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|_ecture 6

Controllability and Observability

Topics to be covered include:

« Introduction.

« Controllability.

« Observability.

« Canonical Decomposition.

« Controllability and Observability in Jordan forms.
« Controllability and Observability in LTV systems.
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What you will learn after studying this section

Controllability and observability ideas
Controllability and observability detection
Application of controllability and observability
Input determination in controllable systems

Controllability and observability indices

Duality of controllability and observability

Effect of equivalent transformation on controllability and observability

Controllability and observability in Jordan froms

Controllability and observability in LTV systems 3
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Introduction

Controllability refers to the ability to control the states of a
system through input.

Observability refers to the ability to estimate the states of a
system by observing its inputs and outputs.
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Controllability

Consider following equation:

X=AXx+ BU 0
y=Cx+ Du

Definition 1: The state equation (1) or the pair (A,B) is said to be controllable

If for any initial state x, and any final state x,, there exists an input that transfers

X0 to x1 in a finite time. Otherwise (1) or (A,B) is said to be uncontrollable
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Controllability

Example 1: Is it controllable?

It is clear that detecting controllability or uncontrollability is not an
easy task just by observing the apparent view of the system.
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Controllability test

Theorem 1: Following statements for the given system  X=AX+ Bu
are equivalent:

y=Cx+ Du
1- The pair (A,B) is controllable.

2- The following nxn matrix is non-singular for all t>0
W.(t) = [ e4" BB' 4" dr = [ e4t=D BB’ e4'("D) gg

3- The nxnp controllability matrix C has rank n of full row rank.
C = [BJABA?B/: 5 AL R

4- The matrix [A — AI  B]with dimension nx(n+p) has full row
rank.

5- If, In addition to all the eigenvalues of A having negative real
parts, the unique solution of the following equation is also
positive definite. AW, + W.A" = —BB’

7
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Controllability test

Proof: First, the equivalence of expressions 1 and 2 is examined.

[Wc(t) IS invertible = The pair (A,B) is controllable]

The pair (A,B) is controllable = W.(t) is invertible

First, the initial part of the proof is presented.

Since, W.(t) is invertible, for any t,, W_.(t,) is invertible, we assert
that following input transfers the system from an arbitrary initial
point X, to an arbitrary final point X;.

u(t) =—B'e "W *(t)|e*x, — X |
X(t)=e"x +[' e Bu(r)dr
x(t,) =e"x, — j;l e BB'eM W T (t) [ x, — %, ]d 7

X(t)=e"x =W (t )W '(t)[e™x —x] TN = e
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Controllability test

Proof: First, the equivalence of expressions 1 and 2 is examined.

W.(t) is invertible = The pair (A,B) is controllable

[The pair (A,B) is controllable = W.(t) is invertible ]

Now, the proof of other side is presented.

We use contradiction. Assume W.(t) is not invertible at t,. Then, there
IS a hon-zero vector v such that:

VW, (t)v=['v'e“ BBe"vdr=0 = [|Be“"v[dr=0

B'e®*”v=0and ve"™”"B=0 Vre[0t]
Controllability allows easily transfer from x, = e“**v to x,=0.
0=x(t)=e"e™v+[ e Bu(r)dr

0

0=Vv'v+[ve” Bu(r)dc=v'v+0=0 |v| =0 Contradiction!
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Controllability test

Proof: First, the equivalence of expressions 1 and 2 is examined.
W.(t) is invertible = The pair (A,B) is controllable
The pair (A,B) is controllable = W.(t) is invertible

Now, the equivalence of expressions 2 and 3 Is examined.

Finally, the equivalence of expression 5 with one of the others must
be examined.
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Controllability test

Example 2: Check the controllability of following system.
[ 0 1 0] [O] 0 0 1]
x={ 0 O 1 {x+|0u ,

6 116 |1| C=[b Ab AbB]=0 1 -6

y=[L 1 OJx 1 -6 25
0 0 1
Cl=p 1 -6/=-1
1 -6 25

It Is controllable canonical form.
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Controllability test

Example 3: Check the controllability of each mode.
>'<—__2 i
"o 1o st

y=[1 1]x

S+2 —

0 s+

JJ:(s+1)(s+2)—>21:-1,/12 —£0

C:B _02} C|=0 — Itisnot completely controllable

Controllability of 4, =-1:

1 -1.1
Roetol apancc ] A, =—1 isnot controllable
0O 0.0
Controllability of 4, =-2:
et : DHLIOW G o A, =—2 iscontrollable
0O -1:0 12
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Controllability test

Example 4: Consider the following | !

suspension platform. If the displacement o)l

of each spring from the equilibrium

position Is considered as the state of the  Damping [] < Swine Damping
coetticient Constant coefficient

system, the state-space equations are : I
expressed as: 7777

2 e

If the initial displacement is non-zero and no force Is applied, the
suspension platform will exponentially approach equilibrium.
Theoretically, the states will reach zero only after an infinite duration.

