# LINEAR CONTROL SYSTEMS

Ali Karimpour Professor

Ferdowsi University of Mashhad

#### Lecture 5

# Time domain analysis of control systems

#### Topics to be covered include:

- Introduction
- Steady state error.
- \* Transient response of a some prototype systems.
- \* Different region of S plane.
- Transient response of a position control system.
- Dominant poles and approximation of high-order systems by low-order systems.
- Effect of zeros on the transfer function of a system.

#### Introduction

Steady state behavior.

Absolute stability.

Stability.

Steady state error.

Dynamic behavior.

Relative stability.

Speed of response.

Deviation of response.

## First-Order Loop Transfer Function System

$$T(s) = \frac{c(s)}{r(s)} = ?$$

$$T(s) = \frac{9}{s+10}$$

$$C(s)=T(s)R(s)$$

Step response?

$$C(s) = \frac{9}{s+10} \frac{1}{s}$$

$$c(t)=?$$



step(9,[1 10])

hold on; step(1,1)



# Second-Order Loop Transfer Function System

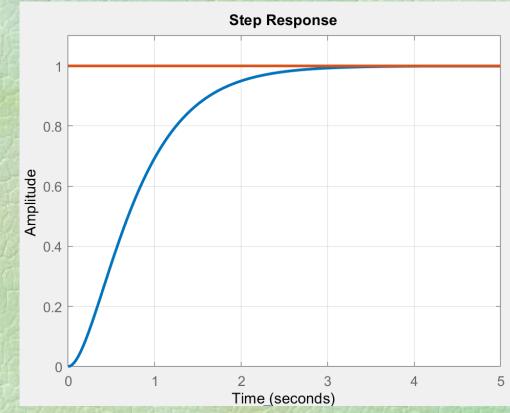
$$T(s) = \frac{c(s)}{r(s)} = ? T(s) = \frac{6}{s^2 + 5s + 6}$$

$$C(s)=T(s)R(s)$$

Step response?

$$C(s) = \frac{6}{s^2 + 5s + 6} \frac{1}{s}$$

$$c(t)=?$$



# Second-Order Loop Transfer Function System

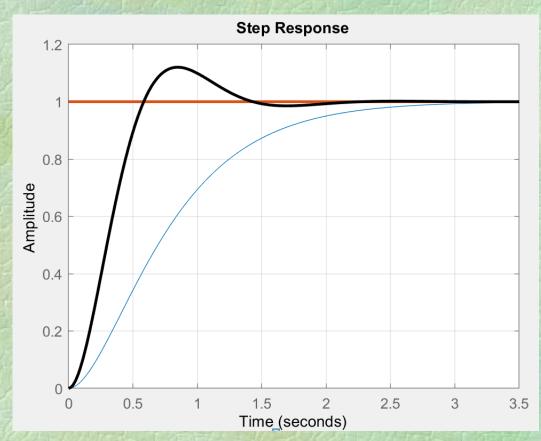
$$T(s) = \frac{c(s)}{r(s)} = ? \quad T(s) = \frac{20}{s^2 + 5s + 20}$$

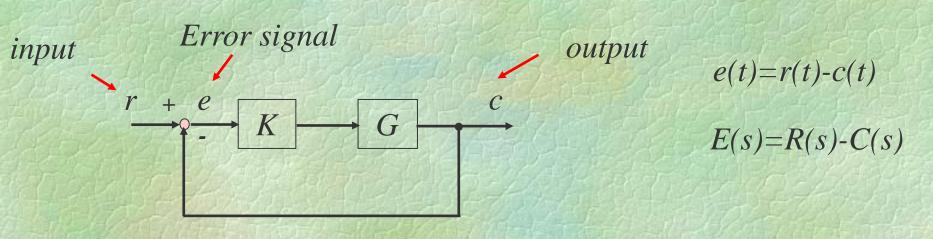
$$C(s)=T(s)R(s)$$

Step response?

$$C(s) = \frac{20}{s^2 + 5s + 20} \frac{1}{s}$$

$$c(t)=?$$



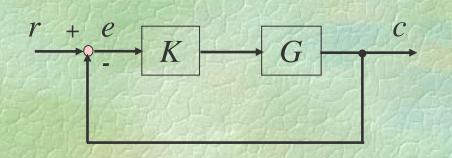


$$G(s)K(s) = \frac{k(1+\tau_1 s)(1+\tau_2 s)....(1+\tau_m s)}{s^{j}(1+\tau_{d1} s)(1+\tau_{d2} s)....(1+\tau_{dn} s)} e^{-T_d s}$$

Type of system

type of system

Relative degree



$$T(s) = \frac{G(s)K(s)}{1 + G(s)K(s)}$$

$$E(s) = R(s) - T(s)R(s)$$

If the system is  $e_{ss} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s(R(s) - T(s)R(s))$  stable:

(very important) 
$$e_{ss} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{s}{1 + G(s)K(s)} R(s)$$

## Error in control systems for step input

$$e_{ss} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s(R(s) - T(s)R(s))$$

$$e_{ss} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{s}{1 + G(s)K(s)} R(s)$$

$$R(s) = \frac{R}{s}$$

•

$$e_{ss} = R\left(1 - \lim_{s \to 0} T(s)\right)$$

$$K_p = ?$$

$$e_{ss} = \frac{R}{1 + K_{p}}$$

Position constant

# Error in control systems for velocity input

$$e_{ss} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s(R(s) - T(s)R(s))$$

$$e_{ss} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{s}{1 + G(s)K(s)} R(s)$$

$$R(s) = \frac{R}{s^2}$$

$$e_{ss} = R \lim_{s \to 0} \left( \frac{1 - T(s)}{s} \right)$$

$$K_{v} = ?$$

$$e_{ss} = \frac{R}{K_{v}}$$

# Error in control systems for parabolic input

1

$$e_{ss} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s(R(s) - T(s)R(s))$$

