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Lecture 6

Controllability and Observability

Topics to be covered include:

v Introduction.

v Controllability. 

v Observability. 

v Canonical Decomposition.

v Controllability and Observability in Jordan forms.

v Controllability and Observability in LTV systems.
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• Controllability and observability ideas 

• Controllability and observability detection

• Controllability and observability indices 

• Duality of controllability and observability

•   Input determination in controllable systems

• Effect of equivalent transformation on controllability and observability 

•   Controllability and observability in Jordan froms

• Application of controllability and observability

• Controllability and observability in LTV systems 

What you will learn after studying this section
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Introduction

Controllability refers to the ability to control the states of a 

system through input.

Observability refers to the ability to estimate the states of a 

system by observing its inputs and outputs.
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Controllability

Definition 1: The state equation (I) or the pair (A,B) is said to be controllable

if for any initial state x0 and any final state x1, there exists an input that transfers

x0 to x1 in a finite time. Otherwise (I) or (A,B) is said to be uncontrollable 

)(I
DuCxy

BuAxx

+=

+=

Consider following equation:
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Controllability

Example 1: Is it controllable?

It is clear that detecting controllability or uncontrollability is not an 

easy task just by observing the apparent view of the system.
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Controllability test

DuCxy

BuAxx

+=

+=Theorem 1: Following statements for the given system  

are equivalent:

1- The pair (A,B) is controllable.

2- The following n×n matrix is non-singular for all t>0

𝑊𝑐 𝑡 = 0׬

𝑡
𝑒𝐴𝜏 𝐵𝐵′ 𝑒𝐴′𝜏 𝑑𝜏 = 0׬

𝑡
𝑒𝐴(𝑡−𝜏) 𝐵𝐵′ 𝑒𝐴′(𝑡−𝜏) 𝑑𝜏

3- The n×np controllability matrix C has rank n of full row rank.

𝐶 = 𝐵 𝐴𝐵𝐴2𝐵 … 𝐴𝑛−1𝐵
4- The matrix 𝐴 − 𝜆𝐼 𝐵 with dimension n×(n+p) has full row 

rank.

5- If, in addition to all the eigenvalues of A having negative real 

parts, the unique solution of the following equation is also 

positive definite.      𝐴𝑊𝑐 + 𝑊𝑐𝐴′ = −𝐵𝐵′
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Controllability test

 
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c
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11
)( xtx =

Proof: First, the equivalence of expressions 1 and 2 is examined.

𝑊𝑐 𝑡  is invertible             ⇒          The pair (A,B) is controllable        

The pair (A,B) is controllable          ⇒                𝑊𝑐 𝑡  is invertible 

First, the initial part of the proof is presented.

Since, 𝑊𝑐 𝑡  is invertible, for any t1, 𝑊𝑐 𝑡1  is invertible, we assert 

that following input transfers the system from an arbitrary initial 

point x0 to an arbitrary final point x1.
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Controllability test

Proof: First, the equivalence of expressions 1 and 2 is examined.

𝑊𝑐 𝑡  is invertible             ⇒          The pair (A,B) is controllable        

The pair (A,B) is controllable          ⇒                𝑊𝑐 𝑡  is invertible 

Now, the proof of other side is presented.

We use contradiction. Assume 𝑊𝑐 𝑡  is not invertible at t1. Then, there 

is a non-zero vector v such that: 

0')('
1 11

0

)()(

1
= =

−−t tAtA

c
vdeBBevvtWv  0

1 1

0

2)(

= 
−t tA

dveB 

],0[0'0
1

)()( 11 tBevandveB
tAtA

== −− 

Controllability allows easily transfer from 𝑥0 = 𝑒𝐴𝑡1𝑣 to x1=0​.

+==
−− 1 111

0

)(

1
)()(0

t tAAtAt

duBeveetx 

00')(''0
1 1

0

)(

=+=+=
−

vvduBevvv
t tA  0

2

=v Contradiction!
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Controllability test

....................................

