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| ecture 3

Basic Idea of Linear Algebra-Part 1
Topics to be covered include:
« Functions of Square Matrix.
« Lyapunov Equation.
« Some Useful Formula.
« Quadratic Form and Positive Definiteness.

< Singular Value Decomposition.

< Norm of Matrices 2
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What you will learn after studying this section

Calculation of Function of Square Matrix
Minimal Polynomials and Characteristic Polynomials
Cayley-Hamilton Theorem

Equal Polynomials on the Spectrum of A

Lyapunov Equation and its Solution

Symmetric Matrix and Quadratic Form and Orthogonal Matrix

Matrix and PD/ND Matrix

Singular Value Decomposition
Null Space and Range Space From SVD

Norm of Matrices 3
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Function of Square Matrix

Polynomial of square matrices f(1)=2+24-6 - f(A)=A*+2A’-6l
Block matrices
0 2 k f 0
A{A& }—)Azz A 02 gy Ok — f(A)= (A)
0 A 0 A 0 A
Jordan form

A=0AQ*, A=Q*AQ
K -{0A0foA”)....... loAg")- oo

And in general

f(A)=0Qf (AQ", f(A)=Q'f(AQ

4
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Function of Square Matrix

Example 1: The matrix A, its diagonal form, and the corresponding
transformation are given. Find A®+12A%+3A2,

=12 L 2471~ A D) Sk
A=|0 1 1 Q=|1 0 1 A=Q7AQ=(0 1 0
(0570 4 3 105K 050 1

We know

A° 11274 +3A° = Q(A° +12A° 1 3R2 Q!

45 g aplie s At g ey s AR 016 07 0]
A°+12A*+3A%=|0 1° 0|+1200 1° 0|+3 0 1> 0|=| O 16 O
0120518 01 0302 70 /16
12 1 0Of7216 0 012 1 O] [16 O 28800
A°+12A*+3A%=|1 0 1| O 16 Of1 0 1| =|0 16 2400
300 0 025 AR a AR O A0 T20e
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Function of Square Matrix

Monic polynomial

A polynomial whose leading coefficient is equal to one is called a
monic polynomial. For example:

A +122" +34 +5
Minimal polynomial

A monic polynomial of the smallest degree that nullifies a matrix A Is
called the minimal polynomial of the matrix A and it is denoted by:

(1)
Characteristic polynomial

The characteristic polynomial of an nxn matrix A Is given by:

A(A) =|Al - A =TI(A- 4)" e 5
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Function of Square Matrix

The characteristic polynomial of an nxn matrix A is given by:
A(A)=|Al - A =TI(1—4)" Zni =

Calculation of the minimal polynomial(According to Nilpotent property):
p(A)=TI(A-4)" 2Zms<Xn=n
| i i
n; Is Is the size of the largest block corresponding to A; in the Jordan form.

Theorem 1: (Cayley-Hamilton Theorem): The matrix A satisfies its
own characteristic equation.
Proof: We know

A(A) =11(A-4)" =y (A)h(4)

By Nilpotent property):
A(A) =y (A)h(A) =0.n(A) =0 ;
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Function of Square Matrix

The characteristic polynomial of an nxn matrix A is given by:

A(A)=|A - Al =T1(2-4)"

Zn—n

The minimal polynomial of an nxn matrix A is given by:

y(4) =T1(A-4)"
Example 2: Find the characteristic polynomial and the minimal polynomial of the

following matrices:

1, 1
0 A4
) A=|0 O
0 0
0 0
A, 1
0 A4
1) A=|0 O
0 0
0 0

o o ™ Lk o
o ™ L, O o

o o ™ ko
o, o o o

NS

o O o o

o~

o O o o

Zn _Zn =n

A4 =|Al - A=TI(A-24)" =(A-4)" (41— 4,)

p(2)=T1(A-2)" = (A-2) (A= 2,)

AR =21 = A=TI(A-2)" = (A= 2)* (2-2,)

p(2)=TI(A-2)" = (A-4) (1~ 1,)

8
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Function of Square Matrix

Example 2: Find the characteristic polynomial and the minimal polynomial of the

following matrices:

A, 1
0 A

N A=/0 0
0 0

0 0

2, 1

0 4

IV) A=|0 0
0 0

0 0

A, 0

0 A

V) A=|0 0
0 0

0 0

© OO0 500000, oo

o»}“oooo,}*oooo,ANHoo

O 0o oo oo o o

O O O O
N

Ry

AR =] = A=TI(2-4)" = (A= 4)" (A 2,)

p(A)=TI(A-2)" =(A- 1) (2~ 1)
AR =141 - A=TI(A-2)" =(A-£)* (2~ 2,)
() =TI(A-2)" =(A- 1) (2~ 1)
AR =141 - A=TI(A-2)" =(A- 1) (2-2,)

y()=TIA-2)" =(A-2)A-%)
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Function of Square Matrix

Consider an arbitrary polynomial f() and a matrix A £(iy| A | D)
of size nxn. |
- g(4)

Function f(A) can be expressed as:
f(4)=0a(4)A(4) +h(4)
Now, to compute f(A)f(A)f(A), we have: HA)
f(A)=q(A)A(A)+h(A)
And according to the Cayley-Hamilton theorem:
f(A)=q(A).0+h(A)=h(A) =  f(A)=h(A)
The polynomial h(4) that is equivalent to f(1) on the spectrum of A is
called the polynomial equivalent to f(1) on the spectrum of A.

Note: The degree of h(A)? Note: Calculation of h(A)?

10
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Function of Square Matrix

Calculation of h(4) for the case where the matrix A has non-repeated eigenvalues.

f(4)=0a(4)A(4) +h(4) f()=q(MAA) + B A" +..+ A+ fy
By substituting the eigenvalues of A into the above equation, we get:

() = QA B 1ot BAA By = [ ()= B ot Bt By )
f(4) =0(L)AL)+Bud +et Bt By = | T(A)=BLA" +.t Bidy+ By

f(4) =0(A)AA) + Bsdy 4ot By + By an):ﬂn_lﬂn”‘l+--.+ﬁlzn+ﬂy

After solving the nnn equations with nnn unknowns, the values of the unknowns are
obtained.

/Bn—l’ IBn—Z’ ""181’ ﬂO .
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Function of Square Matrix

Calculation of h(4) for the case where the matrix A has non-repeated eigenvalues.

Theorem 2: Consider the equation f(4) and the matrix A with dimensions
nxn with the following characteristic equation.

A1) = H(ﬂ )" where n= Z n
The polynomial h(4) of degree n —1, equivalent to f(/l) over the spectrum of
A, is defined as follows.

h(A)=6+pA+...+ A"

After solving the following n equations with n unknowns, the unknown
coefficients of h(4) are calculated.

4 _ I
f'(4.)=h'(4,) for 1=0,1, .., n-1and i=1,2, .., m

In this relation:

I
_ 2 y
And finally: £ (A) = h(A) 5
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Function of Square Matrix
Example 3: Determine A%,

bt

A=

Ly,

Let f(1)=A1%

The eigenvalues of A should now be calculated.

A -1
A(A)=\/1I—A\=‘1 /1+2=/12+2z+1 A=2,=-1

Now, h(4) should be considered as follows:
h(4) =5, + LA
FEY=h(-1, = 7= F~4
A e (Y S (078 T
Now, h(4) Is given by:

1 0 0 17 [-99 -100
h(A)= 2991004 *A© < g9 100 =
0 1 oA 0010

lecture 3
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Function of Square Matrix

. 0757052
Example 4: Determine eA\, A
7

ORI

0
3_

Let f(At)=e A

The eigenvalues of A should now be calculated.
A(A) =\l - A=(1-1)*(A1-2) s =1 =
Now, h(4) should be considered as follows:
N(2) =B, +BA+BA

f)=hl) = e =+B+5 B, = -2te' +e*
f'=h'() = te'=4+2p, B, =3te' +2e" —2¢”
f(2=h(2) = e"'=8+28+45, B, =—te' —¢' +¢”
RO IS 2¢'—e" 0 2 —2e"]
e"=p1+pA+LA=...=| O & 0
Bl oot N 14
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Function of Square Matrix

Example 5: Determine eAt,

Let f(At)=e A
The eigenvalues of A should now be calculated.
A(A) = - A = (A-1)*(A-2)
Now, h(4) should be considered as follows:

fO=h® = e=4+4+p

f'Q)=h'1)) = te'=pB+25

f(2)=h(2) = "= +2B,+4p,
Now f(A) is:

=Bl + LA+ BA =..=

PPe-Zar 2e" ZPe
0 e' 0
» eZt _et 2e2t _et 3

o]
A=|0 1 0
e s

A=A=1, A,=2

h(2) =B, + BA+ B4
B, =—2te' +e”
B, =3te' +2¢e' —2¢”

B, =—te' —e' +¢”

Comparison with
the previous
example! 0
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Function of Square Matrix

Example 6: Determine e4t. A 0y 20 ]
At iy Rl

Let f(At)=e * el et

The eigenvalues of A should now be calculated. (10 %A 20120

h=h=4k=4=4
Now, h(4) should be considered as follows:

h(/i) :ﬂo +131(ﬂ*_/11) +182(/1_/11)2 +ﬂ3(ﬂ_ﬂl)3

f (21) 5. h(/ll) e f (/11) T IBO fl(}bl) > hl(ﬂ’l) e fl(ﬁ’l) Z ,31
f 2(/11) = hz(/11) =7 f 2(11) 7 Zﬁz f 3(ﬂvl) = hs(ﬂq) e f 3(/11) = 6183
() fl) /1 f2A) /2 £3(A)/3 o™ et 2™ 2 t%™ /3]
f(hy=| © f(h) @) @A)/ 4 |0 e et
0 0 ()  fi)/ O e te™!
240 0 0 f(4) | P00 0 S

Dr. Ali Karimpour Aug 2024
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Function of Square Matrix

Example 7: Determine (sI — A)~1, eAt, At 0 0 20
QS 0= 10
N L e 02y
00l 2
Based on the previous example, we have: P00 D0 A,
1 1 1 7
0 0
- a 7R b S—ﬂ.l (s_}i)Z (S—ﬂ,l)s
1 1 ! ! 1 1
; te}tt o “/2 : 2 0 - 0 0
A te™ 0 0 s—A, (s=4)
0P e I reayt s e e a1
0 O 0 R Y s—4,
0 0 0 0 e™ 0 0 0 : 2
: ] s—4, (5_22)
0 0 0 0 :
; 44,
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Function of Square Matrix

At At

Exponential series: e’ =1+ Ut+—+...+ '
n!

+... (1)

By substituting A into the above equation, we have:

At t2 tn
e" =1 +tA+—A+..+—A"+...

At 2! n!
Important property of e
e0 & I eA(t1+t2) s eAtleAtz

At |1 — At d At At At
el — " = A" =e"A
dt

And a very important property: e(A+B)t - eAteBt

18
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Function of Square Matrix

i +...+/1—t+... (1)
' n!

Exponential series: e’ =1+ At+

By substituting A into the above equation, we have:

g4 +tA+t—A2 +...+t—A” i
2! n!
We know

L(tkj A S—(k+1)
So: k!

L(e")=s"1 +S A+S A +..+5 A" +...

With some simplification, we have:

L(e*)= (sl — A)* e’ =L((sl - A)*)
19
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Lyapunov Equation

Consider the following equation: nxm nxm
AM +MB=C
t 1
nxn mxm

This equation is called the Lyapunov equation and actually has nm
equations and nm unknowns (the elements of the matrix M)

n>f1
Reminder: AX =Yy A RPF > R"™
T T
mxn mx1

The Lyapunov equation can also be represented as follows:
nxm Nxm

! d
AM +MB =C AM)=C A: R R™

i i
nxn mxm Solution of the Lyapunov equation; M = Iyap (A, B,—C)

[IRN =
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Lyapunov Equation

Linear algebraic equation:

AX =Y
A scalar 4 i1s an eigenvalue of A if there exists a non-zero vector v such that
Av=2Av
Lyapunov equation
n>fm n>fm

AM +MB =C AM)=C A: R™B—R™

? ?
Nxn mxm

A scalar u 1s an eigenvalue of A if there exists a non-zero matrix V such that

A(V) =pVv
21
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Some Useful Formula

Suppose A and B are square matrices, then:
p(AB)<min (p(A), p(B))

Suppose C and D are arbitrary non-singular matrices, then:
p(AC) = p(A) = p(DA)
Let A be an mxn matrix and B be an nxm matrix, then:

det( I +AB)=det( | +BA)
For proof define:

Lol o5 )] o

det(1_+ AB) =det( NP) = det(QP) = det(I_ +BA)
22
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Quadratic Form and Orthogonal Matrix

Symmetric Matrices and Quadratic Form (Square) and Orthogonal
Matrix (Unitary)
Definition 1. A matrix MER™™M is symmetric if

M=M'
Definition 2: For a symmetric matrix M and any vector x, the
expression x'Mx is called a quadratic form.

