















−

−−

































−

−

−−

=

27.055.079.0

53.077.035.0

80.033.050.0

.

000

053.40

0077.9

.

17.034.092.0

51.077.038.0

85.053.004.0

















=

79.0

35.0

50.0

1u 11 77.9

92.0

38.0

04.0

77.9 yMu =

















=

















−

−

=

55.0

77.0

33.0

2u 22 53.4

34.0

77.0

53.0

53.4 yMu =

















−

−

=















−

=

27.0

53.0

80.0

3u Has no affect on the output or 03 =Mu

Example 8: Decompose the singular values 

of the given matrix.

The range space of matrix M is: …

The null space of matrix M is: …
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Norm of vectors









= 

i

iax
1

  For p=1 we have  1-norm  or  sum norm

2/1

2

2








= 

i

iaxFor p=2 we have  2-norm  or  euclidian norm

 i
i

ax max =
For p=∞ we have  ∞-norm  or  max norm

1    

1









=  pax

pp

i

ip
p-norm is:
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Norm of matrices

Sum matrix norm (extension of 1-norm of vectors) is: =
ji

ijsum
aA

,

Frobenius norm (extension of 2-norm of vectors) is:
2

,

=
ji

ijF
aA

Max element norm (extension of max norm of vectors) is: ij
ji

aA
,max

max=

The notion of norms can also be extended to matrices.
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Induced matrix norm

BAAB .

pxip
AxA

p
1

max
=

=

A norm for matrices is called a matrix norm if it has the following 

property:

The induced norm is defined as follows:

Every induced norm is a matrix norm.
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Matrix norm for matrices

==
=

i

ij
jxi

aAxA maxmax
111

1

Maximum column sum 

==
=

 j

ij
ixi

aAxA maxmax
1

Maximum row sum 

pxip
AxA

p
1

max
=

=

)()()(maxmax max1

2

2

1212
22

AAA
x

Ax
AxA

xxi
 =====

=

Assuming p=1 in the induced norm formula, we have:

Assuming p=  in the induced norm formula, we have:

Assuming p=2 in the induced norm formula, we have:
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Ie =0 2121 )( AtAtttA

eee =
+   AtAt ee −−

=
1

AeAee
dt

d AtAtAt ==

Exercise 1: With use of 𝑒𝜆𝑡 = 1 + λt +
λ2𝑡2 

2!
+ ⋯ +

λ𝑛t𝑛 

𝑛!
+…prove followings:

Exercise 3: Show that for a square symmetric matrix, there are no generalized 

eigenvectors, and the matrix can be diagonalized using an orthogonal matrix. (Hint: 

Proof by contradiction)

Exercise 4: Show that if λ is an eigenvalue of matrix A with x as the corresponding 

eigenvector, then f(λ) is an eigenvalue of the matrix f(A), and x is the corresponding 

eigenvector.

Exercises

Exercise 2: Show that the eigenvalues of matrix      are all possible sums of the 

eigenvalues of matrices A and B. Additionally, demonstrate that the matrix V can be 

formed from the product of the right eigenvectors of A and the left eigenvectors of B.

Exercise 5: Show that functions of a matrix have the commutative property, i.e:        
f(A)g(A)=g(A)f(A)
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Exercise 6: Determine B such that eB=C. Show that if λi=0, then B does not exist.

















=

3

2

1

00

00

00







C

Now let

















=







00

00

01

C

Determine B such that eB=C. Is it true that for every nonsingular matrix C, there 
exists a matrix B such that eB=C?

Exercise 7: If matrix A is symmetric, what is the relationship between its eigenvalues 

and singular values? (Hint: For symmetric matrices, A= A T)

Exercises

Exercise 8: Show that if all eigenvalues of A are distinct, then

(𝑠𝐼 − 𝐴)−1= ෍
1

𝑠 − 𝜆𝑖
𝑞𝑖𝑝𝑖

where qi and pi are right and left eigenvectors od A associate with λi 
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Exercises

Exercise 9: Find M to meet the Lyapunov equation with

𝐴 =
0 1

−2 −2
 B = 3 C =

3
3

What are the eigenvalues of the Lyapunov equation? Is the Lyapunov equation 

singular? Is the solution unique?

Exercise 10: Repeat exercise 9 for

𝐴 =
0 1

−1 −2
 B = 1 C1 =

3
3

 𝐶2 =
3

−3
For two different C.

Exercise 11: Check to see the following matrices are positive definite or semidefinite:
2 3 2
3 1 0
2 0 2

 
0 0 −1
0 0 0

−1 0 2
 

𝑎1𝑎1 𝑎1𝑎2 𝑎1𝑎3

𝑎2𝑎1 𝑎2𝑎2 𝑎2𝑎3

𝑎3𝑎1 𝑎3𝑎2 𝑎3𝑎3

Exercise 12: Compute the singular values of following matrices:
−1 0 1
2 −1 0

 
−1 2
2 4

 
2
1
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Answer of exercise 6:

 𝑩 =

𝒍𝒏𝝀𝟏 𝟎 𝟎
𝟎 𝒍𝒏𝝀𝟐 𝟎
𝟎 𝟎 𝒍𝒏𝝀𝟑

 𝑩 =
𝒍𝒏𝝀 𝟏/𝝀 𝟎

𝟎 𝒍𝒏𝝀 𝟎
𝟎 𝟎 𝒍𝒏𝝀

Exercises

Exercise 13: Show that:

𝑑𝑒𝑡 𝐼𝑛 +

𝑎1

𝑎2

…
𝑎𝑛

𝑏1 𝑏2  … 𝑏𝑛 = 1 + ෍

𝑚=1

𝑛

𝑎𝑚𝑏𝑚

Answer of exercise 10: Eigenvalues: 0, 0. No solution for C1. For any m1, 
[m1   3- m1]

T is a solution for C2.
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