$$e_{ss} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{s}{1 + G(s)K(s)} R(s)$$

$$R(s) = \frac{R}{s^3}$$

•

$$e_{ss} = R \lim_{s \to 0} \left( \frac{1 - T(s)}{s^2} \right)$$

$$e_{ss} = \frac{R}{K_a}$$

$$K_a = ?$$

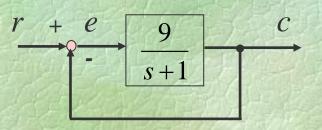
Acceleration constant

$$G(s)K(s) = \frac{k(1+\tau_1 s)(1+\tau_2 s).....(1+\tau_m s)}{s^j(1+\tau_{d1} s)(1+\tau_{d2} s)....(1+\tau_{dn} s)}e^{-T_d s}$$

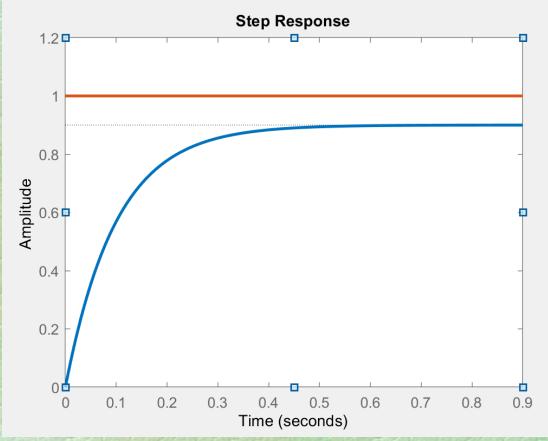
| System | System         |                | position |                 | velocity      | acceleration                    |
|--------|----------------|----------------|----------|-----------------|---------------|---------------------------------|
| Type   | K <sub>p</sub> | K <sub>v</sub> | Ka       | e <sub>ss</sub> | $e_{ss}$      | e <sub>ss</sub>                 |
| 0      | k              | 0              | 0        | $\frac{R}{1+k}$ | 0             |                                 |
| 1      | $\infty$       | k              | 0        | 0               | $\frac{R}{k}$ |                                 |
| 2      | 0              |                | k        | 0               | 0             | $\frac{R}{k}$                   |
| 3      | _∞             |                |          | 0               | 0             | 0                               |
|        |                |                |          |                 |               | <b>Dr.</b> Ali Karimpour Aug 20 |

Dr. Ali Karimpour Aug 2024

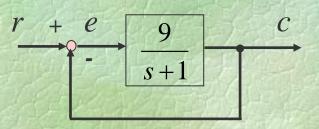
#### Example 1: Step and velocity response



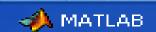
$$T(s) = \frac{9}{s+10}$$



#### Example 1: Step and velocity response



$$T(s) = \frac{9}{s+10}$$

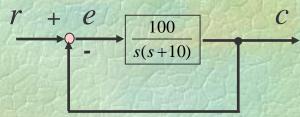


step(9,[1 10 0])

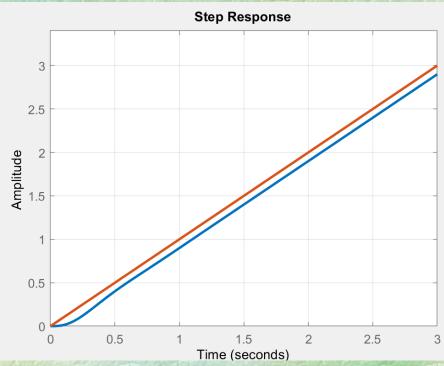
hold on; step(1,[1 0])



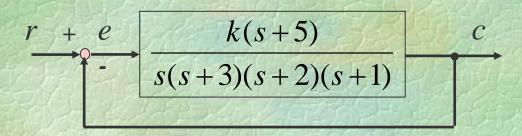
Example 2: Derive errors to unit step, unit velocity and unit acceleration.







Exercise1: Derive k such that the system error to unit velocity be 0.1.



..... It is not possible.

Exercise 2: The closed loop transfer function of a system is given. Determine a such that the system error to step input is zero.

$$T(s) = \frac{a}{s^3 + 12s^2 + 6s + 23}$$

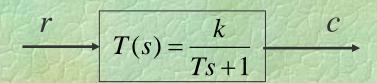
## Time domain analysis of control systems

#### Topics to be covered include:

- Introduction
- Steady state error.
- Introducing some performance criteria (ISE, ITSE, IAE and ITAE).
- Transient response of a some prototype systems.
- Different region of S plane.
- Transient response of a position control system.
- Dominant poles and approximation of high-order systems by low-order systems.
- Effect of zeros on the transfer function of a system.

# Introducing some prototype systems

Introduction to a First-Order Sample System



Step response .....

Steady state error .....

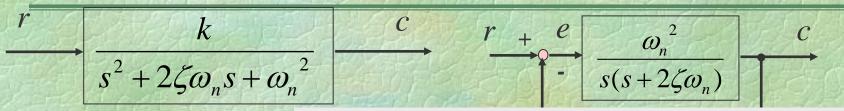
Time constant.....

Settling time.....

Effect of T on speed.....