Definition 3: A matrix MeER™" is called orthogonal (or unitary, in the

complex case) If all of its columns are orthonormal, meaning each
column is of unit length and orthogonal to the other columns. We have

MM=I, M'=M"

23
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Quadratic Form and Positive Definiteness

Theorem 3: For any real symmetric matrix M, there exists an orthogonal

matrix Q such that:
M=0QDQ or D=Q'MQ

Matrix D iIs diagonal, with its diagonal elements being the eigenvalues
of M, and the columns of Q are the eigenvectors of M.

Proof: It is clear that D is a similarity transformation of M. Therefore, to

prove the theorem, we need to show:
The eigenvalues of M are real.
There are no generalized eigenvectors.
Q is orthogonal.

Suppose 4 Is an eigenvalue of M. Then:

Mv = Av VMv=VvAv @: 2@ Real > A isreal

24
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Quadratic Form and Positive Definiteness

Definite Matrices

Definition 4: A symmetric matrix M is called positive definite if, for
any nonzero vector xeR" . ;
X M xeR

Definition 5: A symmetric matrix M Is called negative definite if, for
any nonzero vector xeR"
X'M xeR"

Definition 6: A symmetric matrix M is called positive semi definite if,
for any nonzero vector xeR"

XM xeR* U {0}
Definition 7. A symmetric matrix M Is called negative semi definite
If, for any nonzero vector xeR"

XM xeR U{0} s
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Quadratic Form and Positive Definiteness

Theorem 4: A real symmetric matrix M is positive definite (positive
semi-definite) if and only if any of the following conditions hold.

1- Positive Eigenvalues: All eigenvalues of M are positive(positive or zero).

2- Positive Quadratic Form: For any non-zero vector x, the quadratic
form x"Mx is positive (positive or zero), i.e., X'Mx >0.

3- Positive Quadratic Form: For any non-zero vector X, the quadratic
form x"Mx is positive (positive or zero), i.€., X'Mx >0.

4- Existence of a Non-Singular Matrix N: There exists a non-singular
matrix N such that M = N TN(There exists a matrix N such that M = N TN, where

N can be non-singular or rectangular with dimensions mxn where m<n).

26
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Quadratic Form and Positive Definiteness

Theorem 5;

1- A matrix H of size mxn with m>n has rank n if and only if the
matrix H'H of size nxn has rank n or det(H"H )+£0.

2- A matrix H of size mxn with m<n has rank m if and only if the
matrix HH' of size mxm has rank m or det(HH")+0.

Proof: We prove both sides of part 1, and part 2 is similar to part 1.
(1) p(HH)=n = p(H)=n
If rank(H)<n, non-zero vector v exists such that:
Hv=0 = H'Hv=0 —> contradiction
(11) o(H)=n = p(H'H)=n
If rank(HTH)<n, a non-zero vector v such that:
H'Hv=0 =V'H Hv=0 = (Hv)'Hv=|Hv

; contradi
2 =0 = Hv=0 == ction
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Singular VValue Decomposition (SVD)

Theorem 6: Suppose MeC>™ then there exist unitary matrices 2XeR>M,
YeC™, and UeC™mM such that:

M=YZU"
o O

1S 0 01005 4 =20

S S = | Zr Oy 20,200 >o.>0
e et oy

Yo | Vo ey T A Uslss e ]
Where g; are singular values

Columns of matrix Y are ....

Columns of matrix U are .... 28
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Singular Value Decomposition (SVD)

Example 8: Decompose the singular values 1 2 -1
of the given matrix. M=13 4 1
Lssrantcy

0.04 —-053 -0.85][9.77 0 0][050 —0.33 -0.80]"
M=|038 -0.77 051 ]| 0 453 0}./035 -0.77 0.53
1092 034 -017) 0 O 0}]0.79 055 027

0.50 0.04 ~0.33 —-0.53
U, = {0.35} Mu, = 9.77{0.38 =9.77y, e {0.77} Mu, = 4.53[0.77 =453y,
0.79 0.92 0.55 0.34
~0.80
U, [ 0.53 } Has no affect on the output or Mu, =0
0.27

The range space of matrix M is: ...