Spring
constant

If x,(0)=10 and x,(0)=-1 is there a suitable force that can bring the
suspension plate to equilibrium within 2 seconds? 7

Dr. Ali Karimpour Aug 2024



lecture 6

Controllability test

Example 4-: | Zu
Igil -Jlfl : —05 O 05
X = 0 1 X + 1 u
Damping Ij Spring Damping tj Spring 7
coetficient E]"Jﬂh?iﬂﬂt coefficient clansmnt
' ]
TI777 7J Py

If X,(0)=10 and x,(0)=-1 is there a suitable force that can bring the
suspension plate to equilibrium within 2 seconds?

0.5 —0.25
C=[b Ab]:{l ) } IC %0

Thus, the suspension plate is controllable, and for any arbitrary initial
condition, there exist a suitable input that can bring the plate to
equilibrium.
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Controllability test

Example 4-: | Zu
L;' -Jll’,l : —05 O 05
X = 0 1 X + 1 u
Damping [j Spring Damping tj Spring 7
coetficlent E]'Bﬂitﬂﬂi coefficient 'L[OI'EHEM
T g ]
ey 7J Fra

Now, we need to calculate W.(2) and u(t) .
(e 0105 e’™ 0 0.2162 0.3167
W.(2) = | : 05 1] frot e
ol 0 e" |l 1 0 e 0.3167 0.4908

e—0.5(2—t) O 1 e—l O 10
u(t) = —[0.5 1]{ 5 }WC (2){O }{ } = —58.8e**" + 27.96¢

e’ -1
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Controllability test

Example 4-: 133
.rv,ll — e -Jll’l : |:—05 O 05
X = X + u
Q== 1
Damping Spring Damping Spring
coetficient Cl‘mﬂﬁﬂt coefficient clanstant
X ] :
| | u(t)=—-58.8e" + 27.96¢
60 r T T r 10 T | T
} I | i I |
T S S T o
i | ) |
| ! | | Uy Sp---3 l"‘;_:'""f__' B
' [ i I | A1, | U
LV i | |
~L of---- S A
0 SR P t =2 =t =4 A T~
- | 1
_’_‘0:1-——-—-:— ------------- wly [rumom = - r s -F ===
| | I
I I ) ! : !
-4 0 I 15 2 ~10 : ' '
5
g 0 l 2 3 4
(<)
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Controllability

Similarity transformation and controllability

Theorem 2: Controllability is invariant under similarity transformation.

Proof:
X = AX + bu AP AP B=Pb W= Aw + bu
yZCX-I-dU 6=¢P~ d=d y:éw+(ju

; Controllability -
e Bl Ab] o G e

a3

C=|6 Ab A% ... A"b|=[Pb PAP*Pb PA’P'Pb ... PA"'P*Pb]-

[Pb PAb PA% ... PA™'b] =Pb Ab A% .. A™'] =PC

Pisnonsingular=  p(C) = p(C) 17
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Controllability indices

Suppose constant matrices A and B with suitable dimensions, and
suppose B has full column rank (If B does not have full column rank,
some Inputs are excessive).

If A and B are controllable, controllability matrix C has rank n, so, there
Is n linearly independent column in C.

C=1[b..b,| Ab, .. b, |..

A"By . A )

Now we search for linearly independent columns of C from the left.
Suppose u, Is the number of independent columns of C corresponding to

b
b,Ab .., Ab

It 1s clear that If C has full column rank, then:

My + My + o, =1 18
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Controllability indices

The set {u,1,,...,1,} represents the controllability indices.