#### Introducing some prototype systems

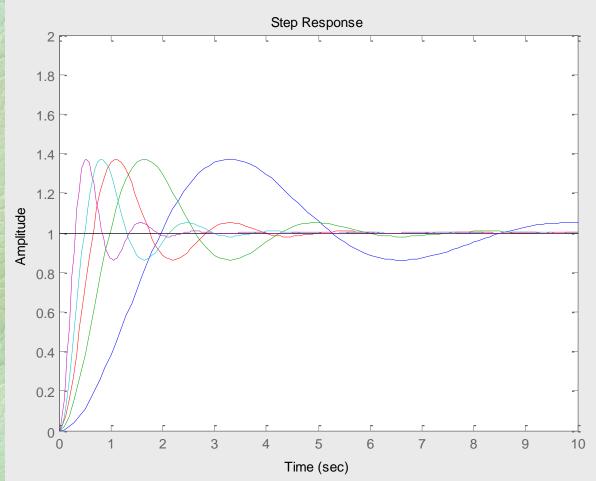
Introduction to a Second-Order Sample System



#### Step Response

$$\zeta = 0.3$$
  $\omega_n = 1, 2, 3, 4, 6$ 

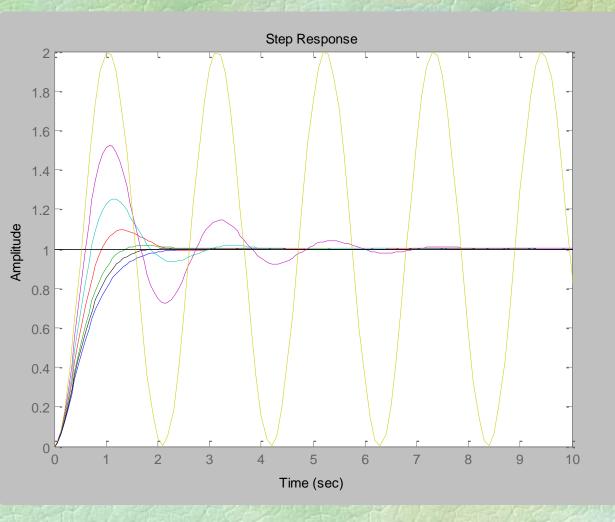




# Step response

$$\frac{r}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Step response  $\omega_n = 3$   $\zeta = 1, 0.8, 0.6, 0.4, 0.2, 0$ 



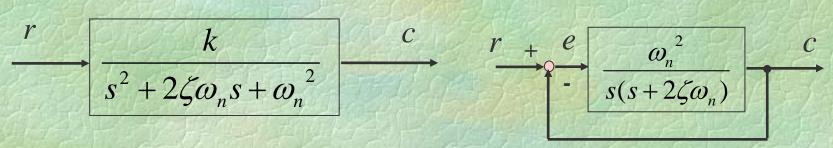


Dr. Ali Karimpour Aug 2024

Lecture 5

#### Introducing some prototype systems

Introduction to a Second-Order Sample System



Step response .....

Steady state error .....

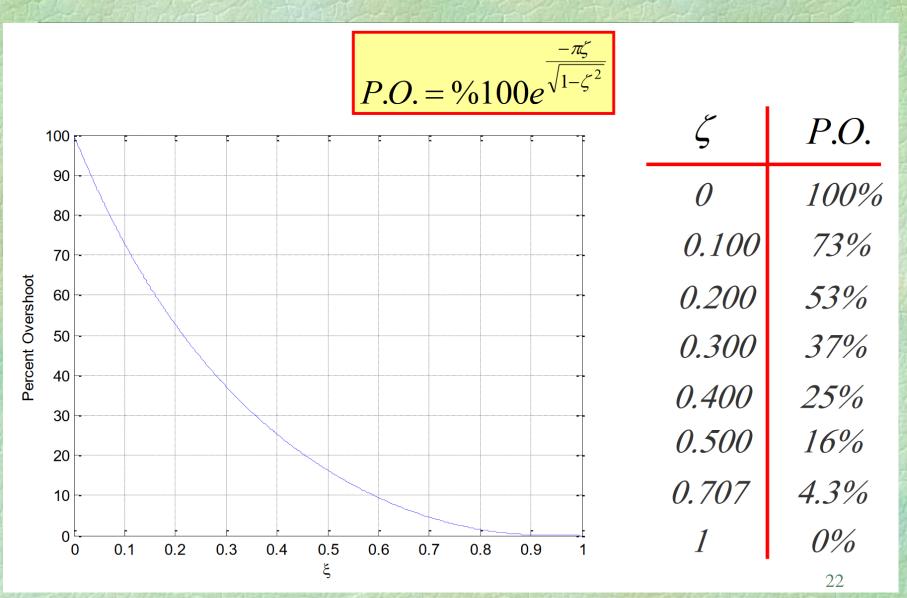
Rise time, Peak time, settling time, Percent overshoot .....

Speed of sytem .....

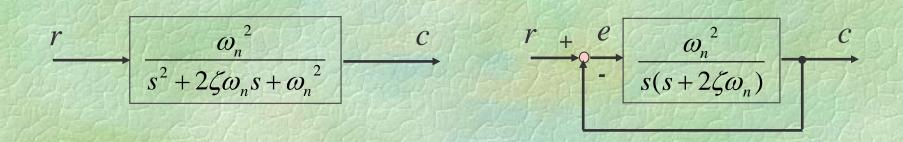
$$t_r = \frac{0.8 + 2.5\zeta}{\omega_n}$$

$$t_r = \frac{1 - 0.4167\zeta + 2.917\zeta^2}{\omega_n}$$

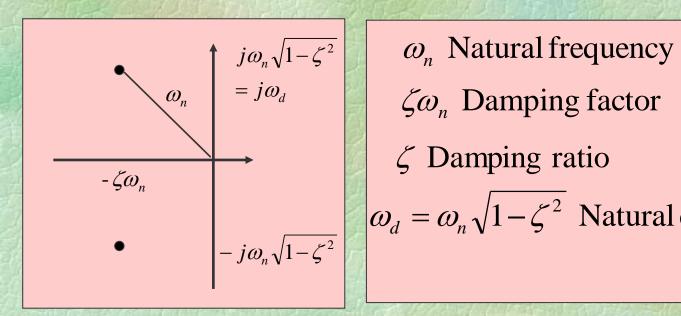
#### Introducing some prototype systems



## Introducing a prototype second order system.



Poles are: 
$$-\zeta \omega_n \pm j\omega_n \sqrt{1-\zeta^2} = -\zeta \omega_n \pm j\omega_d$$
 if  $0 \le \zeta \le 1$ 