....................................

....................................

Now, the equivalence of expressions 2 and 3 is examined.

Now, the equivalence of expressions 3 and 4 is examined.

Finally, the equivalence of expression 5 with one of the others must 

be examined.

Proof: First, the equivalence of expressions 1 and 2 is examined.

𝑊𝑐 𝑡  is invertible             ⇒          The pair (A,B) is controllable        

The pair (A,B) is controllable          ⇒                𝑊𝑐 𝑡  is invertible 
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Controllability test

Example 2: Check the controllability of following system.
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It is controllable canonical form.
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Controllability test

Example 3: Check the controllability of each mode.
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trxx
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Controllability test

Example 4: Consider the following

suspension platform. If the displacement

of each spring from the equilibrium 

position is considered as the state of the

system, the state-space equations are 

expressed as:

uxx 







+









−

−
=

1

5.0

10

05.0


If the initial displacement is non-zero and no force is applied, the 

suspension platform will exponentially approach equilibrium. 

Theoretically, the states will reach zero only after an infinite duration.

If x1(0)=10 and x2(0)=-1 is there a suitable force that can bring the 

suspension plate to equilibrium within 2 seconds? 
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Controllability test

Example 4:

uxx 







+









−

−
=

1

5.0

10

05.0


If x1(0)=10 and x2(0)=-1 is there a suitable force that can bring the 

suspension plate to equilibrium within 2 seconds? 










−

−
==

11

25.05.0
][ AbbC 0|| C

Thus, the suspension plate is controllable, and for any arbitrary initial 

condition, there exist a suitable input that can bring the plate to 

equilibrium.
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Controllability test

Example 4:

uxx 







+









−

−
=

1

5.0

10

05.0


Now, we need to calculate 𝑊𝑐(2) and 𝑢(𝑡) . 

  































=

−

−

−

−
2

0
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0

0
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1
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0

0
)2( 









d
e

e

e

e
W
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






=
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  







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














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−

−

−
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1
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0

0
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0

0
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2

1

1

)2(

)2(5.0

e

e
W

e

e
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ct

t
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lecture 6

Dr. Ali Karimpour  Aug 2024

16

Controllability test

Example 4:

uxx 
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Similarity transformation and controllability

Controllability

Theorem 2: Controllability is invariant under similarity transformation.

ddcPc

PbbPAPA

==

==

−

−

ˆˆ

ˆˆ

1

1

ducxy

buAxx

+=

+=

udwcy

ubwAw

ˆˆ

ˆˆ

+=

+=

 bAbAAbbC n 12 ...

 
−=  bAbAbAbC n ˆˆ...ˆˆˆˆˆˆ   12 −=

 =−−−− PbPPAPbPPAPbPAPPb n 11121 ... == − bAbAbAbC n ˆˆ...ˆˆˆˆˆˆ 12

 bPAbPAPAbPb n 12 ... −  bAbAAbbP n 12 ... −=

Matrix        

ility Controllab  

PC=

)()ˆ(r nonsingula is CCP  =

Proof:
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Controllability indices

Suppose constant matrices A and B with suitable dimensions, and 

suppose B has full column rank (If B does not have full column rank, 

some inputs are excessive).

If A and B are controllable, controllability matrix C has rank n, so, there 

is n linearly independent column in C.

Now we search for linearly independent columns of C from the left. 

Suppose μm is the number of independent columns of C corresponding to 

b​m.

It is clear that if C has full column rank, then:
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Controllability indices

),...,,(max 21 p =

nBAABBC == − )]...[()( 1
 

The set {μ1,μ2,…,μp} represents the controllability indices.

The maximum element in the set of controllability indices is called the 

controllability index, and it is denoted by μ.