The maximum element in the set of controllability indices is called the
controllability index, and it Is denoted by .

p=max (g, fy oy M)

Equivalently, if the pair (A,B) is controllable, the controllability index is
the smallest integer that:

p(C,)=p([B AB .. A“'B])=n

19
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Controllability indices

Now we define a bound for w. If 4= u,=...= u,, then we have:

Vo< #
If all i; are equal to 1 except for one, which is different, then:
u=n—- p+1
Let nn be the degree of the minimal polynomial. Then, there exists a set o
a; such that:

A" = AT + a, AT+ Lt
So A™B can be described by a linear combination of:

{B,AB,.., A"'B}
So, we have:

%gﬂgmin(ﬁ,n—pﬂ) 20
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Controllability indices

Theorem 3: The pair (A,B), where B has a rank of p, Is controllable if
and only if following matrix has a rank n.

Ch—pgar A8 Al LA TR B
Example 5: Consider following state space model. Derive controllability indices.

O 1 0O 0 O]
e e 1 0 Y404°07-0
Xz X + e X
8reg/ 0, 1 0 0 02820
0742 00| |91
0282200 -0 771
: e 0 2//-1 8
[B AB A’B]=
QB0 =1 27D
017222070/ -4

The rank of this matrix is 4, which implies that the above state-space model is
controllable. It can be easily shown that the controllability indices are 2 and 2, and
the controllability index is 2. B ey
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Observability

Consider following equation:

X=AX+ Bu

y=Cx+ Du (1)

Definition 2:The state equation (1) or the pair (A,C) is said to be observable if

for any unknown initial state X, , there exists a finite time t; > 0 such that the

knowledge of the input u and the output y over [0,t,] suffices to determine

Uniquely the initial state x,. Other wise, the equation is unobservable.

22
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Observability

Example 6: Unobservable systems.

| H
+ X
162 10
+ Il.r'l': b+ t+
© =T s
2 f . 123 5 ==
: T
]ﬁg ':.'ﬂg IF
' L . Y -

It is clear that detecting controllability or uncontrollability is not an
easy task just by observing the apparent view of the system.

23
Dr. Ali Karimpour Aug 2024



lecture 6

Observability test

Theorem 4. A state-space system is observable if and only if the
following n-dimensional matrix is nonsingular for all t>0.

w (1) = je"’” C'Ce”dr

Proof: Two side of the theorem must be examined.
[ W, (t) is invertible = The pair (A,C) is observable |

The pair (A,C) is observable = W, (t) is invertible

First, the initial part of the proof is presented.
y(t)=Ce"x + C[e"” Bu(r) dz + Du(t)

Ce*x = y(t)=y(t) — C[e" Bu(z) dr — Du(t)
e"C'Ce"x, =e"C'y(t) [e"C'Ce"xdr=[e"C'y(r)dzr

Dr. Ali Karimpour Aug 2024
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Observability test

e”C'Ce"x =e"C'y(t) [e"C'Ce*xdr=[e"C'y(r)dr
x =W () e"C'y(r)dr

Now, the proof of other side is presented.

[The pair (A,C) is observable = W, (t) is invertible j

We use contradiction. Assume W, (t) is not invertible at t,. Then,
there 1S a non-zero vector v such that:

VW (t)v =['v'e”"C'Ce”vdr =0 Jy
Now consider: Ce"v=0V1te[0t]
y(t) =Ce*x + C[.e"” Bu(z) dz + Du(t)

Two different initial conditions, x, and v, with zero input both result
In y=0, so the initial condition cannot be uniquely determined. 25
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Observability test

Theorem 5(Duality): The pair (A,B) is controllable if and only if the

pair (A’,B’) is observable.

lecture 6

Theorem 6(Duality): The pair (A’,C’) is controllable if and only if the

pair (A,C) Is observable.

Example 7: Check observability of the
given system.

0 0 -6

c=[1], A=|1 0 -11| C=[c Ac A%c]=

01 -6

The rank of matrix i1s not 3, thus ....

y:

0 1 0 0
0 O 1|x+|0
-6 -11 -6 1
?1 1 O0]x -
1 0 -6
1 1 -11
01 -5

26
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Observability test

Theorem 7: Following statements for the given system X=AX+ Bu
are equivalent: y=Cx+ Du

1- The pair (A,C) is observable.

2- The following nxn matrix is non-singular for all t>0
Wo(t) = [, eATC'C eAT dr

3- The ngxn observability matrix O has rank n of full row rank. [ ¢ ~
CA
Oy
OBl

4- The matrix [A _C’U]with dimension (n+q)x*n) has full column rank.