5 Damping ratio

$$\omega_{d} = \omega_{n} \sqrt{1 - \zeta^{2}}$$
 Natural damped frequency

#### Constant loci.

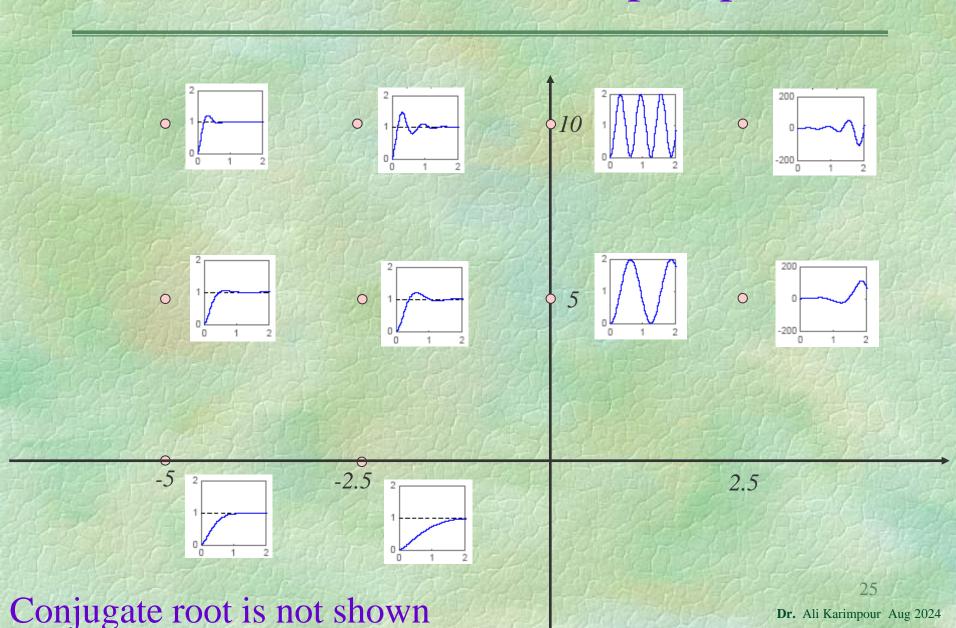
Constant natural frequency loci.

Constant damped frequency loci.

Constant damping factor loci.

Constant damping ratio loci.

#### Effect of roots loci on step response



# Time domain analysis

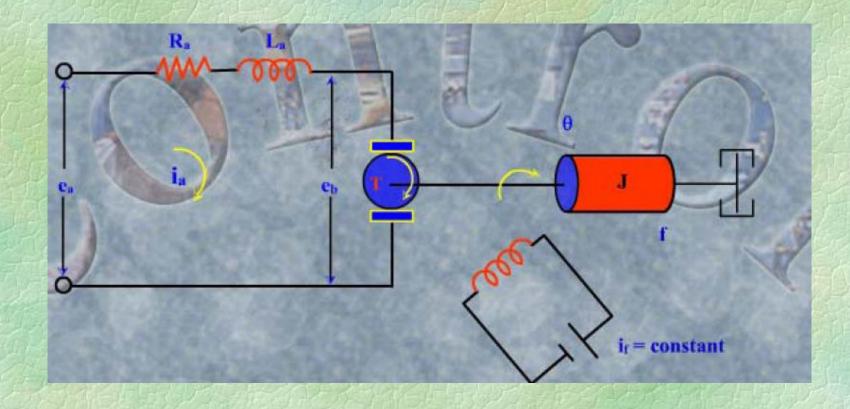
Exercise 3: Find the loci that the percent overshoot is less than 16% and settling time is less than 1 sec (according to 5% bound).

## Time domain analysis of control systems

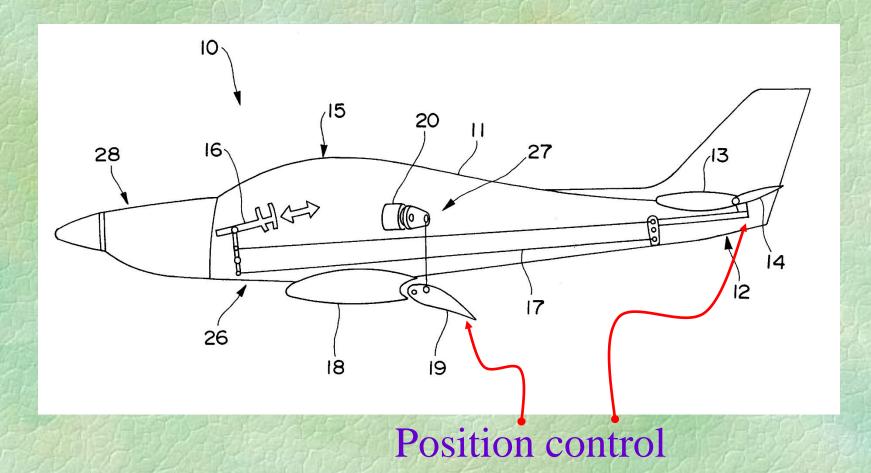
#### Topics to be covered include:

- Steady state error.
- Introducing some performance criteria (ISE, ITSE, IAE and ITAE).
- Transient response of a prototype second order system.
- \* Different region of S plane.
- Transient response of a position control system.
- Dominant poles and approximation of high-order systems by low-order systems.
- Effect of zeros on the transfer function of a system.