Equivalently, if the pair (A,B) is controllable, the controllability index is 

the smallest integer that:
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Controllability indices


p

n

1+−= pn

IAAA n

nnn  +++= −− ...2

2

1

1

},...,,{ 1BAABB n−

)1,(min +− pnn
p

n 

Now we define a bound for μ. If μ1= μ2=…= μp, then we have:

If all μi are equal to 1 except for one, which is different, then:

Let ത𝑛 be the degree of the minimal polynomial. Then, there exists a set of 

αi such that:

So 𝐴 ത𝑛𝐵 can be described by a linear combination of:

So, we have:
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Controllability indices
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Example 5: Consider following state space model. Derive controllability indices.

Theorem 3: The pair (A,B), where B has a rank of p, is controllable if 

and only if following matrix has a rank n.

𝐶𝑛−𝑝+1 = [𝐵 𝐴𝐵 … 𝐴𝑛−𝑝𝐵]

The rank of this matrix is 4, which implies that the above state-space model is 

controllable. It can be easily shown that the controllability indices are 2 and 2, and 

the controllability index is 2.
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Observability

Definition 2:The state equation (I) or the pair (A,C) is said to be observable if

 for any unknown initial state x0 , there exists a finite time t1 > 0 such that the

 knowledge of the input u and the output y over [0,t1] suffices to determine
 

Uniquely the initial state x0. Other wise, the equation is unobservable.

)(I
DuCxy

BuAxx

+=

+=

Consider following equation:
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Observability

Example 6: Unobservable systems.

It is clear that detecting controllability or uncontrollability is not an 

easy task just by observing the apparent view of the system.
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Observability test

 ++= −
t

tAAt tDudBueCxCety
0

)(

0
)()()( 

 −−== −
t

tAAt tDudBueCtytyxCe
0

)(

0
)()()()( 

Theorem 4: A state-space system is observable if and only if the 

following n-dimensional matrix is nonsingular for all t>0.

Proof: Two side of the theorem must be examined.

𝑊𝑜 𝑡 is invertible             ⇒ The pair (A,C) is observable        

The pair (A,C) is observable          ⇒ 𝑊𝑜 𝑡 is invertible 

First, the initial part of the proof is presented.

)('' '

0

' tyCexCeCe tAAttA =   dyCedxCeCe
t At AA

=
11

0

'

0 0

' )(''
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Observability test

)('' '

0

' tyCexCeCe tAAttA =   dyCedxCeCe
t At AA

=
11

0

'

0 0

' )(''

 dyCetWx
t A

= − 1

0

'

1

1

00
)(')(

The pair (A,C) is observable          ⇒ 𝑊𝑜 𝑡 is invertible 

Now, the proof of other side is presented.

We use contradiction. Assume 𝑊𝑂 𝑡  is not invertible at t1. Then, 

there is a non-zero vector v such that: 

0'')('
1

0

'

1
==

t AA

o
vdeCCevvtWv 

],0[0
1

ttvCeAt =

0
1

0

2

=
t A dveC 

Now consider:

)()()(
0

)(

0
tDudBueCxCety

t tAAt ++= − 

Two different initial conditions, x0 and v, with zero input both result 

in y=0, so the initial condition cannot be uniquely determined.
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Observability test
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Example 7: Check observability of the 

given system.

Theorem 5(Duality): The pair (A,B) is controllable if and only if the 

pair (A’,B’) is observable.

Theorem 6(Duality): The pair (A’,C’) is controllable if and only if the 

pair (A,C) is observable.

The rank of matrix is not 3, thus ….
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Observability test

DuCxy

BuAxx

+=

+=Theorem 7: Following statements for the given system  

are equivalent:

1- The pair (A,C) is observable.

2- The following n×n matrix is non-singular for all t>0

                                    𝑊𝑂 𝑡 = ׬
0

𝑡
𝑒𝐴′𝜏 𝐶′𝐶 𝑒𝐴𝜏 𝑑𝜏                 



















=

−1nCA

CA

C

O


3- The nq×n observability matrix O has rank n of full row rank.

4- The matrix 
𝐴 − 𝜆𝐼

𝐶
with dimension (n+q)×n) has full column  rank.