5- If, in addition to all the eigenvalues of A having negative real
parts, the unique solution of the following equation is also
positive definite. A'W, + W,A = —C'C 21
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Observability test

Example 8: Check observability of the following system.

"0 1 0] [0 L g
=l 0 0 1l|x+|0lu C 11 0
6 —-11 -6 1 V=lcA |=]| 0 1 1
y=[1 1 O]x cA?| -6 -11 -5
1 1 0
V=0 1  1=1(-5+11)-1(0+6)=0 Ser.
6 —-11 -5

28
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Observability

Effect of similarity transformation on observability

Theorem 8: Observability Is invariant under similarity transformation.

Proof:
X = AXx+bu A-P AP b=Pb W= Aw+ bu
y:cx+du E=cP™ d=d y:éw+oAu
T e ]
2 A
Q=i Observability o
: Matrix
_CA”‘ : _CA“_

O=0P* Pisnonsingular=  p(O) = p(0).
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Observability indices

Suppose we have constant matrices A and C with suitable dimensions, and
suppose C has full row rank. If C does not have full row rank, some

outputs are linear combinations of others, meaning no new information is
provided.

If A and C are observable, observability matrix O has rank n, so, there is
n linearly independent row in O.

Now we search for linearly independent rows of O from the top. Suppose
v, IS the number of independent rows of O corresponding to c,,..

It is clear that if O has full row rank, then:
Vp +V, + ..+ V, =N
The set {v,,v,,...,V,} represents the observability indices.

The maximum element in the set of observability indices is called the
observability index, and it is denoted by v.

v=max(V,,V,,..,V, ) 30
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Observability indices

Equivalently, if the pair (A,C) is observable, .

the observability index iIs the smallest integer that: s

p(0,) = p(] CA* |)=n

Similar to controllability we have: | CA™ |

%svg min (0, n—qg+1)
Theorem 9: The pair (A,C), where C has a rank of q IS observable If
and only if following matrix has a rank n. C
CA
O =| CA?

n—qg-+1

_(:/\n—q 31
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Canonical Decomposition

X = AX+bu . W= Aw+bu
y = cx+ du Suppose w= Px then y = cw+ du
Where

A=PAP* b=Pb
c=cP" d=d

We know that stability, controllability, and observability are preserved
under similarity transformations.

C=PG - O =0k

32
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Canonical Decomposition

Theorem 10: Consider following system is not controllable

X = AX+ BuU
S0 y=Cx+ Du
p(C)=p(lB AB ... A™B])=n <n

Then we form the following matrix:

|:)-1:[q1 O = ) i qn]

The first n, columns of P~are n, independent columns of the controllability
matrix C, and the remaining columns are chosen such that P is non-singular.
Then, similarity transformation leads to:
X A A llX B
.c =B [¢ 62 c -|— c u
|:XC} |:O AC}_XC:| |:O:|

X

YZ[CC CC]{ + Du 33

Dr. Ali Karimpour Aug 2024
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Canonical Decomposition

MR

y=|[C. CJP + DU

Where

¢ nxn, )

c (n-ng)x(n-ny)

And n, dimensional state-space sub equation Is:

X =AX +Bu

y=C X + Du

The new system is controllable and has the same transfer function as

the first system (zero-state equivalent).

lecture 6
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Canonical Decomposition

Proof: We know that

|:J-1:[q1 2 eV A qn]

The i column of A is the representation of Ag; in terms of the columns

of P~1. G
'K K Ac Az
0 A

The column of B is the representation of the columns of B in terms of
column of P2,

So, the converted system Is:

s (e
y=[C CC][C + Du 35
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Canonical Decomposition

Proof: Continue X | |A A
%0
g L
y=|C Cﬂ{
We know: i
p(C)=p([B AB
So, we have:
B AB
n —p(C)=p({
-p(B. AB .. AB]=n
y :CC)_( + Du

e
s u
0

|+ Du

.. A"B])=n =p(C)

AB

R B B A'B
g } p([ 0 % 0 })

And this is the controllability

matrix of reduced system.