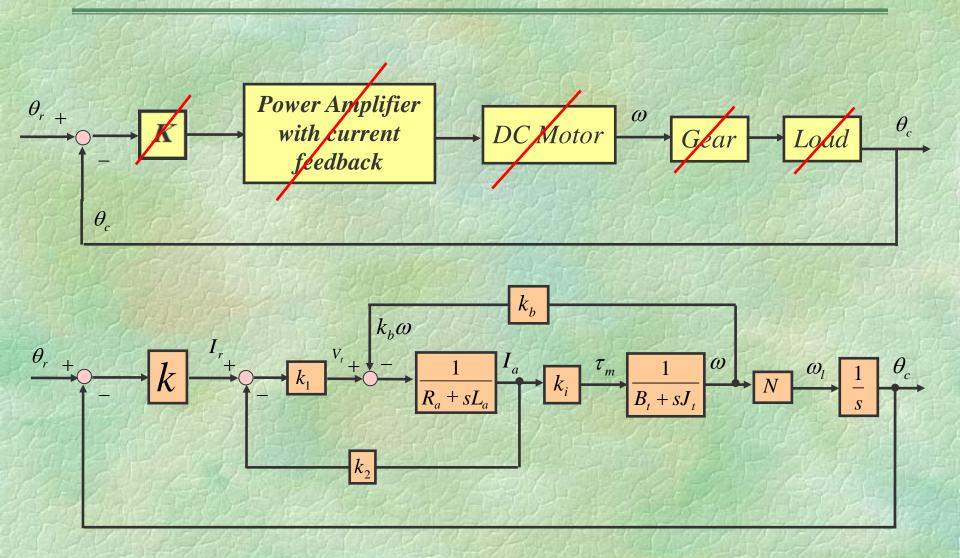
# Dynamics of electromechanical system



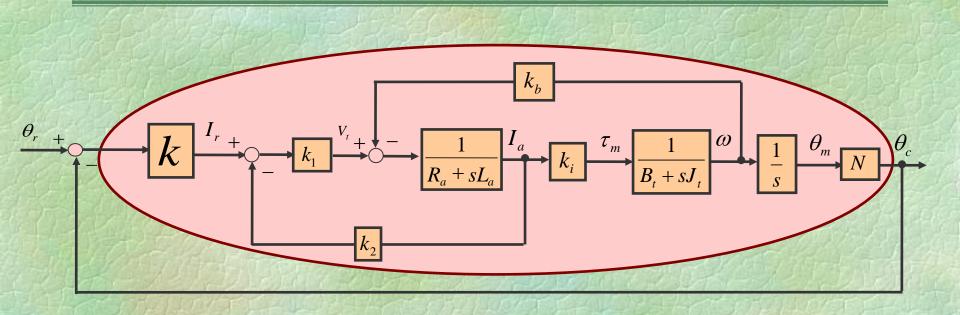
# A simplified aeroplane (position control system)

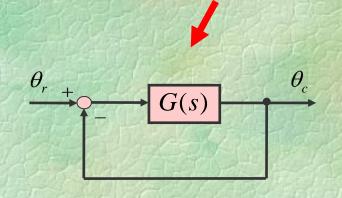


# Block diagram of a position control system



## Simplification





$$G(s) = \frac{\frac{kk_1k_iN}{s(R_a + sL_a)(B_t + sJ_t)}}{1 + \frac{k_1k_2}{R_a + sL_a} + \frac{k_ik_b}{(R_a + sL_a)(B_t + sJ_t)}}$$

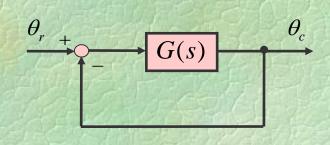
$$= \frac{kk_1k_iN}{s((R_a + sL_a)(B_t + sJ_t) + k_1k_2(B_t + sJ_t) + k_ik_b)}$$

# Simplification

$$G(s) = \frac{k_{s}k_{1}k_{i}N}{s((R_{a} + sL_{a})(B_{t} + sJ_{t}) + k_{1}k_{2}(B_{t} + sJ_{t}) + k_{i}k_{b})}$$

$$\frac{k_{s}k_{1}k_{i}N}{(R_{a} + k_{1}k_{2})J_{t}}$$

$$s\left(s + \frac{R_{a}B_{t} + k_{1}k_{2}B_{t} + k_{i}k_{b}}{(R_{a} + k_{1}k_{2})J_{t}}\right)$$
by ignoring  $L_{a}$ 



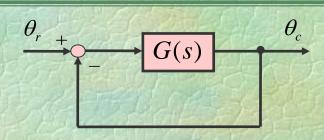
$$\begin{aligned} k_1 &= 10 & k_2 &= 0.5 & k_i &= 9 \\ k_b &= 0.0636 & R_a &= 5 & L_a &= 0.003 & N &= 0.1 \\ B_m &= 0.0005 & B_l &= 1 & J_l &= 0.01 & J_m &= 0.0001 \end{aligned} \end{aligned}$$
 
$$\begin{aligned} B_t &= B_m + N^2 B_l = 0.005 + \frac{1}{100} = 0.015 \\ J_t &= J_m + N^2 J_l = 0.0001 + \frac{0.01}{100} = 0.0002 \end{aligned}$$

$$B_{t} = B_{m} + N^{2}B_{l} = 0.005 + \frac{1}{100} = 0.015$$

$$J_{t} = J_{m} + N^{2}J_{l} = 0.0001 + \frac{0.01}{100} = 0.0002$$

$$G(s) = \frac{1.5 \times 10^7 k}{s(s^2 + 3408.3s + 1204000)} = \frac{1.5 \times 10^7 k}{s(s + 400.3)(s + 3008)}$$
$$\tilde{G}(s) = \frac{4500k}{s(s + 361.2)}$$