5- If, in addition to all the eigenvalues of A having negative real 

parts, the unique solution of the following equation is also 

positive definite.𝐴′𝑊𝑜 + 𝑊𝑜𝐴 = −𝐶′𝐶
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Observability test

Example 8: Check observability of the following system.
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Observability

ddcPc
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Theorem 8: Observability is invariant under similarity transformation.

Proof:

Effect of similarity transformation on observability
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Observability indices

nvvv q =+++ ...21

),...,,(max
21 q

vvvv =

Suppose we have constant matrices A and C with suitable dimensions, and 

suppose C has full row rank. If C does not have full row rank, some 

outputs are linear combinations of others, meaning no new information is 

provided.

If A and C are observable, observability matrix O has rank n, so, there is 

n linearly independent row in O.

It is clear that if O has full row rank, then:

The set {v1,v2,…,vq} represents the observability indices.

The maximum element in the set of observability indices is called the 

observability index, and it is denoted by v.

Now we search for linearly independent rows of O from the top. Suppose 

vm is the number of independent rows of O corresponding to c​m.
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Observability indices

n

CA

CA

CA

C

O

v

v =























=

−

)()(

1

2





)1,(min +− qnnv
q

n























=

−

+−

qn

qn

CA

CA

CA

C

O



2

1

Equivalently, if the pair (A,C) is observable,

the observability index is the smallest integer that:

Similar to controllability we have:

Theorem 9: The pair (A,C), where C has a rank of q, is observable if 

and only if following matrix has a rank n.
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Canonical Decomposition

  then  Suppose Pxw =
ducxy

buAxx

+=

+=

udwcy

ubwAw

+=

+=

ddcPc

PbbPAPA

==

==
−

−

1

1

1, −== OPOPCC

Where

We know that stability, controllability, and observability are preserved 

under similarity transformations.
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Canonical Decomposition

Theorem 10: Consider following system is not controllable

  nnBAABBC n  1

1 )()( == −

Then we form the following matrix:

 
nn

qqqqP ....
121

1 =−

  Du
x

x
CCy

u
B

x

x

A

AA

x

x

c

c

cc

c

c

c

c

c

c

c

+







=









+
















=









00

12





DuCxy

BuAxx

+=

+=

so

The first n1 columns of P−1are n1 independent columns of the controllability 

matrix C, and the remaining columns are chosen such that P is non-singular. 

Then, similarity transformation leads to:
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Canonical Decomposition

Where

)()( 1111

,
nnnncnnc

AA
−−

And n1 dimensional state-space sub equation is:

DuxCy

uBxAx

cc

cccc

+=

+=

  Du
x

x
CCy

u
B

x

x

A

AA

x

x

c

c

cc

c

c

c

c

c

c

c

+







=









+
















=









00

12





The new system is controllable and has the same transfer function as 
the first system (zero-state equivalent).
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Canonical Decomposition

Proof: We know that

 
nn

qqqqP ....
121

1 =−









=

c

c

A

AA
A

0

12









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0

c
B

B

  Du
x

x
CCy

u
B

x

x

A
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x

x

c

c

cc

c

c

c

c

c

c

c

+







=









+






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







=









00

12





The ith column of ҧ𝐴 is the representation of Aqi in terms of the columns 
of 𝑃−1.

The column of ത𝐵 is the representation of  the columns of B in terms of 
column of 𝑃−1.

So, the converted system is:
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Canonical Decomposition

Proof: Continue

  )()()(
1

1 CnBAABBC n  === −

  Du
x

x
CCy

u
B

x

x

A

AA

x

x
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c

cc

c

c

c

c

c
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+
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


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
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

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
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

 
1

1

)...(
1

nBABAB
c

n

cccc
==

−



DuxCy

uBxAx

cc

cccc

+=

+=

We know:

So, we have:

And this is the controllability 
matrix of reduced system.
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Canonical Decomposition

Proof: Continue

  Du
x

x
CCy

u
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x
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
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


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−
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On the other hand, the transfer function of systems is given by:
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Canonical Decomposition

 xyuxx 111,
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=

Example 9: Consider following state space model. 