36
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Canonical Decomposition

Proof: Continue

K| DA,
y=I[C. C]B + DU

On the other hand, the transfer function of systems is given by:

G(s)==|C /C/|

G(s)=[C. C]

sl — A
0
(s1-A)

0

G(s)=C(sI -A)'B +D

A,
sl — A

1

M

B
0

16

(s1-A)

+D

B

°}+D

0

37
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Canonical Decomposition

Example 9: Consider following state space model.
-1 0] 0 1]
x={0 1 O|x+|1 Oju , y=[ 1 1]x
021 1 0 1

Rank of matrix B is 2 so: 05 7 e G oy
p(C,)=p(B AB])=p(j1 0 1 0()=2<3
0 (A it -
7 10 1 1
So, the system Is not controllable, if we choose: P'=Q=(1 0 0
The new system is: 3 p 0 1 0
15Ty 1 0
X=|1 150 X+|0 1ju )’(C:{1 O}XCJ{l O}u
00400 LA
y=1 2 1:)—( y:[l Z]XC 38
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Canonical Decomposition

Theorem 11: Consider following system is not observable % = Ax + bu

Yeems y =CcX+du
CA
SO pO)=p( . [)=n<n 1957
; Py
| CA™ | :
Then we form the following matrix: P = P
Pn

The first n, rows of P are n, independent rows of the observabilitgl matrix O, and the
remaining rows are chosen such that P is non-singular. Then, similarity transformation

leads to:

i R R X s i e
e e Y e |
_Xo_ _A21 Ao_ _X0_ _Bo_ mZﬁq(mmSir Aug 2024
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Canonical Decomposition

Ao Ny XN, A6 (n—n,)x(n—n,)

And n, dimensional state-space sub equation Is:

X, = A
_:60

B, U

i
X, + Du

<
>

The new system Is observable and has the same transfer function as
the first system (zero-state equivalent).

Proof: Similar to previous theorem. 20
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Canonical Decomposition

Theorem 12: Any state-space equation can be transformed into the following
canonical form using suitable similarity transformation.

);(co 'Kco O RS O )_(CO gco
%|_|A A A AR B
X 0 A 0 ||lx 0
_);(co_ ¥ O O RB Kc@_ _)_(co_ | O |
y=[C. 0 C_ 0|x+Du
Where
X = Controllable and observable
X = Controllable but not observable

Observable but not controllable
Neither observable nor controllable

)_(C 0]
)_(CU

Dr. Ali Karimpour Aug 2024
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Canonical Decomposition

Theorem 12: Any state-space equation can be transformed into the following
canonical form using suitable similarity transformation.

)_(co 'Kco O 'Kh O )_(co gco

X A, A A A X B

.CG i A21 co é3 A&4 co + Bco u

x |10 B0
_);(co ia | O O 'E\AB KCG j _)_(co 14 i~ O ”
y=Ic, 0 € O]x+Du

A minimal-order zero-state reduced-order controllable and observable
system Is:

X;CO = KCO XCO + B u

co

=C_X_+Du 2

co c Dr. Ali Karimpour Aug 2024
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Controllabiltiy and Observability in Jordan Form

We show that controllability and observability preserved under similarity
transformation. If we change the system to Jordan canonical form
controllability and observability easily derived. Now consider:

X =Jx+ Bu [T
y=Cx+ Du

Where J is in Jordan form. Let J have two distinct eigenvalues, A; and A,
and it is in the following form:

J=diag (J,;, J,)
Now suppose J, is corresponding to A, and J, corresponding to A,, and
let J, have three Jordan blocks and J, have two Jordan blocks as:

‘Jl -0 diag ( \]11 , ‘]12 , ‘J13) ‘Jz = diag ( ‘321 , ‘]22 )

Suppose bIij IS the last row of Jij and Ciij IS the first column S,E.??(Liimﬁr i
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Controllabiltiy and Observability in Jordan Form

Theorem 13: 1- State-space equation Il is controllable if and only if three
row vectors,

{blll ) bI12 ) bI13 }
and two row vectors:

{bl21 J b|22 }

are linearly independent.

2- State-space equation Il is observable if and only if three column vectors,

{Cfll J Cf12 J Cf13 }

and two column vectors:

{Cf21 ! Cf22 }
44
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Controllabiltiy and Observability in Jordan Form

Remark 1: If a state-space model is in Jordan form, the controllability of

states corresponding to one eigenvalue can be examined independently
from controllability of other eigenvalues.