## Block diagram of a position control system



$$G(s) = \frac{1.5 \times 10^7 k}{s(s + 400.3)(s + 3008)}$$

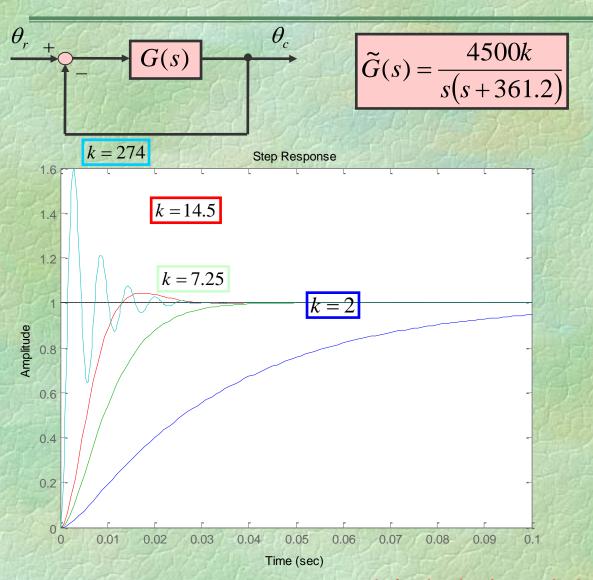
$$\widetilde{G}(s) = \frac{4500k}{s(s+361.2)}$$

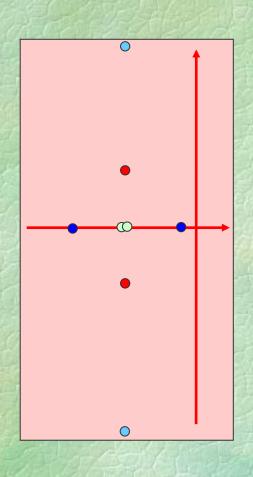
Stability analysis

Step response of second order system ......

Step response of third order system ......

### Step response



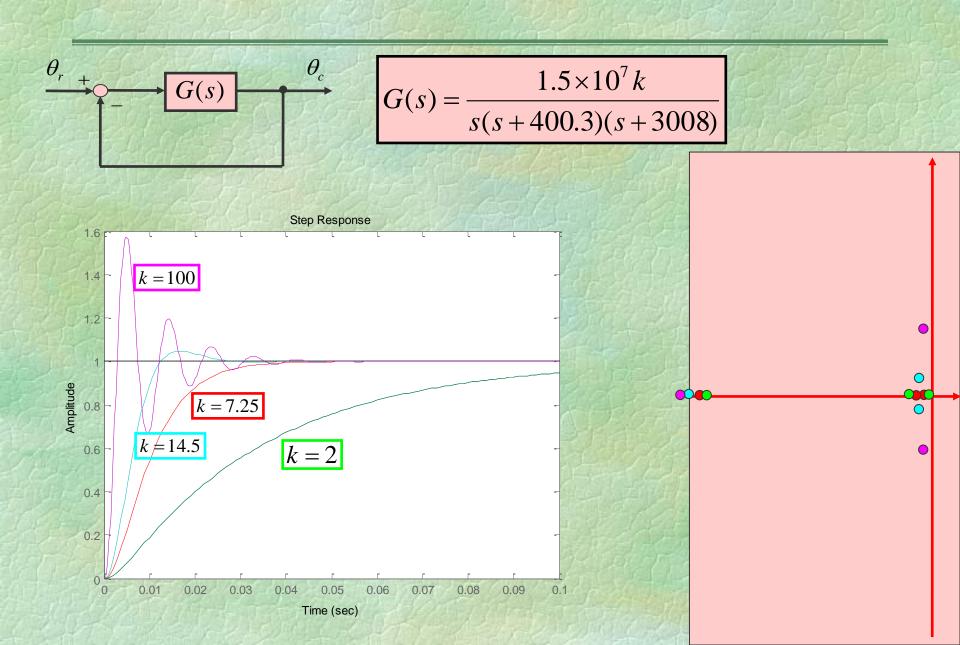


Which k is ok?

