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|_ecture 1

Mathematical Descriptions of
Systems
Topics to be covered include:
« Introduction.
« Linear Systems.
« Linear Time Invariant Systems.
« Op-Amp Circuit Implementation
« LInearization.
« Concluding Remarks 2
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What you will learn after studying this section

Causal, lumped and lumpedness Systems
Linear Systems and Its Property

State Idea

State-Input-Output Pair Idea

Input-Output Relation

State Space Representation for LTV Systems
Time Invariant Systems and Transfer Function

LTI State Space Representation

Op-Amp Circuit Implementation

Linearization of LTI Systems
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Introduction

Memory less System

A system is called memoryless if its output at any given moment depends only on
the Input at that same moment and is not related to any past or future inputs.

y(t) =12.3u(t)

Causal system

A system is called causal if its output at time t, depends only on the input at time t,
and earlier inputs, and is not related to any inputs after t, .

y(t) =u(t-1)

y(t)=u(t+1) ?
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Introduction

Input-Output Relation
u(t), te(—oo,+0) — y(t)

Input-Output Relation in Casual System

u(t), te(—oo,t) — y(t)

Definition 1 (State): The state x(t,) at time t, is the set of information that uniquely
determines the output y(t) for t> t, given the input u(t) for > t; .

State-Input-Output Pair

X(tp)

o0 tzt}—w(t),tzto
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Introduction

Lumped System

A system is called lumped if it has a limited number of states.
Distributed System

A system is called distributed if it has an infinite number of states.

Example 1: ADistributed System

y(t) =u(t-1)
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Linear Systems

Linear System

A system is called linear if, for every t, and for any two pairs of state-input-output,
the following two conditions hold:

X2 (tO )

Xl(to) }_> yl(t)1 tZtO uz(t)’ tzto} —> yz(t), tZtO

u,(t), t>t,

1- Additivity X, (t.)+ %, (t,)

> ay, (t), t>t
aul(t),tzto} (1) 125

The two properties can be combined to result in the principle of superposition.

o, X (ty) +a, X, (t,)

— t)+ t), t >t
a,U, (t) + a,u, (1), tzto} ¥ (t) +a,Y, (1) 0 9
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Linear Systems

Linear System property
Consider the zero-state response of a system as follows:
X(t,) =0

t), t>t
U(t), 1:2,[0}_>yzs() 0

Consider the zero-input response of a system as follows:

X(t)

(t), t>t
u(t) =0, tZto}—)yz'() °

Now, for a linear system, we have:

X(to)

u(t), t>t }_> Yo () +Y5(1), 121

Therefore, in linear systems, we have:
ytotal (t) — yzs (t) + yzi (t)

Zero-input response + zero-state response = complete response 10
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Linear Systems

Input-Output Description 3y —s| Linear | 5 y

System

Consider following input:

u(t) ~ Zu(ti)aA(t_ti)A

h
- |

Suppose: S,(t-1) — 9,(t)

According to homogeneity we have: o, (t—t)u(t)A — g, (t,t)u(t)A

According to additivity we have:

Z5A(t_ti)u(ti)A - ZgA(t'ti)u(ti)A

So we have:

u) > y=[ gt.ru)de 1
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Linear Systems

Input-Output Description for Linear System

y=[" g(t.7)u(z)dr

Input-Output Description for Causal Linear System

g(t,r)=0 if t<z y(t)=f_tw g(t,7)u(r)dz

Input-Output Description for Causal and relaxed Linear System at t,

yO = gt ru(z)ds naMIMO — yh)=[" Gt ru()de
: case o
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Linear Systems

State Space Description

X(t) = A(t)x(t) + B()u(t)
y(t) = C(t)x(t) + D(t)u(t)
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Linear Time Invariant Systems

Linear Time Invariant Systems

A system is called time-invariant if, for every pair of state, input-output,
X(t;)
u(t), t>t,
and for any T, we have:
X(t, +T)
uit-T), t>t, +T

}—>y(t),t2to

}—) y(t-T),t=>t,+T

Input-Output Description for LTI

g(t,7)=g(t+T,z+T)
gt,7)=g(t-r,7-7)=9(t-7,0)=9g(t-7)

14
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Linear Time Invariant Systems

Example 2: The desired response of a system with a unit
delay is the impulse response.

u(t) . v

delay —

& b= vl

g(t)=5(t-1)
Example 3: The desired response of the following system:

r(t) +T @_ L=:|I::;i::-nle ?( t)

g(t) = ad(t—1)+ a%5(t—2) +a°5(t—3) + ...... = iaia(t—i)