Rank of matrix B is 2 so:

So, the system is not controllable, if we choose:

The new system is:
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ducxy

buAxx
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+=

so nn

CA
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


=
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
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
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
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
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
0,

0
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



Theorem 11: Consider following system is not observable

Canonical Decomposition

Then we form the following matrix:

The first n2 rows of P are n2 independent rows of the observability matrix O, and the 

remaining rows are chosen such that P is non-singular. Then, similarity transformation 

leads to:
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Where

)()( 2222 nnnnonno AA −−
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



Canonical Decomposition

And n2 dimensional state-space sub equation is:

The new system is observable and has the same transfer function as 
the first system (zero-state equivalent).

Proof: Similar to previous theorem.
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Where

lecontrollabnorobservableNeitherx

lecontrollabnotbutObservablex

observablenotbutleControllabx

observableandleControllabx

oc

oc

oc

co

=

=

=

=

Canonical Decomposition

Theorem 12: Any state-space equation can be transformed into the following 
canonical form using suitable similarity transformation.
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+=

+=

Canonical Decomposition

Theorem 12: Any state-space equation can be transformed into the following 
canonical form using suitable similarity transformation.

A minimal-order zero-state reduced-order controllable and observable
 system is:
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Controllabiltiy and Observability in Jordan Form

),( 21 JJdiagJ =

),(),,( 222121312111 JJdiagJJJJdiagJ ==

We show that controllability and observability preserved under similarity 

transformation. If we change the system to Jordan canonical form 

controllability and observability easily derived. Now consider:

Where J is in Jordan form. Let J have two distinct eigenvalues, λ1 and λ2, 

and it is in the following form:

ሶ𝑥 = 𝐽𝑥 + 𝐵𝑢          III
𝑦 = 𝐶𝑥 + 𝐷𝑢

Now suppose J1 is corresponding to λ1 and J2 corresponding to λ2, and 

let J1 have three Jordan blocks and J2 have two Jordan blocks as:

Suppose blij is the last row of Jij and cfij is the first column of Jij
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Controllabiltiy and Observability in Jordan Form

},,{ 131211 lll bbb

},{ 2221 ll bb

Theorem 13: 1- State-space equation III is controllable if and only if three
 row vectors,

and two row vectors:

are linearly independent.

},,{ 131211 fff ccc

},{ 2221 ff cc

2- State-space equation III is observable if and only if three  column vectors,

and two column vectors:

are linearly independent.
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Controllabiltiy and Observability in Jordan Form

Remark 1: If a state-space model is in Jordan form, the controllability of 

states corresponding to one eigenvalue  can be examined independently 
from controllability of  other eigenvalues.

Remark 2: The controllability of states corresponding to a particular 

eigenvalue depends only on the rows of B associated with the last rows

of the Jordan blocks corresponding to that eigenvalue, and it is 
independent of the other rows.

Remark 3: A similar statement can be made about observability. 

However, in this case, the columns of C determine the observability

 of states corresponding to a particular eigenvalue, rather than the rows
 of B.
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Controllabiltiy and Observability in Jordan Form

Controllable?

Observable?

Example 10: Consider following Jordan form state space model. 
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Controllabiltiy and Observability in Jordan Form

Theorem 14: The Jordan canonical form of a single-input state-

space model is controllable if and only if, for each eigenvalue, 

there is exactly one Jordan block, and the last row of the vector b 

corresponding to that Jordan block is non-zero.

Theorem 15: The Jordan canonical form of a single-output state-

space model is observable if and only if, for each eigenvalue, there 

is exactly one Jordan block, and the first column of the vector c 

corresponding to that Jordan block is non-zero.
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 xy
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=

Controllabiltiy and Observability in Jordan Form

Controllable?

Observable?