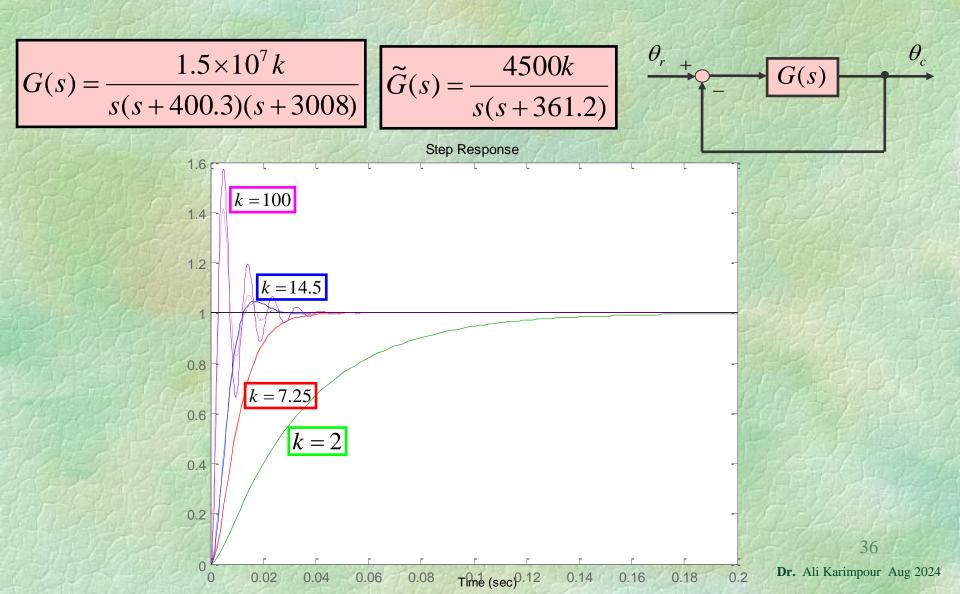
34

Dr. Ali Karimpour Aug 2024

## Step response



#### Step response comparison



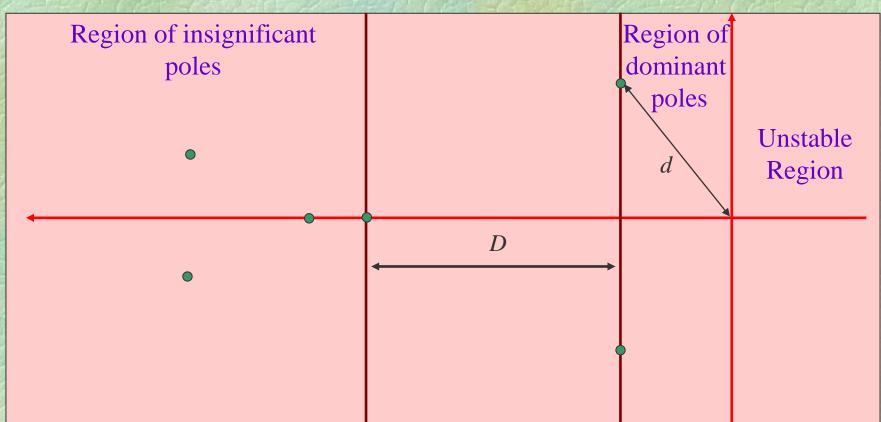
# Time domain analysis of control systems

## Topics to be covered include:

- Steady state error.
- Introducing some performance criteria (ISE, ITSE, IAE and ITAE).
- Transient response of a prototype second order system.
- \* Different region of S plane.
- Transient response of a position control system.
- Dominant poles and approximation of high-order systems by low-order systems.
- Effect of zeros on the transfer function of a system.

#### Model order reduction

Dominant Complex Poles in the Transfer Function

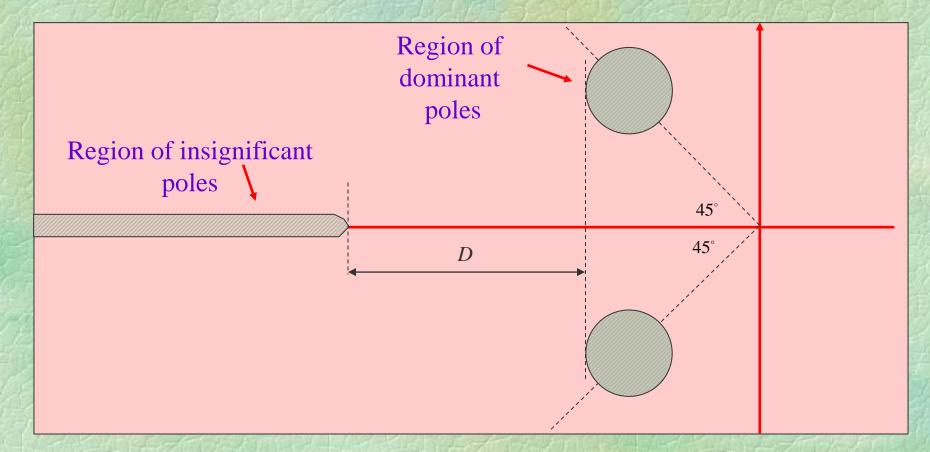


What about D?

D > 5 times of d.

# Design procedure

For design purposes, such as in the pole placement design we try to put poles on:



### Model order reduction

Exercise 4: What are the dominant poles of the following transfer function.

$$M(s) = \frac{32}{(s+2)(s+16)}$$

Exercise 5: What are the dominant poles of the following transfer function.

$$M(s) = \frac{15.24(s+2.1)}{(s+16)(s+2)}$$

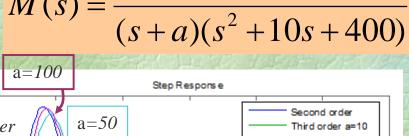
Exercise 6: Compare the step response of M and its approximation for different values of k.

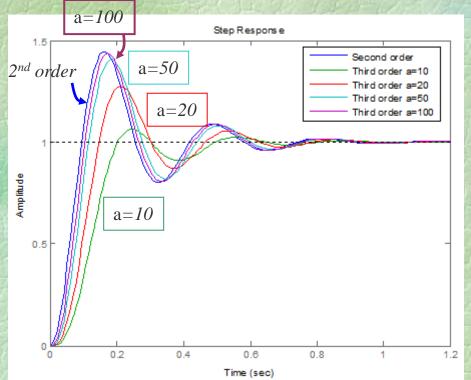
$$M(s) = \frac{400a}{(s+a)(s^2+10s+400)}$$

#### Model order reduction

**Example 3:** Compare the step response of M and its approximation for different values of k.

$$M(s) = \frac{400a}{(s+a)(s^2+10s+400)}$$





$$\widetilde{M}(s) = \frac{400}{(s^2 + 10s + 400)}$$

#### **MATLAB**

step(400,[1 10 400]);hold on a=10;step(400\*a,conv([1 a],[1 10 400]) a=20;step(400\*a,conv([1 a],[1 10 400])) a=50;step(400\*a,conv([1 a],[1 10 400])) a=100;step(400\*a,conv([1 a],[1 10 400]))

# Time domain analysis of control systems

### Topics to be covered include:

- Steady state error.
- Introducing some performance criteria (ISE, ITSE, IAE and ITAE).
- Transient response of a prototype second order system.
- Different region of S plane.
- Transient response of a position control system.
- Dominant poles and approximation of high-order systems by low-order systems.
- Effect of zeros on the transfer function of a system.