Example 4: The desired response of the system from the previous example_to an
arbitrary input r(t), which is zero for t<0 is:

yt) =gt -r(dr =Y a'[ st -i-o)r()de

y(t) = ia‘ (o) = ia‘r(t—i) 15
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Linear Time Invariant Systems

Input-Output Description for Linear Time Invariant System
y) =[" gt.ou(@)dr - y)=[" gt-nu@)dr=[" u(t-7)g(z)dr
Input-Output Description for Causal Linear Time Invariant System

yO) =[  gt-ru()ds

Input-Output Description for Causal and Relaxed Linear Time Invariant System

yO=[ g(t-r)u(z)dr
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Transfer Function Matrix

The output of a system in the Laplace domain is represented as:

y(s)=]" y(tyedt

Using the input-output relationship,

y©)=[" Uio g(t—r)u(r)dr)estdt y©)=[" (jio g(t—r)u(r)dr)es(”)e”dt
y©)=[ ( [" gt —r)eS“f)dt)u(r)eSfdr

y(s):fiO (j: g(v)es(v)dvju(r)e“dr

y(s)=]_, 9()u(r)edr

y(s) =g(s)u(s) 17
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Transfer Function Matrix

The transfer function = the input-output representation of a system in the Laplace domain.

y(s) =g(s)u(s)

Proper transfer function(tf): g(s)<>deg D(s) = deg N(s) <> g(0) =cte
Strictly proper tf: g(s)=deg D(s) >degN(s) < g(0) =0
Improper tf: g(s)< deg D(s) <deg N(s) < g(0) =
Biproper tf: g(s)=degD(s)=degN(s) = g(0)=cte# 0

For a system with p inputs and q outputs, the transfer function is converted into a
transfer matrix.

ViS) | [ 9u(S)  9(8) .o 9,(S) ] u(s) ]

_yq (S)_ _gql(s) qu(S) gqp (S)__up(s)_
18
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Transfer Function Matrix

Example 5: The transfer function of a system with a unit delay is:

u(t) ] ¥t g(t) =4(t-1)

g(s)=e”

Example 6: Find the transfer function of the following system:

I'(t) + L=n|l_-rirnr ?(t)
+ alemenl ae—S
S) =
‘ 9) 1-ae™®
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State Space Description for Linear Systems

State Space Description for LTI systems

X(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

To calculate the transfer function, it is sufficient to take the Laplace transform of
the state-space equations:

x(s) = (sl — A)x(0) + (sl — A)Bu(s)
y(s) =C(sl — A)™*x(0)+C(sl — A)™"Bu(s) + Du(s)

Therefore, the transfer function (assuming zero initial conditions) is given by:

g(s)=C(sl —A)'B+D
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Op-Amp Circuit Implementation

PS &
Offset Null| 1 | 741 Op. Amp. | 8 [Not Connected (NC)

Inverting (=) | 2 p= N ~—~-~—~~- 7 | V+ (Power)
Non-Inverting (+) | 3 | 6 | Output
I
]
1

(Power) V= 4 - ——— 1 5 Offset Null

' (y,poﬂwﬁﬂ
TIN3SEP
QO26AR

| .
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Op-Amp Circuit Implementation
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X; o—AAA—T—AAA—

Rib
X o0 AAA—
Ric

ook LIN
v

—(ax, +bx, +cx,)

R/a *;—;
Ilo-NaW A9
R/b
X 3 o= AAA—

RC =1

— .I.(::;Uc1 +bx, +ex,)dt
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Op-Amp Circuit Implementation

amplifier (op-amp) for the given system is desired.

X
X

o Sl

Example 7: The implementation of an operational {

A

_ Xl
y=[-2 3 +5U
i X,
R/2 C C R/2 R
k i€ M
R/2 0 R — R
U o= AAN |\ AN h\ - AAA — v

Rj0.3 l/ Rfﬂ L/ R/5

RO =1

W
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L Inearization

Although almost every real system includes nonlinear features, many
systems can be reasonably described, at least within certain operating

ranges, by linear models. #(t) = f(z(t), u(t))
y(t) = glz(t), u(t))

Say that {Xo(t), ug(t), Yo(t)} Is a given set of trajectories that satisfy the

above equations, so we have

i@(t) — f(an(t)a uQ(t))5 wQ(to) given
yo(t) = glzg(t), ug(t))