Example 11: Consider following state space model. 
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Controllabiltiy and Observability in LTV Systems

)()()()()(

)()()()()(

tutDtxtCty

tutBtxtAtx

+=

+=

Consider an n×n dimensional LTV state-space model with p inputs and
q outputs:

Definition 3: The state equation or the pair (A(t),B(t)) is said to be controllable

at t0 if for any initial state x(t0)= x0 and any final state x1, there exists an input that 

transfers x0 to x1 in a time t1. Otherwise, the state equation or (A(t),B(t)) is said 

to be uncontrollable at t0. 

Remark: In LTI systems, if the state-space model is controllable, then it is controllable 

for any t0 and for any t1 > t0 ​. Therefore, there is no need to specify t0 and t1 ​. However, 

in LTV systems, it is necessary to specify t0 and t1 ​.
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Controllabiltiy and Observability in LTV Systems

 =
1

0

),(')()(),(),(
1110

t

t
c

dtBBtttW 

Proof:

 
100110

1

1
),(),(),(')()( xxttttWtttBtu

c
−−= −

Theorem 16: The n-dimensional pair (A(t),B(t)) is said to be 

controllable at t0 if and only if there exists t1 > t0 such that the following 

n-dimensional matrix is non-singular.

Φ(𝑡, 𝜏) is the state transition matrix for ሶ𝑥 = 𝐴 𝑡 𝑥. 

𝑊𝑐 𝑡0,𝑡1  is invertible       ⇒   The pair (A(t),B(t)) is controllable        

The pair (A(t),B(t)) is controllable      ⇒          𝑊𝑐 𝑡0,𝑡1  is invertible 

Since 𝑊𝑐 𝑡0,𝑡1  is invertible, 𝑊𝑐
−1 𝑡0,𝑡1  exists. Thus we assert that 

the input u(t) can transfer an arbitrary x0 to an arbitrary x1 at time t1 :
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Controllabiltiy and Observability in LTV Systems

 +=
1

0

)()(),(),()(
10011

t

t
duBtxtttx 

11
)( xtx =

 −−= −1

0

]),()[,(),(')(')(),(),( 100110

1

11001

t

t
c dxxttttWtBBtxtt 

]),()[,(),(),( 100110

1

10001 xxttttWttWxtt cc −−= −

 
100110

1

1
),(),(),(')()( xxttttWtttBtu

c
−−= −

𝑊𝑐 𝑡0,𝑡1  is invertible       ⇒   The pair (A(t),B(t)) is controllable        

The pair (A(t),B(t)) is controllable      ⇒          𝑊𝑐 𝑡0,𝑡1  is invertible 

Since 𝑊𝑐 𝑡0,𝑡1  is invertible, 𝑊𝑐
−1 𝑡0,𝑡1  exists. Thus we assert that 

the input u(t) can transfer an arbitrary x0 to an arbitrary x1 at time t1 :

We know that the states follow from  the following relation:
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Controllabiltiy and Observability in LTV Systems
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𝑊𝑐 𝑡0,𝑡1  is invertible       ⇒   The pair (A(t),B(t)) is controllable        

The pair (A(t),B(t)) is controllable      ⇒          𝑊𝑐 𝑡0,𝑡1  is invertible 

Now, we must prove the other side of theorem:

Suppose that 𝑊𝑐 𝑡0, 𝑡1  is not invertible for all t1>t0, so there exists a vector v≠0 

such that:

Since the system is controllable, we can easily transfer from 𝑥0 = Φ(𝑡, 𝜏) to 

x1=0 so:

Contradiction
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To use the previous theorem, we need the state transition matrix Φ(𝑡, 𝜏). 

Therefore, we need a controllability test that is independent of the 

state transition matrix.

Suppose A(t) and B(t) are (n-1) times continuously differentiable. Then 

define:

Now, define Mm(t) as:

Clearly, for all t2 we have:
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Suppose A(t) and B(t) are (n-1) times continuously differentiable. Then 

define:
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By more differentiation we have:

Following theorem is sufficient but not necessary condition for controllability. 