Remark 2: The controllability of states corresponding to a particular
eigenvalue depends only on the rows of B associated with the last rows

of the Jordan blocks corresponding to that eigenvalue, and it is
Independent of the other rows.

Remark 3: A similar statement can be made about observability.
However, In this case, the columns of C determine the observability

of states corresponding to a particular eigenvalue, rather than the rows
of B.

45
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Controllabiltiy and Observability in Jordan Form

Example 10: Consider following Jordan form state space model.

RS e OO OO Do

O O FP O O O O O  »» B

N P ppee—0O O O . O O

W N OO O . O O O

O O OO > O O O O

N B NN O B O O o o

R e QEREDT0 O O

O

X+

X

0 0 0
B e
Ot D=
P
P
010
1 e

Controllable?

Observable?

46
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Controllabiltiy and Observability in Jordan Form

Theorem 14: The Jordan canonical form of a single-input state-
space model is controllable if and only if, for each eigenvalue,
there Is exactly one Jordan block, and the last row of the vector b
corresponding to that Jordan block is non-zero.

Theorem 15: The Jordan canonical form of a single-output state-
space model is observable if and only if, for each eigenvalue, there
IS exactly one Jordan block, and the first column of the vector c
corresponding to that Jordan block is non-zero.

47
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Controllabiltiy and Observability in Jordan Form

Example 11: Consider following state space model.

go1 0 0 10
e 010 9
X = X + u

SNl 0

00 0 2 11
Y =120 QX

Controllable?

Observable?

48
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Controllabiltly and Observability in LTV Systems

Consider an nxn dimensional LTV state-space model with p inputs and
tputs:
il %(t) = A(t) X(t) + B{t)u(t)
y(t) = C(t) x(t) + D(t)u(t)

Definition 3: The state equation or the pair (A(t),B(t)) is said to be controllable

at t, If for any initial state x(t;)= x, and any final state x,, there exists an input that
transfers X, to x, in a time t,. Otherwise, the state equation or (A(t),B(t)) is said

to be uncontrollable at t,.

Remark: In LTI systems, if the state-space model is controllable, then it is controllable
for any t, and for any t, > t,. Therefore, there is no need to specify t, and t, . However,
In LTV systems, it is necessary to specify t, and t; .
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Controllabiltly and Observability in LTV Systems

Theorem 16: The n-dimensional pair (A(t),B(t)) is said to be
controllable at t, if and only if there exists t, > t, such that the following
n-dimensional matrix is non-singular.

W(t,t)= | ®t,7)B(z)B(r)®'(t,7)dr

d(t, T) is the state transition matrix for x = A(t)x.

Proof:
[Wc(to,tl) IS invertible = The pair (A(t),B(t)) is controllable ]

The pair (A(t),B(t)) is controllable = W_.(¢t,t,) is invertible

Since W, (t,,t,) is invertible, W.~1(t,,t,) exists. Thus we assert that
the input u(t) can transfer an arbitrary X, to an arbitrary x, at time t; :

u(t) =— B'(t)D'(t,, )W (t ,t)|D(t,t )x —X | 50
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Controllabiltiy and Observability in LTV Systems

(W.(tot)) isinvertible = The pair (A(t),B(t)) is controllable |

The pair (A(t),B(1)) is controllable = W_(t,,t,) is invertible

Since W, (t,,t,) is invertible, W~ (t,,t,) exists. Thus we assert that
the input u(t) can transfer an arbitrary X, to an arbitrary x; at time t; :

u(t) =— B'(t)D'(t,, )W *(t ,t)|D(t,t )x —X |

We know that the states follow from the following relation:
X(t) = @(t,t,)x + [ @, 7)B(r)u(r)dz

= O(t;,1,)X, _J‘tth)(tll 7)B(7) B'(7) @'(t,, z')\Nc_l(to"[1)[(1)('[1"[0))(0 -x]dz

= D(t;, 1) % —We (t, bW, (b, P, t)% = %] = X(t) = X,
51
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Controllabiltiy and Observability in LTV Systems

W.(tyt,) is invertible = The pair (A(t),B(t)) is controllable
The pair (A(t),B(t)) is controllable = W.(t,t,) is invertible |

Now, we must prove the other side of theorem:

Suppose that W, (t,, t,) is not invertible for all t;>t,, so there exists a vector v#0
such that:

VW, (t,,t)v =] v'O(t,7)B(r) B'(r)D'(t, z) vdz =0
= [|B'®'(t,7)Vv ‘dr =0
B'(r)®'(t,r)v=0and v'®(t,7)B(r)=0 Vrelt,t]

Since the system is controllable, we can easily transfer from x, = ®(t, ) to
X,=0 so:

0=x(t) =D(t,t)D(,,t)v+[ D(t,7)B(r)u(r)dr
0=V'V+['V'D(t,7)B(z)u(r)dr =v'v+0=0 |v[ =0

Contradiction
I Karl our u

Dr: mp 0
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Controllabiltly and Observability in LTV Systems

To use the previous theorem, we need the state transition matrix ®(t, 7).
Therefore, we need a controllability test that is independent of the
state transition matrix.

Suppose A(t) and B(t) are (n-1) times continuously differentiable. Then
define:

M, (t) = B(t)

Now, define M_.(t) as:

M,.(0 = - AOM, (0 + £ M, 0

Clearly, for all t, we have:

Dt t)B(t):CD(t DM (1)
0
=]

= D (t, t)B(t)]_ [CD(t )B(t) + d(t, t)—B(t)
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Controllabiltly and Observability in LTV Systems

Suppose A(t) and B(t) are (n-1) times continuously differentiable. Then
define:

M, (t) = B(t)

M0 =~ AOM, @ + S MO

d(t,t)B(t) =D(t,,1)M (1)
st[q)(t t)B(t)]— [cD(t ) [B(t) + d(t, t)—B(t)
:_cI)(t2,t)A(t)Mo(t)+CD(t2,t)aMo(t)

=O(t ,t)M, (1) s
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Controllabiltly and Observability in LTV Systems

By more differentiation we have:

am

P DBO]= )M, ®)

Following theorem is sufficient but not necessary condition for controllability.

Theorem 17: Let A(t) and B(t)) are (n-1) times continuously
differentiable. Then pair (A(t),B(t)) Is said to be controllable at t if
there exists a finite time t; > t, such that:

rank [M (t) M. (t) ... M_(t)]=n
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Controllabiltiy and Observability in LTV Systems

Theorem 17: Let A(t) and B(t)) are (n-1) times continuously differentiable.
Then pair (A(t),B(t)) i1s said to be controllable at t, if there exists a finite time
t, > t, such that:

rank [M (t) M.(t) ... M_(t)]=n

Proof: We will show that if the rank of the above matrix is n, then W(t,,t) IS
non-singular for all t>t;. We will prove this by contradiction. Suppose Wc(t,, t,)
Is singular for some t, >t, , then

VW, (t,,t,)v =["vV'D(t,,7) B(r) B'(r)®'(t,,z)vdr =0
) B'®'(t,r)v[dr=0
B'(r)®'(t,,r)v=0and v'®(t,7)B(r)=0 V re]t,t]

By differentiating with respect to T and substituting t, instead, we have

vV, t)[M (t) M(t) ... M (t)]=0 | Contradiction

Dr. Ali Karimpour Aug 2024
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Controllabiltiy and Observability in LTV Systems

Example 12: Check the controllability of following state space model.

B O VR R o
Xx={0 -t ti{x+|1]|u
0O 0 t
Let=3522 = S
0] FAy 2y
M, =1 M1=—AMO+EMO:— 0 M2=—AM1+1M1: t’
dt dt 3
21l i s
0 L=t The determinant Is non-zero for
IM, M, M,|=]1 0 t* |=t>+1 allt;therefore, itis invertible for
1 —t t2_-1 all t, thus the system is

controllable. 57
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Controllabiltiy and Observability in LTV Systems

Example 13: Check the controllability of following state space models.

0 1

Xo= X+| [U (1)
Avhgi L
00 e

X = X + u (1)
0 2 e

State-space equation (1) 1s LTI and in Jordan form. Clearly it is
controllable.

State-space equation (11) is an LTV system in Jordan form. Since all
elements of B are non-zero for all t, it might be incorrectly considered

controllable, but...