. of of
b(0) ~ f(og,u0) + gy | (@) — o)+ 5| (ult) - ug)
u:uQ u:uQ
dg dg
y(t) = g(zq,uq) + - N z(t) —2Q) + 7 e u(t) — ug)
U=UQ U= UQ 24
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L Inearization

o f o f -
b() ~ f(og,uQ) + | (@) — Q) + | (ult) — ug)
U—UY U—=UQ
g Og
y(t) ~ glaguue) + 52| (o) —30) + | (ult) - ug)
U=UQ U—U
Of of
z(t) — flzg,ug) = el R (x(t) —zg) + 30 | ez, Y t) —ug)
U=U U=Uc)
dg dg
y(t) - 9(aguq) ~ 52| (a(t) —3) + ool . (ult) - uq)
U= U=U
Linearization procedure 4 oF| B of
Sx=ASx+BSu é23 s Ou |7 s
ag og
oy=Cox+D?d C=— ==
Y o . O |*= % Ot |*=%g
W=ii g L=iip, oe

Dr. Ali Karimpour Aug 2024



L Inearization
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Example 8: Consider the given system: dz(t) (u(t))?
j A = Ja(),u(t) = —Va(t) +
Suppose the input has a small variation around 2; linearize the system around the
given point.
2
U,y =2 = O:—\/g+2§ _16 Operating point: Uy, =2, X, =%
Linearization procedure  &f _of Ao of | 1 3
Sx=ASx+B&u e cele X 2%, 8
3, %,
Oy=Cox+Dou Cz—gxx ; :—gx_x B:ﬂ| :gu _4
s clss ou et 370 3
° 3 4
X=——0X+—0al
8 3 e
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L Inearization

Simulation

28 I | I I 1 I 1 I 1
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L Inearization

Example 9: Linearize the following system around its equilibrium point.

mg

2
Jﬁ—ul—mglsine, J=ml*

At

d:g  'ur g ;
=——=5In@ X, =0,X,=0

dt®> ml | : :

X, =X

1 2 XlQ:XZQ:uQ:O

X, :%—%sin X, IS operating point
m

Linearization procedure

5x=A§x+B§u

Oy=Codx+Ddu

X, 0 || X,

x=Xp I
L=ty — — — —

_ o [ 4 oz,
B2 {5&} 0.3 {&1} 0
¢ L g +| 1 |ou
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Concluding Remarks

System Type

Internal Description

External Description

Distributed, linear

Yy =[ Gtru()dr

Lumped, linear

X(t) = A(t)x(t) + B(t)u(t)
y(t) = CO)x(t) + D(t)u(t)

Y =[ Gtru()dr

Distributed, linear
time-invariant

y() =[ G(t-o)u(r)dr
y(s) = G(s)u(s),G(s) irrational

Lumped, linear
time-invariant

X(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

y) =] G(t-ru()dz
y(s) = G(s)u(s),G(s) rational
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lecture 1

Exercise 1: The following systems have zero initial conditions, and their input-
output relationship is shown in the figure. Which system is linear? Why?

_— Ll

el -

/n R 0

ia) (4]

L |

Exercise 2: The clipping operator is given by the following relationship. Is
the system linear? Is the system time-invariant? Is the system causal? Provide

a justification for each case.

yi(t) = (Pgult) :=

ultl fort <o
fort =

30
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Exercises

Exercise 3: A linear system is subjected to the inputs u,(t), u,(t), and us(t),
In each case, the initial condition is x(0). If we assume x(0)=0, which of the
following statements is correct? Why?

If we assume x(0), which of the following statements is correct? Why?

1. If wx = wy 4 ua, then y3 = y; + ¥
2. If uy = 0.5(u, + up), then yv3 = 0.5(y; + w).
3. If uy = wy — w3, then vy = y; — v,

Exercise 4: The system below has an initial condition of zero, and its input-
output relationship is shown in the figure. Examine the properties of additivity
and homogeneity.

() = {u?(r};uu — D ifult = 1) #0
0 ifuir —1)y=10

31
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Exercises

Exercise 5: The impulse response of a linear system and its input are shown
In the figure below. Find the zero-state response of the system.

wied

[N I

—] ==

Exercise 6: Find the transfer function and impulse response of the system

below.

YV+2v—3vyv=u—u

Exercise 7: Find the step response of the system for a=1and a=0.5.

r(t) .

O

L'min-time
detay
al=menl

y(t)

|

32
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Exercises

Exercise 8: Find the step response of the system for a=1and a=0.5.

r(t) " L'nit-time Y(t)
delay -

clement

-

Exercise 9: Obtain the Bode diagram of the system below.