The null space of matrix M is: ... .
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Norm of vectors

=
p-norm is: x|, = (Z\ai|pj / p>1

For p=1 we have 1-norm or sum norm ], :(Z{ailj

1/2
For p=2 we have 2-norm or euclidian norm |X|, :(Z|ai|2J
i

For p=co we have co-norm or max norm ], = miax{lai|}

30
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Norm of matrices

The notion of norms can also be extended to matrices.

Sum matrix norm (extension of 1-norm of vectors) is: |A|. = Z‘aijl

Frobenius norm (extension of 2-norm of vectors) Is: 1A = Z‘aij ‘2
1]

Max element norm (extension of max norm of vectors) is}|A| = W}G}X[aij'

max

31
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Induced matrix norm

A norm for matrices is called a matrix norm if it has the following
property:

|AB|| < A].|B]
The induced norm is defined as follows:

Al = iAo

Every induced norm Is a matrix norm.

32
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Matrix norm for matrices A, = max|Ax|

], =1
Assuming p=1 in the induced norm formula, we have:

|A = ma_)l(”Ale 2 m?XZ\ai,—\ Maximum column sum
i i

Assuming p= < in the induced norm formula, we have:

A, = maggl\AXilw 0 m?XZ‘aij‘ Maximum row sum
: j

Assuming p=2 in the induced norm formula, we have:

A
], = max ], ~max
O L P L R o

= 5,(A) = G (A) = 5(A)

max

33
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Exercises

+ 4 +...prove followings:

Exercise 1: With use of et = 1 + At +

e0 = I eA(t1+t2) 5 eAtleAtz [eAt ]—1 s e—At ieAt 2 AeAt = eAtA
dt
Exercise 2: Show that the eigenvalues of matrix 4 are all possible sums of the
eigenvalues of matrices A and B. Additionally, demonstrate that the matrix V can be
formed from the product of the right eigenvectors of A and the left eigenvectors of B.

Exercise 3: Show that for a square symmetric matrix, there are no generalized
elgenvectors, and the matrix can be diagonalized using an orthogonal matrix. (Hint:
Proof by contradiction)

Exercise 4: Show that if 4 is an eigenvalue of matrix A with x as the corresponding
eigenvector, then f(1) is an eigenvalue of the matrix f(A), and x is the corresponding

eigenvector.

Exercise 5: Show that functions of a matrix have the commutative property, i. e
f(A)a(A)=g(A)I(A)

Dr. Ali Karimpour Aug 2024
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Exercises

Exercise 6: Determine B such that eB=C. Show that if 2,=0, then B does not exist.

A0

Ci= 0= 0

Al 0 0 4

Nowlet C={0 A O : !
o 0 A

Determine B such that eB=C. Is it true that for every nonsingular matrix C, there
exists a matrix B such that eB=C?

Exercise 7: If matrix A is symmetric, what is the relationship between its eigenvalues
and singular values? (Hint: For symmetric matrices, A=A T)

Exercise 8: Show that if all eigenvalues of A are distinct, then

4
I—A)1= D
(s ) ES_Aiqlpl

where gi and pi are right and left eigenvectors od A associate with 4;

35
Dr. Ali Karimpour Aug 2024



lecture 3

Exercises

Exercise 9: Find M to meet the Lyapunov equation with

A:[—Oz —12] e C:E]

What are the eigenvalues of the Lyapunov equation? Is the Lyapunov equation
singular? Is the solution unique?

Exercise 10: Repeat exercise 9 for

a=[% 3] st a-f] a-[3

For two different C.

Exercise 11: Check to see the following matrices are positive definite or semidefinite:

2552373 .7 0O 0 -1 aa; aqa; aqdas
%4 40 O 0 O AA1 QA0 QA0A3
22 -1 0 2 asza, dasza,; Aasds

Exercise 12: Compute the singular values of following matrices:

[—1 0 1] 172 2]
Zalids=d.A) 2 4 1
36
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Exercises

Exercise 13: Show that:

- ‘
az

det I + 2| [b; b, b ] =1+Zambm
an m=1

Answer of exercise 6:

nl; O 0 |
B=| 0 Ini, 0

f 0 0 lnlg_

Ini 1/2 0
B=10 nia 0
0 0 Ind

Answer of exercise 10: Eigenvalues: 0, 0. No solution for C,. For any m1,
[m, 3-m,]" is a solution for C,.

37
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