Mﬁ[j M1=—AMO+9MO= O p(M, M])=1<2
€ dt 0) 58
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Controllabiltly and Observability in LTV Systems

Consider an nxn dimensional LTV state-space model with p inputs and
T X(t) = A®) () + B)u(t)

y(t) = C(t) x(t) + D(t)u(t)
Definition 4: The state equation or the pair (A(t),C(t)) is said to be
observable at t, If there exists a finite time t,>t, such that, for any x(t;)= X,

the input and output information in [t,, t,] is sufficient to uniquely
determine X, .
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Controllabiltly and Observability in LTV Systems

Theorem 18: The n-dimensional pair (A(t),C(t)) Is said to be observable
at t, if and only if there exists t, > t, such that the following n-
dimensional matrix is non-singular.

W.(t,t) = [®'(z,t )C'()C()D(z,t )dr

Theorem 19: Let A(t) and C(t)) are (n-1) times continuously
differentiable. Then pair (A(t),C(t)) Is said to be observable at t; if
there exists a finite time t; > t, such that:

N

N (t
rank 1:( )

Where: (L)
N, =CH), N_®=NOAD+N® =
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Exercises

Exercise 1: Examine the controllability

and observability of the following system.

Exercise 2: Examine the controllability
and observability of the following system.

Exercise 3. Describe the state-space
model and then examine the
controllability and observability

of the following system. s

0
0 0 1 |x+]|1
0

lecture 6

0 | 1
1 (x+|0]u
~3 10
S
0|u
] I O_
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Exercises

Exercise 4: Examine the controllability PO~ 8By e ]
and observability indices of the following ¢ _ 1 5 o 1 |x4+loly
system.
V=V s>t =0
y=[1 2 1]x
Exercise 5: Examine the controllability (0L 40, AR ECE
and observability indices of the following  « _ 19 0 1 Ix+l1 o0ly
system.
gnse 110 00
y=[1 0 1]x
Exercise 6. Examine the controllability
and observability indices of the following e ARy

system. | is identity matrix.
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Exercises

Exercise 7: Reduce the following systemtoa 4 47 1
controllable form. Is the reduced system X = { _JX + uu
observable?

y=[1 1x

Exercise 8: Reduce the following system to a controllable and
observable form.

20120 00 0
Vel o 1
x=10 0 A4 O O |x+|0|u
000 st 0
O Ao APl
y=[0 1 1 0 1]x 2
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Exercises

Exercise 9: Examine the controllability and observability of the
following system.

21 0 0 0 0 O 2 1 0
0 2 000O0O0 A
0 020000 £ £y BN
X=/0 0 0 2 0 0 O{x+|3 2 1l|u
0 000110 -1 0 1
0O 00 0010 1 0 1
0, D=0 550 ~0- 1) E 0 0
Bge = s
Vo= 10k 27000 220 X
At a2y A L)
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Exercise 10: Is it possible to set the
B and C matrices such that the system

IS controllable?
What about observable?

Exercise 11: Derive a two-dimensional ) o
and three-dimensional state-space VWAt
model for the given system. Check the + = n
controllability and observability of ’ @ NS

lecture 6

Exercises

bt s 0 ¢ o 2 e 2 T s
01000 tEhy
X=/0 0 1 1 0|Xx+|by by, |u
00702080 B b
00 0 0 1 s 057
_C11 Cr, Gz Cy 015_

Y=|Cu Cp Cpn Gy Cxp|X
1Ca1 C3p G333 Gy Cyp |
fos
|{
2 N F f+
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Exercises

Exercise 12: Examine the controllability ~ [g 11 [0
and observability of the following system. X = {O J X + [JU
y=[0 1]x
Exercise 13: Examine the controllability 0 0 1
and observability of the following system. o= s }x - { t}u
L e'
y=[0 e']x

Exercise 14: Derive a zero-state equivalent with the least degree for
the given system(Final 2014).

2 J R
x=0 0 1 |[x+|1
Ve e R F

y=[1 0 3]x 66
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Exercises

Exercise 15: Examine the controllability and observability of the
following system(Final 2013).

A= =050 7007 S0y 0 0O
Ol A 02 . 0 A0 1 00
0.~ 044550750 1020 0 10
X={0-0 0= 0 00 x+11 1|u
00 S iolnsliys Ay =100 1 2 3
O 0 0 0 0 4 1 0 10
-0 @il 02 D A i ek e i
T B e o e o I o e T
V=i et 2T St
Wl ) e o e L 0
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Answers to selected problems

Answer 2: Controllable and observable.

Answer 3: Neither controllable nor observable.

2 OJefEh

y=[0 —1]x+2u
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