## Effect of zero on the closed loop system



# Importance of zeros in transfer functions

We see that the performance of system is concerned to:

Poles and zeros not just poles

Exercise 8: Find the error of following system to step input.

$$\dot{x} = \begin{bmatrix} -2 & 1 & 3 \\ 0 & -3 & 2 \\ 1 & 4 & -1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 2 & 0 \end{bmatrix} x$$

Exercise 9: Find the error of the following systems to step input.

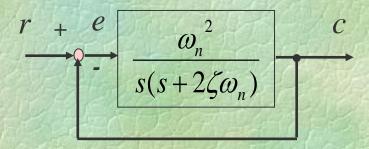
a) 
$$M(s) = \frac{2000}{s^3 + 15s^2 + 50s + 2000}$$
 b)  $M(s) = \frac{200}{s^3 + 15s^2 + 50s + 200}$  c)  $M(s) = \frac{500}{s^3 + 15s^2 + 50s + 600}$ 

Exercise 10: Find the error of the following systems to velocity input.

a) 
$$M(s) = \frac{50s + 2000}{s^3 + 15s^2 + 50s + 2000}$$
 b)  $M(s) = \frac{50s + 200}{s^3 + 15s^2 + 50s + 200}$ 

Exercise 11: Find the error of following system to unit step input (Final 1391). r + e = 100

Exercise 12: Consider following system.



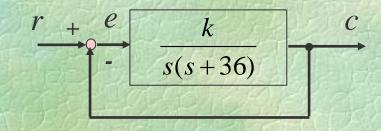
- a) Find the step response of the system for  $\omega_n = 12.56$ ,  $\zeta = 0.3$
- b) Find the rise time, settling time, overshoot, and percent overshoot.

Exercise 13: Consider following system<sub>r</sub> e  $\omega_n^2$  c  $s(s+2\zeta\omega_n)$ 

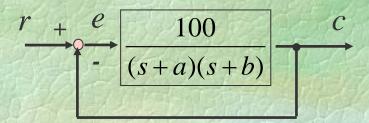
a) Find the step response of the system for

- $\omega_n = 12.56 , \zeta = 0.9$
- b) Find the rise time, settling time, overshoot, and percent overshoot.

Exercise 14: In the following system set k such that the percent overshoot of system be 4.3%



Exercise 15: In the following system set a and b such that the percent Overshoot of system be 4.3% and the steady state error to step input be 0.

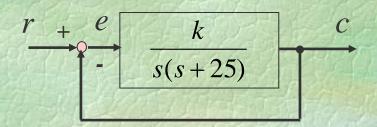


#### Exercise 16: In the system of problem 1 set k such that

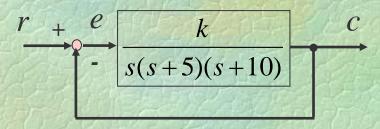
- a) The error to ramp input be 0.01
- b) The percent overshoot of system be 4.3%
- c) The error to ramp input be 0.01 and the percent overshoot of system be 4.3%

#### Exercise 17: In the following system

- a) For k=200 derive settling time, rise time and percent overshoot.
- Confirm your result with step response.
- b) For k=1000 derive settling time and percent overshoot.
- Confirm your result with step response.



**Exercise 18:** In the following system set the k such that the imaginary poles have 0.707 damping ratio.



Exercise 19: Find the roots of following system for -301<k<301 and show them on the s plane.  $G(s) = \frac{4500k}{s(s+361.2)}$ 

Let k=-300,-280,-260,.....260,280,300

Exercise 20: Find the roots of following system for -301<k<301 and show them on the s plane.

Let k=-300,-280,-260,......260,280,300

$$G(s) = \frac{1.5 \times 10^7 k}{s(s + 400.3)(s + 3008)}$$

Exercise 21: Consider following system. Find the dominant poles and insignificant poles of system.

96

 $M(s) = \frac{96}{(s+16)(s+2)(s+3)}$ 

Exercise 22: Derive a suitable second order system for following system.

 $M(s) = \frac{96}{(s+16)(s+2)(s+3)}$ 

Exercise 23: Compare the step response of the system in problem 15 and step response of its second order approximation.

Exercise 24: Consider following system. Find the dominant poles and insignificant poles of system.

$$M(s) = \frac{3150(s+3.05)}{(s+160)(s+20)(s+3)(s+1)}$$

Exercise 25: Derive a suitable second order system for following system.

 $M(s) = \frac{3150(s+3.05)}{(s+160)(s+20)(s+3)(s+1)}$ 

Exercise 26: Compare the step response of the system in problem 18 and step response of its second order approximation.

Exercise 27: a) Find K<sub>P</sub> and K<sub>D</sub> such that the steady state error to unit ramp be 1.

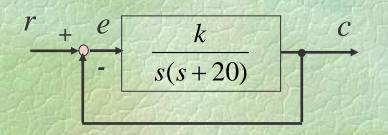
b) Plot exact step response of system. Define error as r(t)-y(t) (Final

1396/10/28)

 $\frac{r}{s} + \frac{1}{s(s+5)}$ 

## Examples

**Example 4:** Find the poles of the following systems and its corresponding step response for k=75, 100, 200 and 1000



$$M(s) = \frac{c(s)}{r(s)} = \frac{k}{s^2 + 20s + k}$$

$$k = 75$$

$$\Rightarrow$$

$$p_1 = -5, p_2 = -15$$

$$k = 100$$

$$\Rightarrow$$

$$p_1 = -10, p_2 = -10$$

$$k = 200$$

$$\Rightarrow p_1 = -10 + 10j, p_2 = -10 - 10j$$

$$k = 1000$$

$$p_1 = -10 + 30j$$
,  $p_2 = -10 - 30j$ 