=L A

v=1[3 10]x — 2u
Exercise 10: Find the state-space equations and transfer function of the
system below.

1F
i€
L AAA— o+
-0 1Q

U ¥
{current (T ~ L F
source)

LH 33
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Exercises

Exercise 11: Find state-space equation for following system:

The soft landing phase of a lunar module descending on the moon can be modeled as
shown in Fig. 2.24. The thrust generated is assumed to be proportional 10 i, where m 1%
the mass of the module. Then the system can be descnibed by my = —km — mg. where
2 is the gravity constant on the lunar surface. Define state variables of the system as
X, = v, x2 = v, x; = m,and u = m. Find a state-space equation to describe the system.

P
T E [ "_.,

|
I Thrust = km
I
1

e e e

Lunar surfacs

34
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Example 10: Suppose electromagnetic force is i4/y
and find linearzed model around y=y,

2 =2
AN Y= PY Md—zyzlvlg—l(t)
i S dt y : ;
= o di X1=y,X2=y,X3=|
; e(t)=Ri+L—
(=R 7
Tows R e(t
X=X X, =0———— xg———1x3+ﬁ
M X L L

X0 = Yo X0 = 0 X3q = iQ = 4/ May, € = Rl\/ May,

35
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Example 10: Suppose electromagnetic forceis i2ly
and find linearzed model around y=y,

N

Lh 1 X R e(t
§ Xk e e s x3_——1x3+Q
, M X, L L
Equilibrium point: (X1Q 1 X501 %30 1€ ):(yo ,0,yMay, , R,/ Mgy, )
@ Linearization procedure = &f| B of
Sx=ASx+Bbu it Ou |70
og og
dy=Cox+Do C== , D==
Y o “ Ox |*=%g Ol |*=7g
n=tip, =i
XK, =X, p ! =&
Laagal L
) X X
X, =g5x1 o el X, M lg g :
Yo My, X, | = y— 0 =2 My X, |+| 0|e(t)
. 0 0
2R 5(t) | 0% LA
5X3 =——5X3+— 0 0 s | 6
i L | Dr. AIrKarirﬁpour Aug 2024




lecture 1

Example 11: Consider the following nonlinear system. Suppose u(t)=0
and initial condition Is X,,=X,,=1. FInd the linearized system around

%Wﬁﬁfg
7
X, (1)
X, (t) =u(t)x,(t)
%L({0)=0xt)=0 = x(t)=a=1

Xl (t) I

Xxt)==-1 = x(({t)=-1+b=-1+1

Linearization procedure A= af| B of
Ox=A40x+Bdu o i 8@{;35
og og
oy=Cox+Do C=-—= : D=2
Y .?C “ ax |7=%p O | =g
L=l H=ip

= + au(t)
s, | |0 0f&, | |1-t 37
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Example 12: (Inverted pendulum)

Figure : Inverted pendulum

- 3%

y(®)

—l

y(t)
0(t)
M
m

|
f(t)

distance from some reference point

angle of pendulum

mass of cart

mass of pendulum (assumed concentrated at tip)
length of pendulum

forces applied to pendulum
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Inverted Pendulum

39
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Inverted Pendulum

SO

n—

[cosd

=g [l o et xg:x+lsin0

(M +m) 7 +c3)t(+ml cos 99 —ml sin 6% = u

LSS
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Inverted Pendulum

Application of Newtonian physics to this system
leads to the following model:

1 {f(t)

ij = +02(t)esinO(t) — g cosO(t) sin Q(t)]

A +sin? 0(t) | m
_ ! () g |
0 = Do TS0 {— —— cos 0(t) + 0°(t)fsin 6(t) cosO(t) + (1 — Ay, ) g sin 6(t)

where .= (M/m)

This is a linear state space model in which A, B and C are:

0 1 0 0 -0
00 =42 0 L
_ M . _ M . _
A=1, 0 | B=| ¥ |; €=[1 0 0 0
M+m 1
0 0 (J\J;IE)Q 0 - M¢

41
Dr. Ali Karimpour Aug 2024



lecture 1

Answers to selected problems

Answer 1: Linear, nonlinear, and nonlinear

Answer 2: Linnear, time invariant and casual.

Answer 3: For nonzero initial condition, no, yes, and no
For zero initial condition yes, yes, and yes

Answer 5: fot t<0 and t>4 the output Is zero and

(40,56 for 0<t<1
y(t)=4-15t"+4t—-2 for 1<t<2
—t(4-1) for 2<t<4

\

Answer 6:

()= ——  gO)=e* fort=0
S+3

42
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