Theorem 17: Let A(t) and B(t)) are (n-1) times continuously 

differentiable. Then pair (A(t),B(t)) is said to be controllable at t0 if 

there exists a finite time t1 > t0 such that:
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So:
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Theorem 17: Let A(t) and B(t)) are (n-1) times continuously differentiable. 

Then pair (A(t),B(t)) is said to be controllable at t0 if there exists a finite time 

t1 > t0 such that:

Proof: We will show that if the rank of the above matrix is n, then WC(t0,t) is 

non-singular for all t>t1. We will prove this by contradiction. Suppose WC(t0, t2) 

is singular for some t2 >t1 ​, then

Contradiction

By differentiating with respect to τ and substituting t1 instead, we have
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Example 12: Check the controllability of following state space model. 

The determinant is non-zero for 

all t; therefore, it is invertible for 

all t, thus the system is 

controllable.
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Example 13: Check the controllability of following state space models. 

State-space equation (I) is LTI and in Jordan form. Clearly it is 

controllable.

State-space equation (II) is an LTV system in Jordan form. Since all 

elements of B are non-zero for all t, it might be incorrectly considered 

controllable, but...
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Consider an n×n dimensional LTV state-space model with p inputs and
q outputs:

Definition 4: The state equation or the pair (A(t),C(t)) is said to be 

observable at t0 if there exists a finite time t1>t0 such that, for any x(t0)= x0, 

the input and output information in [t0, t1] is sufficient to uniquely 

determine x0 ​.
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Theorem 18: The n-dimensional pair (A(t),C(t)) is said to be observable 

at t0 if and only if there exists t1 > t0 such that the following n-

dimensional matrix is non-singular.
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Theorem 19: Let A(t) and C(t)) are (n-1) times continuously 

differentiable. Then pair (A(t),C(t)) is said to be observable at t0 if 

there exists a finite time t1 > t0 such that:
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Where:
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Exercises

Exercise 1: Examine the controllability
and observability of the following system.
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Exercise 2: Examine the controllability
and observability of the following system.

Exercise 3: Describe the state-space 

model and then examine the 

controllability and observability 
of the following system.
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Exercises

Exercise 4: Examine the controllability

and observability indices of the following
system.

Exercise 5: Examine the controllability

and observability indices of the following
system.

Exercise 6: Examine the controllability

and observability indices of the following
system. I is identity matrix.



lecture 6

Dr. Ali Karimpour  Aug 2024

63

 xy

uxx

11

1

1

14

41

=









+









−

−
=

 xy

uxx

10110

1

0

0

1

0

0000

1000

0000

0010

0001

2

2

1

1

1

=























+























=













Exercises

Exercise 7: Reduce the following system to a 

controllable form. Is the reduced system 
observable?

Exercise 8: Reduce the following system to a controllable and 
observable form. 
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Exercises

Exercise 9: Examine the controllability and observability of the 
following system.
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Exercises

Exercise 10: Is it possible to set the

B and C matrices such that the system

is controllable? 
What about observable?

Exercise 11: Derive a two-dimensional 

and three-dimensional state-space 

model for the given system. Check the 

controllability and observability of 
each.



lecture 6

Dr. Ali Karimpour  Aug 2024

66

 xy

ux
t

x

10

1

0

0

10

=









+








=

 xey

u
e

xx

t

t

−

−

=









+









−
=

0

1

10

00


xy

uxx

]301[

0

1

1

200

100

101

=

















+

















−

−

=

Exercises

Exercise 12: Examine the controllability
and observability of the following system.

Exercise 13: Examine the controllability
and observability of the following system.

Exercise 14: Derive a zero-state equivalent with the least degree for 
the given system(Final 2014).
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Exercises

Exercise 15: Examine the controllability and observability of the 
following system(Final 2013).
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Answers to selected problems

Answer 2: Controllable and observable.

Answer 3: Neither controllable nor observable.
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